اثر تغذیه برگ با آسکوربیک اسید بر فعالیت آنزیم‌های آنتی اکسیدان در شرایط تنش شوری (Brassica napus L.)

آریا دولت آبادیان، سید محمد مدرس ناتوی،* و مظهر شریفی.

چکیده
اثر تنش شوری و تغذیه برگ با آسکوربیک اسید بر میزان فعالیت آنزیم‌های آنتی اکسیدان در بذر پو棱ین و پراکسیدازهای لیپیدی غشای ریشه برگ گل‌زال رنگ اوکاپی، مورد بررسی قرار گرفت. آزمایش به صورت فاکتوریل در قالب طرح بلوک‌های کامل‌تکنیکی با 3 تکرار انجام شد. تنش شوری با استفاده از محلول NaCl 200 mM با غلظت NaCl 25 mM آسکوربیک اسید (P = 0.05) استفاده گردید. میزان فعالیت آنزیم‌های پراکسیداز، پراکسیداز دیسکاتولاز و کتانالاز در اندازه‌هایی و ریشه مورد سنجش قرار گرفت و همچنین نمونه‌های محلول‌های آب آلوده پو棱ین و کارولوف برگ‌ها از ریشه شرکت نمودند. نتایج نشان داد که فعالیت آنزیم‌های فوق به جز آنزیم سیروکسید دیسکاتولاز در ریشه در اثر تنش شوری افزایش یافته کرد. کاربرد آسکوربیک اسید به عنوان یک آنتی اکسیدان سبب کاهش فعالیت آنزیم‌های فوق در برگ‌ها شد. ولی در ریشه‌ها میزان آن در محدوده 10 مولول حفظ گردید. همچنین میزان پو棱ین محلول در ریشه نشان داد که کاهش فعالیت آنزیم‌های فوق در برگ‌ها را کاهش می‌دهد. سنجش کارولوف، نشان داد که کاهش می‌شود. نتایج نشان داد که در مقابل شرایط با کنترل تنش نشان داد. بر طبق نتایج به دست آمده، مصرف آسکوربیک اسید می‌تواند سبب کاهش اثر مضر تنش شوری شود.

واژه‌های کلیدی: آنزیم‌های آنتی اکسیدان، تنش شوری، آسکوربیک اسید، تغذیه برگ، کلارا

مقدمه

تنش‌های مختلف محیطی شامل تنش‌های زند دیده و غیر زند دیده تولید رادیکال‌های آزاد اکسیدانی می‌شود و در جمله این تنش‌ها می‌توان به تنش نور شدید، تنش خشک و شوری و حتی عوامل بیماری‌زا اشاره کرد (۲۴). تنش شوری عاملی است که به طور جدی تولید محصولات زراعی را در مناطق مختلف از

1. به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار زراعت، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
2. استادیار علوم کشاورزی، دانشگاه علوم پایه، دانشگاه تربیت مدرس، تهران
modaresa@modares.ac.ir

* مسئول مکاتبات، پست الکترونیکی:
پزشکی دانی و در مرگ گاهی متفاوت است.
نتش شوری ماندگان دیگر نشته‌های محیطی باعث نجم
گونه‌های گل را در مانند پون سوری‌کسیس، پانکس‌های لیپیدهای غشا پروتون‌ها و اسیدهای نیتریک منشی شدند (8) و
در سلول‌های گیاهی اندازه‌های مانند کارپولیست، برخی از
میکروسکوپی و پاسکی زروم تولید کننده‌های الی آزاد اکسیژن در طی فرآیندهای فتوسنتز و فتن می‌باشد (35).
زنجبیل انتقال الکترون در غشا تا نیترولیز نیتریک توسط تولید
گونه‌های گلlatent هستند (37). تولید رادیکال‌های آزاد
اکسیژن، در کارپولیست به وسیله انتقال مستقیم از
کلروفیل با مولکول اکسیژن و بر اینگیخته شدن آن و با به وسیله
کاهش نیز مولکول اکسیژن در فتوسنتز می‌کسند (5). پاسکسی‌بیون ریزی‌های غشا می‌تواند در اثر
گونه‌های گل کاهش در وجود آید و در تیجنس باعث کاهش
نفوذ‌پذیری انتخابی غشا سلولی شود (6).

گیاهان سازوارکارهای مختلفی را می‌تواند کاهش آنتی میکروب
رادیکال‌های آزاد اکسیژن دارد از جمله این سازوارکار نیز تولید
ترکیبات آنزیمی و غیرآنزیمی است. بدنی صورت که مقدار
گونه‌های گل اکسیژن در سلول‌های گیاهی به وسیله فعالیت
آنتی اکسیدانها کاهش در اثر مصرف اکسیژن
فعال بسیاری به میزان تحلیل کیسه به نشته داد (36).
روابط
گونه‌گونی بین نشته‌های شوری، خشکی و سطح آنتی
اکسیدانها حملوت در آپراوریسم آنتی اکسیدان
گزارش شده است (38 و 42). برای مثال گیاه‌هایی
نامبراسی‌پین (Sesamum indicum) در (Arabidopsis thaliana L.) در 200 mM NaCl
شروع اعمال شده با
پیچ جوید حفظ کند (31 و 32). فعالیت آنتی اکسیدان‌های آنتی
اکسیدانهای حملوت در آپراوریسم آنتی
اکسیدان با سمیز دایی و از این بردن در نظر گونه‌های
اکسیژن فعال هیپوسنتز (9). آپراوریسم سلولی اکسید
مانند سلولی به عنوان یک آنتی اکسیدان در میان سبب کاهش
گونه‌های گل فعال حالت از نشته شوری شود.

612
ماده و روش‌ها

به منظور بررسی اثر تنش شوری و تغذیه برق با آسکوربیک اسید بر میزان فعالیت آنزیم‌های آنتی‌اکسیدان و پراکسیدازیون لیپیدها و تعمیق پرولین، آزمایشی به صورت فاکتوریال در قالب طرح بلوک‌های کامل‌تشکیلی (فاکتور اول: شدت تنش شوری با دو سطح صفر و mM NaNO2 و فاکتور دوم: شدت جریان برق با سه سطح صفر و mM CuCl2 و mM CuCl2) در اندازه‌گیری فعالیت آنزیم‌ها به صورت پارامتریک (Brassica napus L.) هیپولارید به مدت 3 دقیقه و اندازه‌گیری به مدت 60 ثانیه به شکلی به آب ماء ضریب شده و سپس با دو جذب در گلدان‌های حاوی خاک لومی شنی (60 درصد شن، 30 درصد رس و 10 درصد سیلت) کاشته شدند. گلدان‌ها 12 حلقه (2500 گرم روزانه) در دمای 25/20 درجه سانتی‌گراد و شدت نسبی 60 درصد و پس از استقرار بونه با تعداد هر 5 گلدان، 2 پوش در نظر گرفته شدند. آبایی گلدان‌ها به دور روانه‌کننده به مقدار 0.25 mS cm⁻¹ و اندازه‌گیری گرفته. همزمان که گیاهچه‌ها به مرحله سطح چهار برقی رسیدند تیمار تنش و تغذیه برق با آسکوربیک اسید اعمال شد. برای ایجاد تنش شوری، آبایی گلدان‌ها به محلول NaCl (200 mM NaCl) به مقدار 6 mS cm⁻¹ مربوط کرد. همچنین برای نگه‌داری برق برق با آسکوربیک اسید از محلول آسکوربیک اسید با ترکیب آب آلیان استفاده 25 mM
نتایج و بحث
تجزیه و آرایش (جداول 1 و 2) و مقایسه میانگین (جداول 3 و 4) نشان داد که تنها شوری روم صفحات مورد ارزیابی به جز غلط فک کارولفیل b و فعالیت آنزیم سورکاپسید دیسپارتمان در بگ‌ها و محتوای مالون‌دی‌آلدهید در ریشه‌ها عمده‌تری داشت. همچنین نتایج برگی آسکوکانیک اسید در تمام صفات به جز فعالیت آنزیم کاتالاز و پراکسیداز ریشه‌ها تأثیر معنی‌داری نداشت. تنها شوری افزایش معنی‌داری در میزان فعالیت آنزیم کاتالاز در بگ‌ها و نجات افزایش معنی‌داری، در پی این کاربرد آسکوکانیک اسید تأثیر معنی‌داری بر فعالیت آنزیم کاتالاز در سطح بدن داشت. شوری ندامت در حالت‌های سبب در شرایط شوری، سبب کاهش فعالیت آنزیم کاتالاز در بگ‌ها شد.

بافت در جدول‌های 5 و 6 اثرات اصلی تنها شوری و کاربرد آسکوکانیک اسید را نشان می‌دهد. به طوری که ملاحظه می‌شود تنها شوری سبب افزایش فعالیت آنزیم‌های کاتالاز و پراکسیداز در بگ‌ها و افزایش فعالیت آنزیم‌های کاتالاز، سورکاپسید دیسپارتمان در ریشه‌ها است. در حالت‌های سبب کاهش فعالیت
جدول 1. تجزیه واریانس میانگین مربوط به استیمافات آنیزمی‌های آنتی اکسیدان. تجمع پروتئین و ملانوندی‌آلفهید. غلظت کارولیف و محواي پروتئین برگ کلزا تحت تنش نش و کاربرد آسکوربیک اسید

<table>
<thead>
<tr>
<th>کارولیف a</th>
<th>پروتئین b</th>
<th>ملانوندی‌آلفهید</th>
<th>پراکسیداز</th>
<th>سورپراکسیدوزمتونات</th>
<th>کالیفرز</th>
<th>درجه آزادی</th>
<th>منابع تغییر آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/202</td>
<td>0/1/7</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
<td>1/5/6</td>
<td>6/7/5</td>
<td></td>
</tr>
<tr>
<td>0/1/7</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
<td>1/5/6</td>
<td>6/7/5</td>
<td></td>
</tr>
<tr>
<td>0/202</td>
<td>0/1/7</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
<td>1/5/6</td>
<td>6/7/5</td>
<td></td>
</tr>
<tr>
<td>0/1/7</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
<td>1/5/6</td>
<td>6/7/5</td>
<td></td>
</tr>
<tr>
<td>0/202</td>
<td>0/1/7</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
<td>1/5/6</td>
<td>6/7/5</td>
<td></td>
</tr>
<tr>
<td>0/1/7</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
<td>1/5/6</td>
<td>6/7/5</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. تجزیه واریانس میانگین مربوط به استیمافات آنیزمی‌های آنتی اکسیدان. ملانوندی‌آلفهید و محواي پروتئین ریشه کلزا تحت تنش نش و کاربرد آسکوربیک اسید

<table>
<thead>
<tr>
<th>کالیفرز</th>
<th>پراکسیداز</th>
<th>سورپراکسیدوزمتونات</th>
<th>درجه آزادی</th>
<th>منابع تغییر آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/202</td>
<td>0/17</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
</tr>
<tr>
<td>0/17</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
</tr>
<tr>
<td>2/1/5</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
</tr>
<tr>
<td>0/202</td>
<td>0/17</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
</tr>
<tr>
<td>0/17</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
</tr>
<tr>
<td>2/1/5</td>
<td>0/202</td>
<td>2/1/5</td>
<td>216/242</td>
<td>1/5/6</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین صفات مربوط به برگ کلزا تحت تنش نش و کاربرد آسکوربیک اسید

<table>
<thead>
<tr>
<th>کالیفرز</th>
<th>پراکسیداز</th>
<th>سورپراکسیدوزمتونات</th>
<th>تیمار کالیفرز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/202</td>
<td>0/17</td>
<td>2/1/5</td>
<td>S0V0</td>
</tr>
<tr>
<td>0/17</td>
<td>0/202</td>
<td>2/1/5</td>
<td>S0V1</td>
</tr>
<tr>
<td>2/1/5</td>
<td>0/202</td>
<td>2/1/5</td>
<td>S1V0</td>
</tr>
<tr>
<td>0/202</td>
<td>0/17</td>
<td>2/1/5</td>
<td>S1V1</td>
</tr>
<tr>
<td>0/17</td>
<td>0/202</td>
<td>2/1/5</td>
<td></td>
</tr>
<tr>
<td>2/1/5</td>
<td>0/202</td>
<td>2/1/5</td>
<td></td>
</tr>
</tbody>
</table>

در هر صفت و گروه مقایسه کشته، تیمارهای که به یک یا دو رشته اغلب شاندند بر اساس آزمون چنددمایی داتک در سطح احتمال 0/05 دارای اختلاف معنادار نبودند. ** به ترکیب پیونگ و وجود اختلاف معنادار در سطح 1 دارد. * به ترکیب پیونگ و وجود اختلاف معنادار در سطح 5 دارد. هستند. ** و * به ترکیب پیونگ وجود اختلاف معنادار در سطح 1 و 5 دارد. هستند.
جدول 4. مقایسه میانگین صفات مربوط به ریشه گلزا تحت تنش شوری و کاربرد آسکوربیک اسید

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نمونه</th>
<th>پروتئین کل</th>
<th>پروتئین a</th>
<th>پروتئین b</th>
<th>کل کاربیل</th>
<th>سوپرکسیدیسمتاز</th>
<th>کاتالاز</th>
<th>سطح تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOV0</td>
<td>0/17</td>
<td>1/43</td>
<td>1/37</td>
<td>1/24</td>
<td>0/56</td>
<td>5/84</td>
<td>0/26</td>
<td>0</td>
</tr>
<tr>
<td>SOV1</td>
<td>0/28</td>
<td>1/46</td>
<td>1/35</td>
<td>1/26</td>
<td>0/58</td>
<td>7/68</td>
<td>0/28</td>
<td>0</td>
</tr>
<tr>
<td>S1V0</td>
<td>0/29</td>
<td>1/46</td>
<td>1/35</td>
<td>1/26</td>
<td>0/58</td>
<td>7/68</td>
<td>0/28</td>
<td>0</td>
</tr>
<tr>
<td>S1V1</td>
<td>0/29</td>
<td>1/46</td>
<td>1/35</td>
<td>1/26</td>
<td>0/58</td>
<td>7/68</td>
<td>0/28</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 5. اثرات اصلی تنش شوری و آسکوربیک اسید بر آنزیم‌های آنتی‌اکسیدان، تجمع پروتئین و مالوندی آلدهید

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نمونه</th>
<th>پروتئین کل</th>
<th>پروتئین a</th>
<th>پروتئین b</th>
<th>کل کاربیل</th>
<th>سوپرکسیدیسمتاز</th>
<th>کاتالاز</th>
<th>سطح تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش شوری</td>
<td>0/15</td>
<td>1/35</td>
<td>1/29</td>
<td>1/23</td>
<td>0/56</td>
<td>5/84</td>
<td>0/26</td>
<td>0</td>
</tr>
<tr>
<td>ویتامین</td>
<td>0/26</td>
<td>1/46</td>
<td>1/35</td>
<td>1/26</td>
<td>0/58</td>
<td>7/68</td>
<td>0/28</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 6. اثرات اصلی تنش شوری و آسکوربیک اسید بر آنزیم‌های آنتی‌اکسیدان، مالوندی آلدهید و محتوی پروتئین ریشه گلزا

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نمونه</th>
<th>پروتئین کل</th>
<th>پروتئین a</th>
<th>پروتئین b</th>
<th>کل کاربیل</th>
<th>سوپرکسیدیسمتاز</th>
<th>کاتالاز</th>
<th>سطح تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش شوری</td>
<td>0/15</td>
<td>1/35</td>
<td>1/29</td>
<td>1/23</td>
<td>0/56</td>
<td>5/84</td>
<td>0/26</td>
<td>0</td>
</tr>
<tr>
<td>ویتامین</td>
<td>0/26</td>
<td>1/46</td>
<td>1/35</td>
<td>1/26</td>
<td>0/58</td>
<td>7/68</td>
<td>0/28</td>
<td>0</td>
</tr>
</tbody>
</table>

در هر صفحه و گروه مقایسه شده، تیمارهای که با حرف یکسان ارتباط دارند به اساس آزمون چندنمونه‌ای دانکن در سطح احتمال 0/05 دارای اختلاف معنی‌دار تیمار می‌باشند.
ان تغذیه برگ با آسکوربیک اسید بر فعالیت آنزیم‌های آنتی اکسیدان، تجربه پرولین ...
نتیجه گیری

به طور کلی می‌توان نتیجه گرفت که آسکوپیکی اسید به عنوان یک آنتی‌کسیدان می‌تواند اثرات ضرر حاصل از شوری را کاهش دهد و سبب بهبود رشد گیاهان در شرایط نگهداری در خانم می‌شود. این روش می‌تواند به دنبال آن افزایش عایقی در حالات معمولی می‌باشد و کاربرد آن در کنترل تکثیر غربی گیاهان در حال تمرکز در زمره زیستی می‌باشد. البته تحقیقات بیشتری در این زمینه انجام شود ممکن است لحاظ می‌گردد آن ضروری است.}

ak

نتیجه‌گیری

به طور کلی می‌توان نتیجه گرفت که آسکوپیکی اسید به عنوان یک آنتی‌کسیدان می‌تواند اثرات ضرر حاصل از شوری را کاهش دهد و سبب بهبود رشد گیاهان در شرایط نگهداری در خانم می‌شود. این روش می‌تواند به دنبال آن افزایش عایقی در حالات معمولی می‌باشد و کاربرد آن در کنترل تکثیر غربی گیاهان در حال تمرکز در زمره زیستی می‌باشد. البته تحقیقات بیشتری در این زمینه انجام شود ممکن است لحاظ می‌گردد آن ضروری است.

نتیجه‌گیری

به طور کلی می‌توان نتیجه گرفت که آسکوپیکی اسید به عنوان یک آنتی‌کسیدان می‌تواند اثرات ضرر حاصل از شوری را کاهش دهد و سبب بهبود رشد گیاهان در شرایط نگهداری در خانم می‌شود. این روش می‌تواند به دنبال آن افزایش عایقی در حالات معمولی می‌باشد و کاربرد آن در کنترل تکثیر غربی گیاهان در حال تمرکز در زمره زیستی می‌باشد. البته تحقیقات بیشتری در این زمینه انجام شود ممکن است لحاظ می‌گردد آن ضروری است.

