تولید کاروتئونید از آب پنیر توسط مخمر قرمز رنگ رودتورلا آکیوروم،
جداسازی شده از شیره درختان توس طالقان

ایرج نحوي، محسن واعظ وگیتی امیتیازی

چکیده
کاروتئونیدها از مهم‌ترین و رایج‌ترین رنگ‌زهی‌های طبیعی هستند که وظیفه پلوروزیک مهمی را در موجودات زنده برعهده دارند، و همچنین، رنگ مشخص و جذابی را به پیسیاری از حیوانات پرورشی می‌بخندند. در دو دهه اخیر استفاده از کاروتئونیدها به عنوان ماده چربی کریمی، به عنوان یکی از تنوع‌های مصرف و مصرف شده شد. می‌توان این روند را به دو راه اصلی تقسیم کرد: اول، تولید کاروتئونید با تولیدی مصرف لاکچری به عنوان جاده‌ای شده، و اولین استفاده‌کننده کاروتئونید سیستم‌های حاوی لاک‌دار و گیاهی از لحاظ مصرفی کاروتئونید به نام رودتورلا آکیوروم از شیره درختان توس گوشت مورد استفاده قرار گرفته است. در این تحقیق یک سروی از مخمر قرمز رنگ رودتورلا آکیوروم به نام بروش‌پیما شناسی شد. ظاهراً آنتی‌نشان داده‌کننده مخمر جاده‌ای شده توانایی مصرف لاکچری تولید کاروتئونید را نشان داده‌است. ارزیابی شرایط ملتوی کست مداری مکرمازیم بیوماس کاروتئونید را نشان می‌دهد. ارزیابی‌کنندگان مقدار مکرمازیم بیوماس کاروتئونید را تولید می‌کنند. استخراج‌کنندگان میدانی تولید ناحیه با کاروتئونید به عنوان کاروتئونید‌های اصلی تولید شده بر این توجه به این که آب پنیر کیک بتنی به شکلی انسانی و سایر کاروتئونید‌های اصلی تولید می‌شود. این نتیجه مصرفی از این ماده در تولید مواد از ارزش، از جمله مصرف کاروتئونید‌ها به عنوان رودتورلا آکیوروم از اهمیت شاگرد برخوردار می‌باشد.

واژه‌های کلیدی: کاروتئونید، رودتورلا آکیوروم، آب پنیر

مقدمه
تشکل رنگ‌زهی‌های کاروتئونیدی یکی از خصوصیات چنس رودتورلا (2) است. تولید این رنگ‌زهی‌ها با کاروتئونید پنیر رودتورلا (2) آماده‌گیری می‌شوند. این رنگ‌زهی‌ها با سبز رنگ طبیعی در صنایع غذایی و دارویی اهمیت

1. به ترتیب استادیاران: دانشجوی سایپ کارشناسی ارشد و دانشیار زیست شناسی، دانشکده علوم، انجام‌دهندگان امضاء

2. Rhodotorula
3. Beta carotene
4. Torulene
5. Torularhodin

67
مواد و روش‌ها

جداسازی مخمرها

شیبی درختان توس منطقه ماسه چال در روستای دهدر طالقان، واقع در شهرستان ساریجاغلاد، از نظر شیوه‌های برتری از مخمر‌های کاروتونیدی مواد مطالعه قرار گرفت. درختان در منطقه هر سربیسی، در خاکی سطحی با شیب بالا تند، در کار چسبیده هایی به نام چهل چشمه، به شکل دو توده تندیده به هم رسی نموده‌اند. یک درختان توس فاصله شنا پردازید و میکروفلور مخمری کاروتونیدی آنها با استفاده از مجموعه‌های مناسب جداسازی و خالص سازی گردید.

شناسایی مخمرها

مخمرهای جداسازی شده (با کلکسیون تا قرمز) بعد از تهیه کشت خلاصی، با استفاده از کلکسیون شماره ۹ مورد شناسایی قرار گرفتند. شناسایی بر پایه آزمون‌های ماکروسکوپی، میکروسکوپی و بیوشیمیایی صورت پذیرفت.

12.

آماده سازی مخلوط کشت تلخیقی و آب پنیر

مخمر روتوندا و فیروهوم بکه به عنوان میکروب برتری در این جداسازی شناخته شده بود در ۱۰ میلی لیتر مخلوط کشت (P. Y. M. L. R) ۲۰۰۰ تیم‌های ۱۰۰۰ میلی لیتری تلخیق و در ۲۰ درجه سخت گیریدم. هر دوی ۲۵ در دقیقه به مدت ۲۴ ساعت کشت گردید. مخلوط کشت آب پنیر با روش‌های مختلفی تهیه شد. در نهایت مخلوط کشت و زیستو و آگاهی‌نگری گردید. این مخلوط کشت حاوی یک لیتر آب پنیر تازه است که به آن دو گرم MgSO4 ۱/۱ گرم NaH2PO4 ۱/۲ گرم (NH4)2SO4 ۴ گرم FeSO4 ۱/۷ گرم, CaSO4 ۴H2O ۳۵ گرم, NaCl ۱/۷ گرم. ۱/۷ گرم, NaCl ۱/۷ گرم.
تویل کارتوتوئید از آب پنیر توسط مخمر تومرتوئید رودتولا اکتوبروئید

داخل سلولی بودن برای پیش‌سازی میزان تولید، اقدام به یک همین
نمودن بیوماس تولیدی توسط مخمر مورد استفاده‌گردد و اثر
عوامل مختلف، شامل غلظت قند لاکتوز و سولفات آرسنیوم
می‌کند که آپ پنیر، دما، pH، سرعت هوا‌دهی و زمان کشت
در سه تکرار انجام گردید.

نتایج

جداسازی و شناسایی میکروب‌ها مخمری تولید کننده
کارتوتوئید شیره درختان عسل
در این تحقیق دو مخمر کارتوتوئید شامل رودترولا
آکیوم و اسپریودیوبولس روپینی ۲ با ظاهر کنند که
متغیف جداسازی گردید (جدول ۱)، که با استفاده از کلید
شناسایی موجه و چند نتیجه‌گیری کمک کرد. گونه‌های مذکور
شناسه‌شده دو (جدول ۲). در نهایت، گونه اول به لحاظ دارون
خصوصیت دیگری بر عهور توانایی مصرف قند لاکتوز، به عنوان
سپری برتر انتخاب و در مطالعات بعدی مورد استفاده قرار
گرفت.

تجزیه شیمیایی کارتوتوئید استخراجی

طیف جدیدی عصاره سلولی استخراج شده از مخمر رودترولا
آکیوم (شکل ۱) نشان‌دهنده حضور رهگیره‌های کارتوتوئید
در این گونه جداسازی شده بود، و تجزیه شیمیایی
حضرهای سه تا کریستال یکتا کارتوتوئید، تولید و تولیدشدگان با
توجه به گزارش‌های قبلی در این جنس تأیید می‌شود (جدول ۲).

بررسی اثر غلظت قند لاکتوز و سولفات آرسنیوم
با بررسی چهار غلظت قند از ۰ تا ۵٪ در میکروکسیمك آپ پنیر میزان
۷۵ آپ، تولید بیوماس مخمری بالاتر به نمود آن کارتوتوئید
پیش‌تر، به این هنگام میکروکسیمک آپ شکل ۲.

همچنین، غلظت دو گرم در لیتر از سولفات آرسنیوم به
عنوان تأیید کندنی منبع بی‌روز، مناسب‌تر از دیگر شکل ۳.

1. Specord S
2. Thin Layer Chromatography
3. Sporidiobola ruinenii

شکست سلول‌های مخمری و استخراج کارتوتوئید

از آنجا که کارتوتوئید‌های تولید شده توسط مخمر ترکیبات
داخل سلولی می‌باشند، برای استخراج آنها روش‌های مختلفی
از شکست سلولی، شیب استفاده از هیدرو برقی و ذرات شیشه‌ای
به قطر ۵۰ (۲ و ۳) استفاده از دستگاه هموزنی کننده
ساخت شرکت IKA (۳) استفاده از دستگاه اوتوفاونیک و
استفاده از حلال میلی سولفورئکسید (DMSO) به شکل داغ
(۴ و ۵) مورد مطالعه قرار گرفت، که روش‌های سپر
کارایی‌بیل، سرعت عمل و سادگی برای آزمون‌های بعدی آنالیز
انتخاب شد. از این‌رو، شکست سلول‌های مخمری
کارتوتوئید‌های تولید شده توسط حلال پتروپولیوم از استخراج
و مقدار آن محاسبه گردید (۱ و ۲ و ۳).

آنالیز شیمیایی ترکیبات کارتوتوئید تولیدی

کارتوتوئید استخراج شده توسط پتروپولیوم از نظر تغییر
جدیدی به استفاده از دستگاه استخراج و پیشرفت‌ای در دانستن
طول موجودی ۷۰۰۰ نانومتر مورد آنالیز قرار گرفت. به منظور
شناسایی کامل تر آزمایش دهنده عصاره کارتوتوئید
استخراج شده، از تکنیک کروماتوگرافی نازک‌ای (Rf)
تصخیختی از جنس سیلیکا خشی و منیزیم اکسید و حل
پتروپولیوم اثر و استند به نسبت (۱:۱) استفاده و با تغییر
بنا به آن دست آمد از هر یک، نوع کارتوتوئید‌های تولید
شده شناسایی اولیه گردید.

بررسی اثر پارامترهای محیطی کشت بر تولید کارتوتوئید

از آنجا که کارتوتوئید‌های تولید شده توسط مخمر ترکیبات
جدول 1: مورفولوژی مخمرهای چگونگی و شناسایی شده

<table>
<thead>
<tr>
<th>اطراف کلنی</th>
<th>سطح کلنی</th>
<th>اندازه‌کلنی (mm)</th>
<th>رنگ کلنی</th>
<th>نام مخمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>صاف</td>
<td>محدب</td>
<td>۳-۱۱</td>
<td>قرمز رنگ</td>
<td>رودترولا آکتیوروم</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>آتش فشانی</td>
<td>اسپوریدیپولوس روییتی</td>
</tr>
</tbody>
</table>

توضیح: بعد از ۵ روز در ۲۳℃ روی میکروپیست YM آکار

جدول 2: ترتیب تست‌های شناسایی مخمرهای چگونگی شده

<table>
<thead>
<tr>
<th>اسپوریدیپولوس روییتی</th>
<th>رودترولا آکتیوروم</th>
<th>نام مخمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>اضافی +</td>
<td>اضافی +</td>
<td>+ سیاله‌گذاری</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- رشد در دمای ۲۵℃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- رشد در دمای ۳۰℃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- رشد در دمای ۳۷℃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ رشد در حضور ۱۰۰% سیاله‌گذاری</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- تشکیل ناشناخته‌ای خارج سلولی</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- تولید رشته‌ای ناشناخته</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- تولید هیف‌کافیب</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- تولید پالاستژور</td>
</tr>
</tbody>
</table>

1. ضایع.

بررسی اثر pH دما و سرعت ورودی

- نیو: مناسب‌ترین دمای رشد مخمر چگونگی شده در ۲۳℃ حاصل pH=۵/۵ توانایی تولید توسط مخمر در دمای بالاتر از ۲۸℃ به طور چشم‌گیری کاهش می‌یابد.
- گردید (شکل 4): هر چند که مخمر در حد وسیعی از pH قادر به رشد بود، اما در pH کمتر از سه رشد محسوسی قابل مشاهده نداشت.

70
شکل ۱. طیف چندی عصاره کاروتئنوئید استخراج شده از روتوئول آکتیو روم در حلال پترولیوم آتر

شکل ۲. اثر تولید آب گلوکوز بر بیوماس تولید شده توسط مخمر
شکل ۲. اثر خلوط سولفات آمونیوم بر پیرومات تولید شده توسط مخمر

شکل ۳. اثر pH بر پیرومات تولید شده توسط مخمر

شکل ۴. اثر دما بر پیرومات تولید شده توسط مخمر
جدول ۳. ترکیبات کاروتئونیدی شناسایی شده در خصائص استخراج شده از سلول‌های مخمری، توسط حلول پتولوئید آت توسط کانیک

<table>
<thead>
<tr>
<th>λ<sub>max</sub></th>
<th>نام کاروتئونید</th>
<th>با - کاروتین</th>
<th>تولوئید</th>
<th>تولوئودین</th>
</tr>
</thead>
<tbody>
<tr>
<td>472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه میزان تولید کاروتئونید توسط مخمرهای لاکتوز مثبت با سویه برتر چهاردانگیا شده

<table>
<thead>
<tr>
<th></th>
<th>مطالعه انجام شده</th>
<th>تحقیق حاضر</th>
<th>مenan</th>
<th>7 و 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاروتئونید کل تولیدی</td>
<td>۲۵۸ μg/g</td>
<td>۲۹۸ μg/g</td>
<td>۴۹۰ μg/g</td>
<td></td>
</tr>
<tr>
<td>R. acheniorum</td>
<td>R. lactosa</td>
<td>R. glutinis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

الکترونیا، جدا شده از شیره دخترا توس حوزه طالقان منطقه، معلوم است که مخمر غیر تخمیری است، هوا، هیپ، که به رشد و تولید کاروتئونید نادر است، از طرفی، چون مقدار هوا کمی که با سرعت سه‌گانه خوردن، این در حالی است که کارش را کامل در زمینه مخمرهای کاروتئونیدی لاکتوز مثبت و کاربرد صنعتی آنها وجود دارد.

سویه چهاردانگیا شده با هر میزان مخمری به کارگرفته شده به توسط سایر پژوهشگران از تولید کاروتئونید نسبتاً پیچیده برخورد است (جدول ۴).

بررسی اثر مدت زمان کشت

آزمایش‌ها نشان داد که دما که بی‌پیماس تولیدی توسط این مخمر در روز چهارم هب، دست می‌آید (شکل ۷)، و به دنبال آن کاهش چیزی در مقدار بی‌پیماس (شکل ۸) و افزایش تدریجی در کاروتئونید سولول باره می‌شود که کاروتئونید تولید شده در محیط کشت در روز پنجم حداکثر مقدار خود را دارا باشد (شکل ۸ و ۹).

بحث و نتیجه‌گیری

در تحقیق حاضر، مشخص شد که مخمر قرمز رنگ روتولولا

1. Phaffia rhodozyma
شکل ۶. اثر سرعت هوایی بر بیوماس تولید شده توسط مخمر

شکل ۷. اثر مدت زمان کشت بر بیوماس تولید شده توسط مخمر
شکل 8. نتایج تهیه بعد از یپسون سازی پارامترهای محیط کشت مخمر در مدت شش روز
الف) نمودار بیوماس تولیدی (g/ک) نمودار کاروتئنید تولیدی (μg/گ) (g/ک)
ب) نمودار کاروتئنید تولیدی (μg/گ)

آستانانتی، یک آنتی‌بیوتیک از مناطق دیگری از دنیا گزارش شده است (2 و 5)، مورد بررسی قرار گرفته.

سپاسگزاری

بدرین و سید نیازی از آقایان مهندس مسیح علی خاتمی و مهندس گرگسی از اداره آب‌های خوزستان شرکت سازمانی سازگاری و

