بررسی اثر آفت‌های در کاهش بیماری‌های قارچی خاک‌زد، نماتودها و علوف‌های هرز در کشت خیار پاییزه

مهدی نصرافضهی‌نژاد، احمد اخیاتی، حسین قاضی‌یزدی و حسین حسن‌پور

چکیده
آزمایش‌ها در زمینهٔ ضد عفونی خاک و کنترل بیماری‌های خیار (Phytophthora drechsleri) با استفاده از پوشش‌های مختلفی نمادینه (آفت‌آور) در سه نمونهٔ مختلفی انجام گرفت. در این آزمایش‌ها، علوف‌های مختلفی از جمله: P. solanacearum، P. capsici، P. fragariae، P. palmivora، P. syringae و P. citrophthora در گروه‌های مختلفی به کار گرفتند. نتایج حاصله نشان داد که در بررسی‌های به طور یک‌بار داده شده در زمینه ضد عفونی خاک و کنترل بیماری‌های خیار، پوشش‌های مختلفی به عنوان یکی از حل‌آمیزه‌های اولیه مطالعه و در کشت خیار پاییزه مورد توجه قرار گرفت. در ضمن، در بررسی‌های به صورت جدید، ممکن است که بررسی‌های نمادینه (آفت‌آور) در زمینه ضد عفونی خاک و کنترل بیماری‌های خیار، نیاز به مطالعه و تحقیق به شکل جدیدی بررسی و آزمایش گردند.

واژه‌های کلیدی: آفت‌آور، پوشش‌های ضد عفونی خاک، بیماری‌های خیار، علوف‌های هرز، ضد عفونی خاک

مقدمه
شناخت و روزافزون آثار سوء مصرف سموم دفع آفات نباتی، و موجب ترقب به روشن‌های غیر شیمیایی علیه آفات، دهم اهمیت روش‌های جدید در مبارزه با عوامل بیماری‌زای باغی و خاک‌زد، به ترتیب داشتن اعضای هیئت علمی سابق و کارشناس سابق مرکز تحقیقات کشاورزی اصفهان به تحقیقات آفات و بیماری‌های گیاهی
با استفاده از پوشش ورقه‌های پلاستیکی شفاف و انرژی خورشیدی در گرم‌ترین فصل سال، به مدت ۶-۸ هفته مصرف و توصیه شده است که اصطلاحاً تحت عنوان گوناگونی نامیده می‌شود. ولی در حال حاضر اصلاحات آتیف ده می‌تواند این آنها را باشد. این روش برای اولین بار توسط کان و همکاران در سال ۱۹۶۷ در کنترل بیماری پزشکی گروگانی (Fusarium oxysporum f. sp. lycopersici) است.(۱۵) پس از آن تحقیقات متعددی در مبارزه با بسیار بیماری‌های خاکی قارچی نشان داده‌اند که این تکنیک اثرات خوبی دارد. تحقیقات انجام شده روی مبارزه بیماری‌ها بر روی نبات‌ها و حتی علف‌های خاکی نشان داده که این تکنیک در مزرعه‌های مختلف کشور اثرات مثبت دارد. مقایسه آزمایش نماهای کنترل که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.

تحقیقات با این روش روی جنس Phytophthora capsici (P. capsici) و P. cambivora (P. cambivora) و گیلان (P. cambivora) و بیماری‌های آنکه از سبک‌های مختلف جهان آتیف این روش را می‌تواند آزمایش نماهایی که توسط کان و دوی در حال ۱۹۹۱ جمع‌بندی و تحقیقاتی گردیده است.(۱۶) برای مثال به برخی گزارش‌ها مربوطه اشاره می‌گردد.
بررسی اثر آتیپ دی در کاهش بیماری‌های قارچی...

اضافی زیر خاک‌ها در اطراف کرت‌ها عملی گردید. تا هر گونه تبدیل گاز و دما را با خارج به حداقل برساند. قارچ‌کش متالاسکلیپ به مقدار موردنظر توزیع و هم زمان کود حیوانی به میزان صورت نیاز فراهم گردید. یک روز قبل از انجام آزمایش بر اساس تیمارها قارچ‌کش متالاسکلیپ و کود حیوانی به خاک کرت‌ها اضافه و سطح آنها تسطح گردد. به طوری که سطح بلسکی‌ها کاملاً به سطح خاک در مسیر بوده و فقس‌دار بین سطح خاک و پوشش پلاستیک مشاهده گردید. تا اینکه هر گونه کاهش ارزی فرمایی به حداقل رسید. همه چیز به نظر قابل توجه از کشف یافته پلاستیک‌های آبیاری شده و برای اطمینان از نفوذ آب در اعماق خاک، چند نقطه گرفته شد. سپس سطح قارچ‌ها به غیر از شاهد با پلاستیک پوشش داده شد (16).

بررسی و تعبیه جمعیت قارچ و ضعیف رطوبت و دما در زیر پوشش پلاستیک

وضعیت رطوبت خاک در تیمارهای پوشش پلاستیک، قابل و به دو زبان ایرانی و اروپایی با نمودرهای در هر نوتی به تعادل میکملته است. در اینجا نیز تعبیه جمعیت موجود در فاصله انجام گرفته.

جمعیت قارچ و ضعیف رطوبت

تربیت قارچ‌های موجود در خاک تیمارها نمودرهایی که از خاک قبل و بعد از آزمایش گرفته شده بود در آزمایش‌های سابقه خوزستان پلاستیک و با بلاک‌آزمایش انجام گرفته که مدت خاک پایه‌های بسیار کوتاه و قرار گرفته بود. سپس به طور تکرار برای اجرای چنین قارچ‌ها کشت اختصاصی مربوط به بررسی جمعیت چنین چنین قارچ‌ها کشت و جمعیت و کل قارچ‌ها کشت و جمعیت نمودرهایی که پلاستیک و Pythium گرفته شد.

تربیت جمعیت پوشش دی در کاهش بیماری‌های قارچی

کشت نمودرهایی که از خاک قبل و بعد از آزمایش گرفته شده بود در آزمایش‌های سابقه خوزستان پلاستیک و با بلاک‌آزمایش انجام گرفته که مدت خاک پایه‌های بسیار کوتاه و قرار گرفته بود. سپس به طور تکرار برای اجرای چنین قارچ‌ها کشت اختصاصی مربوط به بررسی جمعیت چنین چنین قارچ‌ها کشت و جمعیت و کل قارچ‌ها کشت و جمعیت نمودرهایی که پلاستیک و Pythium گرفته شد.

شمارش و تعبیه شد. برای تربیت جمعیت قارچ‌ها از طریق بهینه سوزن‌سازی

1. Pepton dextrose rose bengal agar medium
تعیین جمعیت نامندگان موجود در خاک و آلوگری روی ریشه پوشش پالتستیک کود حیوانی (۳۰۰ تا ۵۰۰۰ کیلوگرمی) و تلفیق هر دو به عنوان سه تیمار مورد مطالعه قرار گرفت. برای تعیین جمعیت نامندگان موجود در خاک، قبل و بعد از آزمایش ۲۵۰ میلی لیتر خاک از هر تکار به طور جداگانه با روش سانتریفژ شسته شده و تعداد نامندگان استخراج شده اعماق از انگل و آزادی شمارش و با استفاده از کلید شناسایی در حد جنس شناسایی گردید (۱۲ و ۲۳). در تعیین میزان آلوگری ریشه‌های خیار توتو نامندگان مولد گره در اواخر فصل تعداد هد عده ریشه از هر تکار به طور تصادفی جدا و پس از نقص شدن پلاستک تعیین گردید که به ترتیب و به طور میانگین در ۵۵/۰/۲ گرم خاک مقدار ۱۱/۲/۰ گرم آپ و در ۴۲/۰/۸ گرم خاک مقدار ۹۵/۰ گرم آپ و جو داشته است که همان می‌باشد که تراکم در خاک معمولی (شاهرود) زیادتر بوده است (نمودار ۲). نتایج بررسی قارچ‌های موجود در خاک (نمودار ۳) نشان می‌دهد که در هر تیمار که از پوشش پالتستیک استفاده شده، جمعیت قارچ‌ها به شدت کاهش پیدا نکرده است. در تیماری که فقط پوشش پلاتستیک به کار رفته، جمعیت Phytophthora spp. Fusarium spp. جنس‌های جنگلی و کل قارچ‌ها به ترتیب به میزان ۶/۳/۰۸/۲/۱۷ درصد در سال اول (۱۳۷۱) و ۶/۳/۸/۲/۲/۳ درصد در سال دوم (۱۳۷۲) کاهش داشته است. در حالی که میانگین سال به سه میزان معادل ۱۱/۱/۰/۷۸ و ۲/۷/۸ درصد می‌شود. برای سایر تیمارها نیز به همین گونه محاسبه گردیده است (جدول ۳). ولی در مجموع، در بین تیمارهایی که ورق پلاتستیک به کار رفته فاقد چندانی (پیش/۰۵/۰۵) از نظر کاهش جمعیت مشاهده نمی‌گردد (نمودار ۳) ولی اختلاف هم‌آن با شاهد معنی‌دار است (پیش/۰۵/۰). Pretreatment.

نتایج

در بررسی‌هایی که در تعیین ترشی‌ها در دوره سال به عمل آمده، مشخص گردید که این داده‌ها انگام در شهرستان اصفهان حذف نمی‌شوند. ۱۰۰۰ با چندین نامندگان افتاده و در سوسپانسیون Aspergillus Fusarium ۱۱۴
نمودار ۱. تعیین میزان دمای خاک در زیر پوشش پلاستیک و شاهد

نمودار ۲. تعیین میزان رطوبت در زیر پوشش پلاستیک نسبت به شاهد
نمودار ۳: تبعیض درصد کاهش جمعیت قارچ‌های موجود در زیر پوشش پلاستیک در تیمارهای مختلف نسبت به شاهد

- بین گروه‌هایی که یک حرف نشان داده شده است اختلاف معنی‌داری در سطح ۵٪ وجود ندارد.

نمودار ۴: تبعیض درصد کاهش بیوتی میری در تیمارهای مختلف نسبت به شاهد

- بین گروه‌هایی که یک حرف نشان داده شده است اختلاف معنی‌داری در سطح ۵٪ وجود ندارد.

۱: تیمار تلفیق پوشش پلاستیک و گود حیوانی
۲: بیوتی (بدون هیچ گونه تیماری)
۳: تیمار تلفیق پلاستیک و رندهیلی
۴: اکثر بیوتی‌ها در تیمارها (در اطراف کرت) مشاهده شده است.
به شدت کاشت یافته و قربانی تانوگرگزندند، فقط ارایاسلام و شیرینی (Cyperus rotundus) و گیاهی (Echinocloa, سهره‌های (Convolvulus arvensis, سوره‌ها (Hibiscus trionum, گل‌های (Portulaca oleracea, گل‌های (Malva montana) و Setaria (Raphanus ophianistrum) وحشی (Sorghum halepen) ویولاس (Vinid) و فرهنگی (پارک‌های (Amaranthus) و گل‌های (Cyperus rotundus) و گل‌های (Chenopodium album) و گل‌های (Trichoderma Myrothecium Pythium Phytophthora Rhizoctonia و Gliocladium Aspergillus Penicillium)

نتایج بررسی وضعیت بیوتیک گیاه مزروعه در اثر تیمارهای مختلف برغم پوشش پلاستیکی و میزان گچ بر خاک است. این تیمارهای پرورش پوستکی و نقش‌آفرینی آن باکتری‌های و ریزومیک به ترتیب 95/81 و 95 درصد است. در مجموع، در سال 97، 98 و 99 درصد است. گچ بر خاک شاهد تعداد کمتر از گیاهان خیار می‌باشد (نمودار 4). لازم به ذکر است که گیاهان در اطراف کرت ها بهتر است، که نشان می‌دهد این روش در اطراف به میزان 25-30 درصد می‌تواند به عنوان یکی از روش‌های بهبود و افزایش تولید کودهای و گیاهی استفاده شود.

بحث

در تیمارهای پوشش پلاستیکی مشخص گردید که خاک نسبت به گیاهان آزادی می‌باشد. این افزایش حداکثر 8 درصد سانتی‌گراد برآورد گردید که می‌تواند به گیاهان بررسی صاحب‌نظران این روش می‌باشد. ریزه‌ها که با استفاده از پوشش پلاستیکی توسط اجزای آنتی‌تیمارهای در زیر پوشش پلاستیکی نیز تا حدود 82 درصد حفظ گردیده، این عدد گذشته تعداد قدرت پانتاسیال آنها، به ویژه عوامل بیماری‌ها، رشد می‌باشد، که با

وضعیت آلودگی ریشه‌های گیاهان در اثر تیمارهای مولکول‌گرگ‌دان

می‌باشد. جمعیت می‌باشد. در پایان قبل، بر اساس شمارش جمعیت می‌باشد. در پایان قبل، بر اساس شمارش جمعیت می‌باشد. در پایان قبل، بر اساس شمارش جمعیت می‌باشد. در پایان قبل، بر اساس شمارش

جوینگ گیاهان در اثر تیمارهای مولکول‌گرگ‌دان

می‌باشد. جمعیت می‌باشد. در پایان قبل، بر اساس شمارش جمعیت می‌باشد. در پایان قبل، بر اساس شمارش جمعیت می‌باشد. در پایان قبل، بر اساس شمارش

1. Hydrothermal
نمودار 5. تعریف درصد کاهش آلودگی به نامندگان محل ورش که جمعیت کل نامندگاه پاراژیت و سایرپیش‌ها

1. رده‌بندی اول مربوط به پوشش پلاستیک به‌ترتیب موارد بالای است.
2. رده‌بندی دوم مربوط به کود حیوانی به‌ترتیب موارد بالا است.
3. رده‌بندی سوم مربوط به تلفیق پوشش پلاستیک و کود حیوانی است.

درصد ازدید سایرپیش‌ها نسبت به تعداد است.
- بین گروه‌هایی که با یک حرکت نشان داده شده است اختلاف معنی‌داری در سطح 95% وجود ندارد.

می‌گوید (16 و 24). مکانیزم‌های دیگری مثل حذف میکروب‌ها، از بین رفت و عملکرد بیماری حس کردند به دلیل تغییر در محیط و وجود تغییرات در محیط کیفیت بیولوژیکی که

Gliocladium Trichoderma، **Aspergillus** و **Penicillium** ها

سایرپیش‌ها و چنین سایرپیش‌ها

سایرپیش‌ها و چنین سایرپیش‌ها

نکته اصلی و ازدید سایرپیش‌ها

نکته اصلی و ازدید سایرپیش‌ها

می‌گوید: اثر این دارو برای متابولیسم و وجود تغییرات در محیط کیفیت بیولوژیکی

Gliocladium Trichoderma، **Aspergillus** و **Penicillium** ها

سایرپیش‌ها و چنین سایرپیش‌ها

سایرپیش‌ها و چنین سایرپیش‌ها

نکته اصلی و ازدید سایرپیش‌ها

نکته اصلی و ازدید سایرپیش‌ها

می‌گوید: اثر این دارو برای متابولیسم و وجود تغییرات در محیط کیفیت بیولوژیکی

1. Biological vacuum 2. Microbial suppression 3. Fungistasis

<table>
<thead>
<tr>
<th>علف‌های متوسط عدد علف‌های متوسط در هر متر مربع</th>
<th>بعد از آمایش</th>
<th>پلاستیک</th>
<th>پلاستیک</th>
<th>پلاستیک</th>
<th>پلاستیک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>قبل از آمایش</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthus retroflexus</td>
<td>۳/۸۵</td>
<td>۰/۷۵</td>
<td>۰/۷۵</td>
<td>۰/۷۵</td>
<td>۰/۷۵</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>۱/۰۲</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
</tr>
<tr>
<td>Cyperus rotundus</td>
<td>۱۳/۶۳</td>
<td>۲/۵۹</td>
<td>۲/۵۹</td>
<td>۲/۵۹</td>
<td>۲/۵۹</td>
</tr>
<tr>
<td>Echinochloa crus-galli</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
</tr>
<tr>
<td>Hibiscus trionum</td>
<td>۱/۳۷</td>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
<td>۰/۳۷</td>
</tr>
<tr>
<td>Malva montana</td>
<td>۶/۲۵</td>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
</tr>
<tr>
<td>Portulaca oleracea</td>
<td>۱۲/۸۰</td>
<td>۳/۶۸</td>
<td>۳/۶۸</td>
<td>۳/۶۸</td>
<td>۳/۶۸</td>
</tr>
<tr>
<td>Raphanus aphanistum</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>Setaria viridis</td>
<td>۱۳/۶۲</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
</tr>
<tr>
<td>Sonchus asper</td>
<td>۱/۶۶</td>
<td>۰/۶۶</td>
<td>۰/۶۶</td>
<td>۰/۶۶</td>
<td>۰/۶۶</td>
</tr>
<tr>
<td>Sorghum halepense</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>جمع</td>
<td>۵۳/۸۳</td>
<td>۷۰/۶۲</td>
<td>۷۰/۶۲</td>
<td>۷۰/۶۲</td>
<td>۷۰/۶۲</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>علف‌های هر متر مربع</th>
<th>پلاستیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمع</td>
<td>۲۱۸/۹۲</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>علف‌های هر متر مربع</th>
<th>پلاستیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمع</td>
<td>۲۸۰/۴۸</td>
</tr>
</tbody>
</table>

1. درصد تقلیل علف‌های هر متر مربع در داده‌های پوشش‌های پلاستیک نسبت به کنترل توسط پلاستیک، داده‌های پوشش‌های پلاستیک نسبت به کنترل بوده است.

2. جدول ارائه شده در بخش پیشنهاد به میزان تقلیل در سال سال اجرای آزمایش است.

3. علف‌های هر متر مربع در این مرحله از هر نوع علف‌های مورد انتخاب قرار داده شدند.

4. بررسی جمعیت کل علف‌های جنسیه‌ها، Trichodera и Aspergillus Penicillium Myrothecium

از جمله علف‌های غالب در سطح میکروکشت بودند. پیشترین کاهش در تیمار تلفیقی ورده‌های پلاستیک با کود هیوبو ایست، که آن هم به علت تغییر خاک‌های گودگیر (S. و SH۰۲۶۲۸ۥ۲

5. تفسیر نتایج نشان داد که تیمارهای تلفیقی ورده‌های پلاستیک با...
پلاستیکی با و بدون تلفیق، بوده می‌تواند در اطراف کرت‌ها مشاهده گردد. این نشان می‌دهد اثرات این کردها در اطراف
کرت‌ها به میزان 0-5 سانتی‌متر کمتر می‌باشد که مؤث‌ر نظریات سایر پژوهشگران در این زمینه است (11، 16 و 29).
در بررسی وضعیت و نوع منعگال روی ریشه در اثر
ناداتهای مولدگرهای M. javanica مشخص شده که بطور
میانگین 50 درصد کاهش در آئودیو ناداتهای مولدگرهای ریشه
روی خیار ترکیب پرسته و رفتارهای پلاستیکی ایجاد گردد.
است. این نتایج نشان می‌دهد که پوشش و رفتار پلاستیکی نا
حذفی در کنترل ناداتهای مولدگرهای ریشه مؤثر است که با
سایر گزارش‌ها (12، 16، 21 و 25) مطابق دارد.
کردهای گردنده در این ژرمنی‌ها به مکانیک نمی‌باشد. افزوده نشان دهنده مجموع کاهش ناداتهای مولدگرهای ریشه
خیار گردد، که در مجموع و سال به طور میانگین معادل
50 درصد کاهش یافته و مؤیذ گازراه‌های بی‌یل شده و سالیانه
افزایش یافته دارد که موجب رشد گازراه‌های بی‌یل شده می‌باشد.
از دیدگاه مواد آلی قابل تجزیه در خاک از روش‌هایی است
که موجب تغییر در شرایط فیزیکی‌شیمیایی بی‌یل‌های
خاک و فرآهم شدن شرایط مساعد برای آنتی‌وسته‌های
موجود و تککریز و ازدیابی آنها در امر میانگه بیپلوژیک
پاتولوژی‌های خاک‌زا می‌گردد (11 و 29). این مورد ناداتهای
آزادی نسبت به تیمار شاهد در مجموع و سال 30 درصد
از آنها باعث افزایش می‌گردد که مؤدی گازراه‌های بی‌یل
فرآهم است.
تیمار تلفیقی روی پلاستیک و کردهای ترکیبی از بارتن‌بین
تیمار‌های این بررسی به دو سال مختلف آزمایش است. این
تیمار‌های این بررسی به دو سال مختلف آزمایش است. این
ناداتهای مولدگرهای ریشه، نتیجه می‌باشند. این
اولین گزارش در مورد تلفیق پرسته و رفتارهای
کنترل ناداتهای مولدگرهای ریشه (Melicodigne spp.)
می‌باشد که در این مورد عمل می‌نماید یکی مکانیسم
گرما و رطوبت و دیگری تجمع‌گردهای قرار می‌شود.

۱۲۰
کنترل کرده، در صورت وجود آلودگی نمادهای مولداگر به ریشه، با ازودن کود حیوانی این آلودگی را نیز برطرف می‌نماید. لذا توصیه می‌شود کشاورزان که فعالیت در اصفهان به کشت گلخانهای اشکال مخزنی از این روش استفاده نمایند. مصرف سمومی مثل بیسمود، پتنیس، نیروژیل، بی‌ئیمرل، علوفکش‌ها، نمادهای فیروزه‌ای و غیره که عملکردی در آلودگی زیست محیطی هستند، مورد استفاده قرار نگرفته‌اند.

۱. علی‌زاده، ا. و. و. اکبر نادری. ۱۳۶۲. گونه‌ها و نژادهای نیزله‌ای نمادهای مولداگر به ریشه در ایران. نشریه بیماری‌های گیاهی، ۵۰، ۷۵-۱۰۰.

۲. بهداد، ا. و. اکبر نادری. ۱۳۶۲. مبارزه شیمیایی علیه بیماری بوته موری فتوتیپ‌های خیار در اصفهان. نشریه آفات و بیماری‌های گیاهی، ۳۵ (۱ و ۲)، ۱-۱۰۰.

