مطالعه شکارگری بین گونهای بال توری (Chrysoperla carnea (Steph.))

در شرایط آزمایشگاهی

Hippodamia variegata (Goeze)

و کفش دورک (Chrysoperla carnea (Steph.))

مقدمه

فعالیت بال توری

در مرتفعه گونهای بال توری (Hippodamia variegata (Goeze)) و کفش دورک (Chrysoperla carnea (Steph.)) در کلیه مناطق ایران گزارش شده است. (1) بال توری گونهای مختلفی از دامنه‌های ایران (C. carnea) و سعی برخورد با بوده (5) بیش از گونه هر، جمله گونه‌ها از میان نزدیک به گونه‌ها (4) بوده. لازم به ذکر است که بال توری (13) و سخت بال پوشش (15) را به ترتیب استفاده و داشته باشند کارشناسی ارشد جهانگیری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
پس از شیته‌های زیان‌آور و مرگ‌برانگیز حمله می‌کند. در اطراف تهاون در حال تغذیه از ترپیس گندم نیز دیگر شده است.

(2)

فعالتی این دو شکارگر روی میزبان مشترک در مزارع و باغات مختلف مشهود می‌باشد. اگر شکارگری که به طور همزمان از میزبان مشترک تغذیه می‌نمایند در فعالیت یکدیگر مداخله کند، نتیجه یک فرقه‌سازی از مبارزه به دست می‌آید (8) که اینکه از تباث مداخله ممکن است بر روی شکارگری بین گونه‌ها

(14) مطالعه آزمایشگاهی تأثیر متقابل سگ‌گونه از

کشف‌ورک‌های بومی ایالات بیوتا، شامل:

Hippodamia sinuata Mullstant,

Hippodamia convergence (Guer) و

Hippodamia tredecimpunctata (L.) و

Coccinella septempunctata L. و

Coccinella undecimpunctata L. و

Adalia bipunctata L. و

Coccinella tredecimpunctata و

Coccinella septempunctata تایید گرندند که این گونه‌ها در دفاع از خود علمه شکار شدن می‌توانند و گونه‌های دیگر، دارای مکانیزم‌ها متفاوتی هستند. به نحوی که قاچاق در مناطق می‌تواند موجب شود شرکت شدن

C. sinuata و C. convergence در مزایا و

C. tredecimpunctata و

C. septempunctata کشف‌ورک‌هر

C. tredecimpunctata و

C. septempunctata در آزمایشگاه مطالعه و گزارش نموده‌ند که لازم به تحقیق تجربیت در مورد کشف‌ورک‌ها که به همین ترتیب لازم کرده تخم و لاروها را در حضور و گیاه تغذیه می‌نماید، ویلی شکارگری بین گونه‌ها در حضور طعم‌دهنده‌های می‌باشد. در

یکی از تباث مداخله ممکن است بر روی شکارگری بین گونه‌ها

(14) مطالعه آزمایشگاهی تأثیر متقابل سگ‌گونه از

کشف‌ورک‌های بومی ایالات بیوتا، شامل:

Hippodamia sinuata Mullstant,

Hippodamia convergence (Guer) و

Hippodamia tredecimpunctata (L.) و

Coccinella septempunctata L. و

Coccinella undecimpunctata L. و

Adalia bipunctata L. و

Coccinella tredecimpunctata و

Coccinella septempunctata تایید گرندند که این گونه‌ها در دفاع از خود علمه شکار شدن می‌توانند و گونه‌های دیگر، دارای مکانیزم‌ها متفاوتی هستند. به نحوی که قاچاق در مناطق می‌تواند موجب شود شرکت شدن

C. sinuata و C. convergence در مزایا و

C. tredecimpunctata و

C. septempunctata کشف‌ورک‌هر

C. tredecimpunctata و

C. septempunctata در آزمایشگاه مطالعه و گزارش نموده‌ند که لازم به تحقیق تجربیت در مورد کشف‌ورک‌ها که به همین ترتیب لازم کرده تخم و لاروها را در حضور و گیاه تغذیه می‌نماید، ویلی شکارگری بین گونه‌ها در حضور طعم‌دهنده‌های می‌باشد. در

یکی از تباث مداخله ممکن است بر روی شکارگری بین گونه‌ها

(14) مطالعه آزمایشگاهی تأثیر متقابل سگ‌گونه از

کشف‌ورک‌های بومی ایالات بیوتا، شامل:

Hippodamia sinuata Mullstant,

Hippodamia convergence (Guer) و

Hippodamia tredecimpunctata (L.) و

Coccinella septempunctata L. و

Coccinella undecimpunctata L. و

Adalia bipunctata L. و

Coccinella tredecimpunctata و

Coccinella septempunctata تایید گرندند که این گونه‌ها در دفاع از خود علمه شکار شدن می‌توانند و گونه‌های دیگر، دارای مکانیزم‌ها متفاوتی هستند. به نحوی که قاچاق در مناطق می‌تواند موجب شود شرکت شدن

C. sinuata و C. convergence در مزایا و

C. tredecimpunctata و

C. septempunctata کشف‌ورک‌هر

C. tredecimpunctata و

C. septempunctata در آزمایشگاه مطالعه و گزارش نموده‌ند که لازم به تحقیق تجربیت در مورد کشف‌ورک‌ها که به همین ترتیب لازم کرده تخم و لاروها را در حضور و گیاه تغذیه می‌نماید، ویلی شکارگری بین گونه‌ها در حضور طعم‌دهنده‌های می‌باشد. در

یکی از تباث مداخله ممکن است بر روی شکارگری بین گونه‌ها

(14) مطالعه آزمایشگاهی تأثیر متقابل سگ‌گونه از

کشف‌ورک‌های بومی ایالات بیوتا، شامل:

Hippodamia sinuata Mullstant,

Hippodamia convergence (Guer) و

Hippodamia tredecimpunctata (L.) و

Coccinella septempunctata L. و

Coccinella undecimpunctata L. و

Adalia bipunctata L. و

Coccinella tredecimpunctata و

Coccinella septempunctata تایید گرندند که این گونه‌ها در دفاع از خود علمه شکار شدن می‌توانند و گونه‌های دیگر، دارای مکانیزم‌ها متفاوتی هستند. به نحوی که قاچاق در مناطق می‌تواند موجب شود شرکت شدن

C. sinuata و C. convergence در مزایا و

C. tredecimpunctata و

C. septempunctata کشف‌ورک‌هر

C. tredecimpunctata و

C. septempunctata در آزمایشگاه مطالعه و گزارش نموده‌ند که لازم به تحقیق تجربیت در مورد کشف‌ورک‌ها که به همین ترتیب لازم کرده تخم و لاروها را در حضور و گیاه تغذیه می‌نماید، ویلی شکارگری بین گونه‌ها در حضور طعم‌دهنده‌های می‌باشد. در

یکی از تباث مداخله ممکن است بر روی شکارگری بین گونه‌ها

(14) مطالعه آزمایشگاهی تأثیر متقابل سگ‌گونه از

کشف‌ورک‌های بومی ایالات بیوتا، شامل:

Hippodamia sinuata Mullstant,
پورش شکارگرها انجام شد. هر واحد آزمایش یک پرتی دیش به قطر 9 و عمق 15 سانتی متر بوده که روز درون آن متغییر به قطر در سانتی متر برای گیاهان یافته‌ها تعبیه و در پایه طوری پوشانده شد. هر یک از پرتی دیش‌ها حاوی قطعه‌ای از برگ خیار سبز بود که دوباره آن داخل لوله‌های پلاستیکی از پنجه مروطب برای تداوم طرتوس و زنده ماندن پرتی قرار داشت و به‌دنبال وصله‌گذاری مورد نیاز شده‌های درون پرتی دیش‌ها فراهم می‌گردد.

نتایج

در 31 آزمایش مستقل، و در هر آزمایش یکی از مراحل رشدی کشت‌درگز (مانند تخم، لازوهاهای سبز، یکی از مراحل رشدی بالاتوری (مانند تخم، لازوهاهای سبز، و شفرو) 1 1/2 تا 8 روزه است. تخم‌های کشت‌درگز در جریان تخم‌گذاری کلیه مراحل لازوهاهای بالاتوری، و تخم‌های بالاتوری کلیه مراحل لازوهاهای بالاتوری و شفرو کلیه گزینه‌های مختلف رشدی شامل کشت‌درگز از تخم تا رشد و درجه بندی (بعد از 3 ماه)، و مقایسه میزان تغذیه لازوهاهای هم (لازوهاهای سنین 1 و 2) بالاتوری به ترتیب با لازوهاهای سنین 1 و 2 کشت‌درگز)، و همچنین مقایسه میزان میزان درجه بندی لازوهاهای سنین 1 بالاتوری با لازوهاهای سنین 1 کشت‌درگز (بالاتوری فاقد لازوهاهای سنین 1 بالاتوری)، از تخم مشخص شد که میزان تغذیه لازوهاهای سنین 1 کشت‌درگز از بالاتوری از تخم کشت‌درگز، به ترتیب در مقایسه با میزان تغذیه لازوهاهای سنین 1 و 2 کشت‌درگز از بالاتوری، و غیاب و حضور طعمه، به طور متعارض با پیش‌تر (جدول 4).

هر چند میزان تغذیه لازوهاهای سنین 1 بالاتوری از تخم کشت‌درگز از بالاتوری توسط بیشتر بود (جدول 6). اختلاف میان تغذیه لازوهاهای سنین 1 بالاتوری از کشت‌درگز در مقایسه با میزان تغذیه حشره کامل کشت‌درگز از بالاتوری به طور متعارض با پیش‌تر بود (جدول 4).

بررسی تأثیر حضور و عدم حضور طعمه (شته) در شدت تغذیه شکارگرها از تخم یک‌چیزگر از طریق مقایسه میزان‌گیری‌ها به طور متعارض با پیش‌تر بود (جدول 6).
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a'</th>
<th>b'</th>
<th>c'</th>
<th>d'</th>
<th>e'</th>
<th>f'</th>
<th>g'</th>
<th>h'</th>
<th>i'</th>
<th>j'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>2'</td>
<td>3'</td>
<td>4'</td>
<td>5'</td>
<td>6'</td>
<td>7'</td>
<td>8'</td>
<td>9'</td>
<td>10'</td>
</tr>
</tbody>
</table>
مطالعه شکارگری بین گونه‌های بال توری (Chrysopelea carnea (Steph))

جدول ۳ تجزیه واریانس میزان تغذیه مراحل مختلف کشف‌دورک بال توری از تخم یک‌دیگر

<table>
<thead>
<tr>
<th>منبع تغییر</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>F محاسبه شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>15</td>
<td>247/9625</td>
<td>164/6375</td>
<td>۳/۳۳***</td>
</tr>
<tr>
<td>خطأ</td>
<td>۱۴۴</td>
<td>۲۴۸/۳</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** در سطح ۱/۰ وجود تفاوت معنی‌دار وجود دارد.

کشف‌دورک در یک سال بالاتر از بال توری قرار داشت (لالی‌سن، ۲۳ و ۴ کشف‌دورک به ترتیب با لالی‌سن ۲ و ۳ بال توری). تفاوت معنی‌داری در میزان تغذیه مشاهده نشد. بجز در مورد لالی‌سن ۳ کشف‌دورک و لالی‌سن ۲ بال توری، که بر اساس جدول ۴ بال توری غلاب بود. چنانچه لالی‌سن کشف‌دورک در سن بال توری قرار داشت (لالی‌سن ۲ و ۴ کشف‌دورک به ترتیب با لالی‌سن ۲ بال توری) لالی‌سن کشف‌دورک بر بال توری غلاب بود (جدول ۴)، بر اساس جدول ۷ می‌توان گفت لالی‌سن ۲ بال توری نسبت به لالی‌سن ۱ کشف‌دورک، لالی‌سن ۲ بال توری به لالی‌سن ۱ کشف‌دورک و همچنین لالی‌سن ۲ بال توری به لالی‌سن ۱ کشف‌دورک افزایش و حشره کاملاً کشف‌دورک غلاب بود. در مقابل، لالی‌سن ۳ کشف‌دورک نسبت به لالی‌سن ۱ بال توری و لالی‌سن ۱ کشف‌دورک به لالی‌سن ۱ بال توری غلاب بود. در حضور طمعه نیز به رغم کاهش قابل توجه شکارگری بین گونه‌های میزان غلاب بودن شکارگرها نسبت به یکدیگر در تعدادی از موارد روندی مشابه آنچه را داشت که در شرایط طمعه اتفاق افتاد (جدول ۸).

لاکورد ۳ بال توری، گونه‌ی کشف‌دورک نگهداری می‌شود. ولی در هیچ موردی تغذیه‌ای لاروها با حشرات کامل کشف‌دورک از شفیعه‌ی بال توری مشاهده نگردد (جدول ۴).

پیشنهاد می‌شود در مورد میزان تغذیه دو شکارگر از یکدیگر، نشان داد که میزان تغذیه در شرایط حضور طمعه، در مقایسه با شرایط غلاب طمعه، به مقدار زیادی کمتر بود. نتایج این پژوهش نشان داد که در مورد میزان تغذیه لاروها هم سن بودند لارو بال توری از لحاظ تغذیه نسبت به لارو کشف‌دورک غلاب بود. چنانچه لاروها.
<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
<th>(a)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>
جدول 5. مقایسه میانگین تغذیه مراحل مختلف رشدی کفش دورک و بالاتوری از نگهداری در غیاب و حضور طعمه

| میانگین تغذیه شده بالاتوری | مراحل مختلف رشدی | نتایج مطلوب
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>در غیاب طعمه</td>
<td>در حضور طعمه</td>
<td></td>
</tr>
<tr>
<td>2/5* **</td>
<td>2/3</td>
<td>2/8</td>
</tr>
<tr>
<td>2/3*</td>
<td>1/3</td>
<td>2/7</td>
</tr>
<tr>
<td>1/2*</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8</td>
</tr>
<tr>
<td>لازور سن 1 بال توری</td>
<td>لازور سن 2 بال توری</td>
<td>لازور سن 3 بال توری</td>
</tr>
<tr>
<td>لازور سن 4 بال توری</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و ** به ترتیب در سطح پنج درصد و یک درصد نتایج معنی‌دار وجود دارد.

فاقد نتایج معنی‌دار می‌باشد.

در تجاربی که لازورهای دو شکارگر هم سن بودند لازوری بالاتوری متفاوت و تعداد بیشتری از لازورهای کفش دورک را تغذیه می‌نمود. این نتایج از نظر روند کلی و غالب بودن بالاتوری بر کفش دورک، با مشاهدات سنگونکا و فرینگز (۱۴) هماهنگی دارد و لیست برتی در لازورهای سن ۲ و ۳ کفش دورک به ترتیب به لازورهای سن ۱ و ۲ بالاتوری و تیز مغول بودن لازور سن ۴ کفش دورک در برای لازور سن ۳ بالاتوری، با نتایج سنگونکا و فرینگز (۱۴) مطابقت ندارد. این به دلیل تفاوت H. variegata و Senpuncta (۱۲) محصول N. carnea

با مشاهده سنگونکا و فرینگز (۱۴) در مورد کفش دورک N. carnea

نقطه‌ای به حوزه مطلوب دارد.

تشجیع و ارائه میزان تغذیه مراحل مختلف رشدی دو شکارگر و مقایسه تغذیه لازورهای از نگهداری با شکارگر، نشان داد که لازورهای بالاتوری تعداد بیشتری از تغذیه کفش دورک را مورد تغذیه قرار می‌دهند (جدول ۴). به نظر می‌رسد شکل ناحیه‌ای بالاتوری که تغذیه خود را به صورت انفرادی و یا گروهی در سطح بزرگ می‌گذرد (۱۶)، و این که برای تغذیه لازورهای ناپایدار بالاتوری توسط حشره شکارگر خود ناتوان می‌باشد. تغذیه بالاتوری مجدد نمی‌تواند در دسترس شکارگر قرار گیرد (۱۴) موجب ساختن تغذیه کمتر بالاتوری توسط کفش دورک می‌گردد. در حالی که کفش دورک همان‌گونه که Coccinellidae خانواده C. septempunctata تغذیه عمدتاً در غیاب و حشود کفش دورک از شقایق بالاتوری و بر عکس تغذیه لازورهای سنین ۵ و ۴ بالاتوری از شقایق کفش دورک (جدول ۳)، به دلیل شکل متقاطع شقایق و همچنین اختلاف در نحوه تغذیه و شکارگر است. بالاتوری مرحله شقایقی خود را داخل پیله‌های محفظه که C. carnea

توسط لازور سن ۳ در اواخر مرحله رشد نشان دهنده می‌باشد. سپس

نتایج نشان می‌دهد.
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The table above represents a sequence of parameters or conditions. Each column and row contains specific values or symbols, possibly indicating a pattern or relationship that is being analyzed.
منابع مورد استفاده

1. رجبی، غ. ر. 1365. حشرات زیان‌آور درختان میوه سردسیری ایران (شته‌ها، شیشه‌ها، زنجیرک‌ها). انتشارات سازمان تحقیقات کشاورزی و منابع طبیعی، 256 صفحه.
2. وکیلی، ص. 1343. کشف و شناسایی میوه‌زدای آبیاری از زیان‌آور ایران. انتشارات دانشگاه تهران، 110 صفحه.
Chrysoperla carnea and Coecinella septempunctata in the laboratory. Entomophaga 30: 245-251.
