Volume 6, Issue 3 (fall 2002)                   2002, 6(3): 121-139 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

H. R. Karimzadeh, A. Jalalian. Application of BSNE Sampler to Evaluate Vertical Distribution of Wind Eroded Sediment in Eastern Isfahan. Journal of Crop Production and Processing 2002; 6 (3) :121-139
URL: http://jcpp.iut.ac.ir/article-1-217-en.html
Abstract:   (9437 Views)
For the study of field wind erosion and the design and evaluation of wind erosion control techniques, detailed observations of soil particle transport and vertical destribution of eroded soil particles are needed. The objectives of this study were: 1) To describe one device for soil transport particle measurement, i. e. the BSNE sediment catcher and 2) To assess vertical distribution of wind–eroded sediment with height in eastern Isfahan. The BSNE sediment catcher is a wind erosion sampler that traps eroded material at seven heights of 0.24, 0.60, 1.08, 2.00, 3.00, and 4.00 m above the soil surface. Each trap consists of a steel container with an inlet and outlet, mounted on a wind vane that rotates about a central pole. Before using the sampler in the field, it was tested and calibrated in the wind tunnel. The results showed that the average trapping efficiency with speeds ranging from 5.2 to 7.2 m sec-1 for 4 different wind–eroded sediments was 0.44 to 0.68. However the trapping efficiency depended on wind speed, particle size distribution, particle density and type of sediment. The sampler had the lowest efficiency for particles < 44 μm. A BSNE sediment catcher was installed in Babaii Air Base. After a sampling period, the sediment in each trap was collected and weighed. The trapped materials were a mixture of saltation and suspension particles. Vertical distribution of wind–eroded sediment showed that the amount of soil collected decreased with increased height and the percentage of fine particles (<63μm) increased with height. The amount of trapped materials for each cm2 frontal intake with increased height were 12.00, 3.42, 1.44, 1.56, 0.75, 0.21, and 0.39 g cm-2, respectively, for the one sampling period.
Full-Text [PDF 362 kb]   (1193 Downloads)    
Type of Study: Research | Subject: General

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.