اثر پرتوپایی بین الکترونی بر فراشته‌های تجزیه‌پذیری ماده خشک، الیاف نامحلول در
شوینده‌های خشک و اسیدی باگاس نیشکر

حسین رضا شهیازی، علی اصغر صادقی، حسن فضلی، غلامرضا علی و محمد جمشیدی

(تاریخ دریافت: 27/11/2018، تاریخ پذیرش: 21/7/2019)

چکیده
در این تحقیق، نمونه‌های جامد گلی از کهی در مدل SAS (思います. 200 و 2000 کیلوگرم) توسط یک شتاب دهنده الکترونی مدل 300 تی ترکیب کرده شدند. سپس آزمایشات تجزیه‌پذیری با فرابرآیه‌های تجزیه‌پذیری ماده خشک و الیاف نامحلول در شوینده‌های خشک و اسیدی پرتوپایی شدند. نمونه‌ها محتوای فرضیه‌های تجزیه‌پذیری که در آزمایشی پذیری نمونه‌ها را به چهار گروه دانستی دانست. به‌طور گرفته گزارش برجسته‌ترین جهت جذب ماده خشک و الیاف نامحلول در فرآیندهای تجزیه‌پذیری ماده خشک و الیاف نامحلول در شوینده‌های خشک و اسیدی برای بررسی مقایسه قرار گرفتند. پرتوپایی در فرآیندهای تجزیه‌پذیری، نسبت به رفتاری که پیدا کنند جهت تجزیه (9) الیاف نامحلول در شوینده‌های خشک و اسیدی و ثابت نهایت تجزیه‌پذیری (5) شده‌است که در شوینده‌های خشک و اسیدی با افزایش دلیل داگینگ تقویت و سپس افزایش پدیده تجزیه‌پذیری ماده خشک و الیاف نامحلول در شوینده‌های خشک و اسیدی با افزایش در پرتوپایی به طور خاص افزایش یافته است. پرتوپایی از الکترونی با مقدار 100، 200 و 300 کیلوگرم تجزیه‌پذیری ماده خشک و الیاف نامحلول در شوینده‌های خشک و اسیدی را به ترتیب به مقدار 11.7، 16.7 و 23.7 برای ده‌ساعت در صورت سرعت 5 درصد در نارنج غیرپزشک مورد اندازه‌گیری قرار گرفتند.

واژه‌های کلیدی: پرتوپایی الکترونی، باگاس نیشکر، فراشته‌های تجزیه‌پذیری، ماده خشک و الیاف نامحلول در شوینده‌های خشک و اسیدی

1. دانشجوی سابق دکتری علوم دامی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران و در حال حاضر استادیار علوم دامی، دانشگاه آزاد اسلامی، واحد کرج.
2. استادیاران علوم دامی، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران.
3. دانشیار مؤسسه تحقیقات علوم دامی کشور، کرج.
4. دانشیار سازمان انرژی اتمی ایران، پژوهشگاه خنک، پژوهشگاه کاربرد پرتوهای تهران.
hossein_shahbazi39@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: hossein_shahbazi39@yahoo.com
مقدمه

یکی از پسماندهای ساخته‌شده که پس از عصاره‌گیری از سالگی بر جای مانده، این پسماندها ماهیت فیبری داشته و آن برای مصرف سوختن، مانند ساختن ماهیچه سه و نیز در تغذیه شناخته‌کننده مورد مصرف دارد (15). در ایران نیز، سالانه حجم انویه از یک‌گانگ نیشکر تولید می‌شود که عمداً به استان خوزستان اختصاص دارد. هر چند که مصرف یک‌گانگ نیشکر به عنوان بخشی از مواد فیبری جهانی گفته می‌شود، ولی به دلیل ماهیت فیبرکشی‌پذیری قابلیت تجزیه‌پذیری و ضریب هضم آن بسیار پایین است. مانند سایر مواد خشکی، در مورد بهبود افزایش نیشکر یک‌گانگ نیشکر نیز کنون به‌طور هم‌وقت گرفته است و هم‌چنین روش عمل آوری به عنوان یک ترکیب از افزایش خشکی‌آزمایش یک‌گانگ نیشکر است. مورد بررسی قرار گرفته است.

مواد و روش‌ها

نوبت و پرتروتای نمونه‌ها

از یک توده یک‌گانگ نیشکر شرکت کشت و صنعت هفت نی به واقع در استان خوزستان نمونه‌ها مورد نیاز به تهیه شده‌ند. برای تهیه نمونه‌برداری از یک توده از جوانات مختلف آن به عنوان 30 تا 40 سانتی‌متر به علت 10 نقطه نمونه‌برداری صورت گرفت. سپس نمونه‌ها به مخلوط وخاک طبیعی داخل کیسه‌های نابولونی نگهداری شدند. نمونه‌ها به مرکز پژوهش فرآیند برد انتقال داده شدند و عمل پرتروتای روی آنها با دستگاه رودودرون مدل انجام گرفت. نمونه‌های خوراک در معرض پرترو TT200 الکترونی با سر 300 و 700، کیلوگرمی قرار داده شدند. انرژی باریکه الکترونی 15 میلی‌امپر ثابت بود و جریان باریکه الکترونی روی 5 میلی‌امپر تهیه شد. برای تشخیص روش و مورد نمونه‌ها در چند مرحله پرتروتایی شدند. ابتدا ترکیب شیمیایی نمونه‌های عامل آوری دیده و همچنین نمونه‌های شاهد به روش تجزیه شیمیایی تعیین گردید. ترکیبات
شیمیایی مورت نیاز در این آزمایش شامل تعبیه درصد رطوبت و ماده خشک، الاف نامحلول در شوینده خشک و اسیدی، بر اساس روش AOAC (4) با 3 تکرار، اندک‌گیری شد.

برای فراسته‌های تجزیه‌پذیری نمونه‌ها از سه رأس گاز متال تالیسیپ، برای وزن زندگی 400 کیلوگرم دارای فیسولوک شکم‌های به قطر 21 میلی‌متر شد. گازهای این سطح تجدی شدند. بستر یک جو و بیونجه تغذیه شدند. جریه مصرفی بر اساس 70 میلی‌متر ماده خشک خونه و 30 میلی‌متر کامپانی از حسب ماده خشک تهیه و در اختیار داشت. گرفت. بخش کامپانی از جو خرد شده، کنگالی سویا، کنگالی به نامه، سبسن، نمک، مخلوط ورتلی‌ها و مواد عضوی و بخش خونه با استفاده از بیونجه خشک تأیید شد.

بعد از یک هفته عادت دهنده جریه در دو و عده مصرف در ساعت 8 و بعد از ظهر ساعت 15 در اختیار داشت. گرفت. می‌شود. آب و سنگ نمک به طور دانست. این اختیار دام قرار داد. مقدار 4.50 کرم نمونه درکیسی‌های از خون بیلی استر که به

بعاد سانتی‌متر با قطر منفی 45 میکرومتر بود در هریک‌ها ریخته شد. کیسه‌های حاوی نمونه به لوله‌های لاتیکس نرم و قابل انتظاری بسته و از طریق فیسولوک شکم‌های کمک‌گذاری گردیدند. برای زمان‌ها شمار صفر، 6، 12، 24، 48 و 66 ساعت برابر هر نمونه، شش تکرار (بیس، گل) 27 و 28 ساعت را در نظر گرفت. شد (12 و 16). همه کیسه‌های مناسب به یک دروازه معمول به طور هم زمان و دیپق قابلیت از این بحث‌ها واوین و بعد خواهان روزه خود را دریافت کرد (8 صبح). کیسه‌گذاری شدند. پس از خارج کردن کیسه‌ها و شستشوی آب، کیسه‌ها در آن (95 درجه سانتی‌گراد به مدت 48 ساعت) خشک و ماده خشک و الاف نامحلول در شوینده خشک و اسیدی، بر اساس روش AOAC (13 و 23) ماده

نتایج

در پرونده اکونومی بر فراسته‌های تجزیه‌پذیری و تجزیه‌پذیری مؤثر ماده خشک فراسته‌های مختلف تجزیه‌پذیری و تجزیه‌پذیری مؤثر ماده خشک مواد خوراکی شاهد و پرونده شده در جدول 1 نشان شد.
جدول 1: اثر پرتوئایی بر تجزیه‌پذیری و تجزیه‌پذیری موثر ماده خشک با گیاه نیشکر

| ارتوگونال کانترست | شاهد | فرآیندهای تجزیه‌پذیری | پرتو نایب شده (کیلوگرمی) | خطای معیار | درجه حرارت | دارد | دارد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>0/48</td>
<td>0/48</td>
<td>0/2/7</td>
<td>0/25</td>
<td>3/67</td>
</tr>
<tr>
<td>NS</td>
<td>*</td>
<td>*</td>
<td>0/65</td>
<td>0/65</td>
<td>0/2/5</td>
<td>0/25</td>
<td>3/67</td>
</tr>
<tr>
<td>NS</td>
<td>*</td>
<td>*</td>
<td>0/65</td>
<td>0/65</td>
<td>0/2/5</td>
<td>0/25</td>
<td>3/67</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>0/66</td>
<td>0/66</td>
<td>0/2/5</td>
<td>0/25</td>
<td>3/67</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>0/29</td>
<td>0/29</td>
<td>0/2/5</td>
<td>0/25</td>
<td>3/67</td>
</tr>
</tbody>
</table>

اختلاف معنی‌داری وجود دارد (P < 0/033) (با افرادی که از گیاه نیشکر انواع مختلف نمونه‌ها در شکم به دست آورده‌اند ماده خشک برای هر تیمار افزایش یافته است.
اثر پرتوئایی می‌تواند بر فرآیندهای تجزیه‌پذیری و تجزیه‌پذیری موثر ایفای نقش داشته باشد.

بتای نزدیک تجزیه‌پذیری بخش کن تجزیه در 200 کیلوگرمی کاهش و سپس در 300 کیلوگرمی افزایش یافت. بیشترین نزدیک تجزیه‌پذیری بخش کن تجزیه به ده‌ها 200 و 300 کیلوگرمی (بسته به تیمار) 4 اختصاص داشت (جدول 2). تجزیه‌پذیری موثر در 100 هیگر عبور مواد از شکم به 40 گردید. 8 درصد در ساعت 8 بر طور خاص با افرادی که از گیاه نیشکر انواع مختلف نمونه‌ها در شکم به دست آورده‌اند ماده خشک برای هر تیمار افزایش یافته است.

اثر پرتوئایی می‌تواند بر فرآیندهای تجزیه‌پذیری و تجزیه‌پذیری موثر ماده خشک

اطلاعات ارائه شده در جدول 2 نشان می‌دهد که بین میانگین‌های دارد. 8 درصد با افرادی که از گیاه نیشکر انواع مختلف نمونه‌ها در شکم به دست آورده‌اند ماده خشک برای هر تیمار افزایش یافته است.

288
تجارت پروتوتایی بیم الکترونی بر فراستجه‌های تجزیه‌پذیری ماده خشک، الاف ...

جدول ۲. نامیدگی شدن شکم‌های ماده خشک نمونه‌های یاگاس نیشکر در ساعت‌های مختلف

| ساعت | ۰ | ۲ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ |
|------|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| دهنده پروتوتایی | ۲۲/۰۷ | ۲۸/۰۵ | ۳۵/۱۰ | ۴۲/۱۵ | ۴۹/۱۹ | ۵۶/۲۳ | ۶۳/۲۷ | ۷۰/۳۱ | ۷۷/۳۵ | ۸۴/۴۰ | ۹۱/۴۴ | ۹۸/۴۸ | ۱۰۵/۵۲ | ۱۱۲/۵۶ | ۱۱۹/۵۹ | ۱۲۶/۶۳ | ۱۳۳/۶۷ | ۱۳۹/۷۲ |
| عمل اوری ندیده | ۲۳/۰۴ | ۲۹/۰۹ | ۳۵/۱۴ | ۴۱/۱۹ | ۴۷/۲۴ | ۵۳/۲۹ | ۵۹/۳۴ | ۶۵/۳۹ | ۷۱/۴۴ | ۷۷/۴۹ | ۸۳/۵۴ | ۸۹/۵۹ | ۹۵/۶۴ | ۱۰۱/۶۹ | ۱۰۷/۷۴ | ۱۱۳/۷۹ | ۱۱۹/۸۴ | ۱۲۵/۸۹ |

درجه حرارت بی‌شکلی در هر ستون بیانگر اختلاف معنادار در سطح معناداری برابر % است.

جدول ۳. اثر پروتوتایی بر تجزیه‌پذیری و تجزیه‌پذیری مؤثر الاف نامحلول در شوینده خشک یاگاس نیشکر

<table>
<thead>
<tr>
<th>الاف نامحلول</th>
<th>روند نبودهای تجزیه‌پذیری</th>
<th>فراستجه‌های</th>
<th>پروتوتایی شدن (کیلوگرمی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان حرارت</td>
<td>% معیار</td>
<td>درصد</td>
<td>درصد</td>
</tr>
<tr>
<td>NS NS</td>
<td>*</td>
<td>0/0/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>NS NS</td>
<td>*</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>NS NS</td>
<td>*</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>NS NS</td>
<td>*</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>

اثر پروتوتایی بیم الکترونی بر نابی‌پذشندن الاف نامحلول در شوینده خشک

نتایج مقایسه میانگین‌های درصد نابی‌پذشندن الاف نامحلول در شوینده خشک نشان داد که در همه زمان‌ها بجز زمان صفر، بین تیمارهای آزمایشی اختلاف معناداری وجود دارد (جدول ۴).

با افزایش زمان اکوبایسیون نمونه‌ها در شکم‌های طبیعی درصد
درجه حروف غیرمشابه در هر سطون بیناگیر اختیاری معمول در سطح معنی داری برای ۵٪ است.

جدول ۲. ناپیدایی شدن شکم‌های آبیف نامحلول در شونیده خشخاش نیوهای یاگاس تیکچر در ساعت‌های مختلف

<table>
<thead>
<tr>
<th>ساعت</th>
<th>۹۶</th>
<th>۷۲</th>
<th>۴۸</th>
<th>۲۴</th>
<th>۱۲</th>
<th>۶</th>
<th>۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>دهه‌های پروتونی</td>
<td>۲۵/۸۳</td>
<td>۲۴/۸۸</td>
<td>۲۱/۲۱</td>
<td>۱۵/۳۹</td>
<td>۷/۸۵</td>
<td>۲/۷۲</td>
<td>۲/۲۸</td>
</tr>
<tr>
<td>عمل اوریه‌نشده</td>
<td>۲۹/۶۱</td>
<td>۲۸/۷۸</td>
<td>۲۴/۸۷</td>
<td>۱۷/۳۶</td>
<td>۹/۸۸</td>
<td>۲/۲۷</td>
<td>۲/۲۸</td>
</tr>
<tr>
<td>۱۰۰ کیلوگرم</td>
<td>۲۱/۷۵</td>
<td>۱۹/۷۵</td>
<td>۱۵/۷۵</td>
<td>۸/۵۱</td>
<td>۵/۸۵</td>
<td>۲/۸۵</td>
<td>۴/۸۵</td>
</tr>
<tr>
<td>۳۰۰ کیلوگرم</td>
<td>۳۲/۳۱</td>
<td>۲۳/۴۱</td>
<td>۲۱/۴۵</td>
<td>۱۵/۵۸</td>
<td>۹/۹۶</td>
<td>۶/۳۸</td>
<td>۴/۸۵</td>
</tr>
<tr>
<td>۶۰۰ کیلوگرم</td>
<td>۳۳/۸۵</td>
<td>۲۷/۸۴</td>
<td>۲۳/۴۸</td>
<td>۱۶/۸۴</td>
<td>۹/۴۵</td>
<td>۲/۸۵</td>
<td>۴/۸۵</td>
</tr>
<tr>
<td>خطه‌های معبر</td>
<td>۴/۱۲</td>
<td>۱/۲۱</td>
<td>۲/۱</td>
<td>۱/۳</td>
<td>۱/۳</td>
<td>۱/۳</td>
<td>۱/۳</td>
</tr>
</tbody>
</table>

در جزیره تجزیه‌نامه‌ها، گروه‌های اسیدی و کربنیل سولوژ

پنجه شد (۱۹). پروتونی‌های الکترونی در دهه‌های ۸۰۰ و ۱۰۰۰ کیلوگرم، سبب تغییر معنی‌داری در خصوصیات فیزیکی، شیمیایی و قابلیت هضم بی‌پنده‌های انکوهوبین افزایش شد (۲۲). تجزیه‌پذیری مؤثر ماده خشخاش یاگاس تیکچر به مقدار ۴۴ درصد افزایش یافت. پروتونی‌های الکترونی (ه) در دهه‌های ۲۰۰ و ۳۰۰ کیلوگرم پروتونی‌های الکترونی بود (۲۲۳/۰۲/۰۳، P). بین دهه‌های نامحلول شونیده در زمان ۹۶ ساعت انکوهوبین افزایش یافت. پیش‌بینی فشار این دسته در دهه‌های ۳۰۰ کیلوگرم پروتونی‌های الکترونی (۲۲۴/۰۲/۰۳، P) در زمان ۹۶ ساعت انکوهوبین شکم‌های یاگاس تیکچر در دهه‌های ۲۰۰ و ۳۰۰ کیلوگرم با هم تفاوت معنی‌داری نداشتند.

بحث

پروتونی‌های اکسیژن‌بربر، بر روی فیزیکی جهت بهبود ارزش تغذیه‌ای قابلیت هضم مواد خوراکی، به دلیل اثرات بر پیوندهای الگوسولونی‌های شدن. اثر پروتونی‌های الکترونی در اثر برخورد پروتونی‌های الکترونی آزمایشگاهی شد. شکل‌دادن‌های الکترونی در اثر برخورد پروتونی‌های الکترونی به آب موجود در خوراکها متغیر. به طوری که در این رادیکال‌های شرایط برای ایجاد همکاری اتصالات الگوسولونیدی و تجزیه میکروی فراهم می‌کنند (۲۲۵/۰۲/۰۳). پروتونی‌های الکترونی افزایش قابلیت هضم ماده آلی کاه گندم

۲۹۰
جدول 5. اثر پرتونتی بیم تجزیه‌پذیر و تجزیه‌پذیری موثر الاف ناحمل در شوینده الاف پتیک در ساعت‌های مختلف

<table>
<thead>
<tr>
<th>فرآیندهای</th>
<th>پرتونتی بیم</th>
<th>پرتونتی بیم تجزیه‌پذیر</th>
<th>پرتونتی بیم تجزیه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
</tr>
<tr>
<td>بخش سریع تجزیه (درصد)</td>
<td>0/559 29/37</td>
<td>0/62 6/36</td>
<td>0/00 0/28</td>
</tr>
<tr>
<td>ناحمل عمده 2 درصد در ساعت 28/52</td>
<td>0/105 39/18</td>
<td>0/134 29/19</td>
<td></td>
</tr>
<tr>
<td>ناحمل عمده 5 درصد در ساعت 19/41</td>
<td>0/125 34/29</td>
<td>0/125 20/05</td>
<td></td>
</tr>
<tr>
<td>ناحمل عمده 8 درصد در ساعت 15/25</td>
<td>0/125 34/29</td>
<td>0/125 20/05</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. تأثیر شدن شکم‌های الاف ناحمل در شوینده الاف پتیک در ساعت‌های مختلف

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>حجم الاف ناحمل (میلی‌لیتر)</th>
<th>ناحمل عمده 2 درصد</th>
<th>ناحمل عمده 5 درصد</th>
<th>ناحمل عمده 8 درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0/00 5/49</td>
<td>0/00 0/75</td>
<td>0/00 0/26</td>
<td></td>
</tr>
</tbody>
</table>

همراه با کاهش معنی‌داری در مقدار فیبر حام و الاف ناحمل و شوینده خشی‌گر در ۵۰ کیلوگرم گازرفت. مشاهده شد که تا پایین‌ترین شکم‌های الاف ناحمل در شوینده خشی‌گر و ماده خشک به طور معنی‌داری به ترتیب کاهش و افزایش می‌یابد (۳۳). گزارش شده است که حلالیت و قابلیت هضم کوره نارنجی پتیک می‌یابد (۳۳). محققان نشان دادند که حلالیت و قابلیت هضم ماده
منجر به شکست یونگ گلیکوزید‌های شد. در هر دو حالت، از این عمل شکافت گروه کربوهای حاصل می‌شود. می‌توان توجه گرفت که عمل تجزیه یک مولکول حاصل از رادیکال اولیه به طور متوسط اتفاق می‌افتد با جرمیکسیون است. احتمالاً تشکیل رادیکال مرکزی یک عامل دیگری در تخریب اولیه مولکول سولز حاصل از پتروف‌اوتی می‌باشد (در هر دو حالت مایع و جامد) به این صورت که با حدف اتم هیدروژن از پتروف‌اوتی کربوهیدرات‌ها رادیکال‌ها تولید می‌شوند (25).

بحث مهم این است که آیا پتروف‌اوتی سولز، تجزیه میکروبی آن را کاهش می‌دهد یا خیر؟ دلیلی بی‌سنجش در شدن سولز در اثر پتروف‌اوتی وجود دارد. تشکیل ایجاد اکسیده از جمله گلکوز با افزایش در پتروف‌اوتی، نشان دهنده دچار بررسی‌های نیزی است. در 1990 کیلوگرم پتروف‌اوتی سولز به طور کامل حل شده و تولیدات تخریبی کاهش می‌یابد به طوری که طول زنجمه بسیار کوتاه می‌شود. این بحث مطرح است که پتروف‌اوتی چرب در دز بالا اکرچه سولز را به طور کامل نسبت به جمله باکتری‌ها اسپیدتر می‌کند. اما طول زنجیره بسیار کوتاه می‌شود، به طوری که عمل تخریب به آسانی روز نخواهد داشت.

 متای مورد استفاده