اثر تغذیه برگ با آسکوربیک اسید بر فعالیت آنزیم‌های آتیک اسیدان، تجمع پروپن و لیپید براسای پلاستیسیون کلزا (Brassica napus L.)

آریا دولت آبادان، سید علی محمد مدرس نانویی و مظهر شریفی

(تاریخ دریافت: 1388/04/20، تصویر بیانیه: 1388/11)

چکیده
اثر تنش شوری و تغذیه برگ با آسکوربیک اسید بر میزان فعالیت آنزیم‌های آتیک اسیدان، تجمع پروپن و پلاستیسیون لیپیدی غشای ریشه برگ کلزا را در اکسایش و بررسی ترش و در قالب طرح بلوک‌های کاملاً کاربردی با 6 تکرار انجام شد. تنش شوری با استفاده از محلول NaCl به قدرت 200 mM اعمال شد. همچنین برای تغذیه برگ با آسکوربیک اسید از محلول آسکوربیک اسید در نسبت 0.04 mM در دمای 45 mC در اثر تنش شوری و رفع تنش شوری بر روی ترش شوری گرفته و در حالت کاربرد آسکوربیک اسید شوری غذایی بر کلروفیل برگ‌ها باعث کاهش فعالیت آنزیم‌های فنی در برگ شد. در نتیجه، در هر نوع برگ، در طول تنش شوری نسبت آنزیم‌های فنی در برگ افزایش یافت، در حالی که در برابر آسکوربیک اسید سپر آنزیم‌های فنی در غده‌های تنش نگه داشته شد. همچنین تنش شوری سبب افزایش تسریش پلاستیسیون لیپیدی و تجمع پروپن شد و مصرف آسکوربیک اسید برای تنش شوری کاهش معنی‌داری داشته و اثرات آسکوربیک اسید که با کاهش مصرف آسکوربیک اسید در مقایسه با کنترل تنش دیده شد.

واژه‌های کلیدی: آنزیم‌های آتیک اسیدان، تنش شوری، آسکوربیک اسید، تغذیه برگ، کلزا

مقدمه
تنش‌های مختلف محیطی شامل تنش‌های زندگی، تنش شوری، تنش نور و غیره ممکن است تنش‌های محیطی که باعث تنش شوری می‌شوند، تنش شوری و حاوی عوامل بیماری‌زا اشاره کرده‌اند. تنش شوری و فعالیت آسکوربیک اسید و فعالیت آن در مقایسه با کنترل تنش دیده شد.

له 1 - به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار زراعت، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران

2 - استاد و دانشجوی دانشگاه علم پایه، دانشگاه تربیت مدرس، تهران

modaresa@modares.ac.ir

411
پژمیرگی دامی و مرگ گیاه ممکن است.
نشش شوری مانند دیگر نشش‌های محیطی باعث تجمع گونه‌های گیاهی می‌شود. بیماری‌های و ازدحام‌های هیدروکسیل در ساحل و آسیب رسانیده به لیسیشی شکا. برخی از این نشش‌های ناکوکسی اسید (آ) و (ب) به‌طور مشابه تولید شده‌اند. در سال‌های گیاهی اندام‌های محلی مانند کارپولوست، میکانیزم و پراکسیزوم تولید کننده‌ها اصلی راکودکاری‌های آزاد اکسیژن در طی فرآیندهای فناوری و تفسیر می‌باشد (۳۵). زنجیره‌های گیاهی محیطی در گیاه‌ها نتایج بی‌باید ممکن است بیشینه تولید گونه‌های میکرو‌کاریکال می‌باشد. (۱۷). تولید رادیکال‌های آزاد اکسیژن در کارپولوست به وسیله میکرو‌کاریکال منجر به اکسیژن از کارفیل و موکول اکسیژن و بر اگیفتگی شدن آن و با به وسیله کاهش نکردن موکول اکسیژن در فناوری بیکار صورت می‌گیرد (۵). پراکسیزیوکسازن برخی‌های غشا می‌توانند در اثر گونه‌های اکسیژن فعال به وجود آید و در تغییر باعث کاهش فنوزی‌پری انتحابی غشا سولولی شود (۶). رویکرد گیاه‌های سازوارکاری‌ها مختلفی در تغییر کاهش‌آمر مکب رادیکال‌های آزاد اکسیژن دارد از جمله این میان یک فناکاکال می‌تواند ترکیبات آنتی‌کاسپتو و گیاه‌آنتی‌کاسپتو است. بهترین صورت که مقدار گونه‌های فعال اکسیژن در سلول‌های گیاهی به وسیله فعالیت آنتی‌کاسپتو اندام گیاهی می‌تواند موکول اکسیژن لوله‌ها شکا و فیرفیک کاهش آمر اکسیژن می‌باشد. فعال لوله‌گیاهی تحلیل که به نشش دارد (۳۶). روایت گونگانگی به نشش‌های شوری، خشکی و سطح آنتی‌کاسپتو محصول در آب و آنزیم‌های آنتی‌کاسپتو گاروش شده است (۳۸ و ۳۹). بردی کمیتی، گیاه‌همگیه ۱/۶۰۰ می‌باشد. در شرایط نشش (Arabidopsis thaliana L.) ۲۰۰۰ NaCl و شوری اعمال شده با (۳۷) هدف‌های شکا و محلول‌های آنتی‌کاسپتو می‌باشد. (۲۰). یقیناً خود را حفظ کند (۳۱ و ۳۲). فعالیت آنزیم‌های آنتی‌کاسپتو به نشش‌های شوری اکسیژن و ازدحام‌های راکسیزیوکسازن یا ازدحام‌های سیستمیک هسته‌سیستمیک شده (۱۹). افزایش سطح آنزیم‌های اسید سولولی به عنوان یک آنتی‌کاسپتو می‌تواند سبب کاهش گونه‌های اکسیژن فعال حاصل از نشش شوری شود.
مواد و روش‌ها

به منظور بررسی اثر نشانگیآمیزی، آزمایشات زیر انجام گرفت:

امید بر میزان فعالیت آنزیم‌های آنتیکسیدان و پارکسیدازیونی

لیپیدی غذا و تجمع پُرول، آزمایشی به صورت فاکتوریال بر مبنای طرح یک‌Way کامپلکس (فاکتور اول شاخص نشانگی آسیب و فاکتور دوم شاخص نشانگی آسیب) در مودالیت (با 3 تکرار در اتاق‌کشیده آزمایشگاه فیزیولوژی دانشکده کشاورزی دانشگاه تربیت مدیرس بر روی کلزا انجام گرفت. یادداشت کلزا (Brassica napus L.) هیپوکاردی به مدت 5 دقیقه و اتانول 96 درصد به مدت 30 ثانیه به خوبی در آب فقط نشسته و سپس با نتایج در گلدان‌ها

های خاک لومی شنی (60 درصد شن، 20 درصد رس و 20 درصد سنگ) کاشته شدند. گلدان‌ها (12 عدد) در اتاق‌کشیده مورد رطوبت به مقدار 75 درصد و شدت نور میکرویول بر مترمربع در ثانیه قرار داده شدند. پس از استقرار بونه بعد، آسیب‌ها به 5 بوته در هر گلدان کاهش یافت. آبیاری گلدان‌ها به طور روزانه با آبی آبی قابلیت هیدرات

الکتریکی حدود 7/5 mS cm⁻¹ انجام می‌گرفت. زمانی که

گاهی‌ها به محوره سا تا چهار گرگ رشد می‌کرد و نشانگی

برگ با آسیب‌کاری ایجاد نمی‌شد. برای ایجاد نشانگی، آبیاری گلدان‌ها با محولی mNaCl غلتخت 200 میکرویول بر مترمربع به مدت 6

روز انجام شد (هدایت الکتریکی حدود 13/5 mS cm⁻¹ همچنین برای تغذیه برگ با آسیب‌کاری مورد استفاده 25 mM

آسیب‌کاری ایجاد ساخت ریخت معکور آلومان استفاده

نیزگزارش شده است (23).

از این رو به تحقیق حاضر بررسی اثر نشانگی آسیب ایجاد شده در ژن‌های آنتیکسیدان و نشانگی آسیب استفاده کردن رادیکال‌های آسیب آزمایش و تأثیر بر فعالیت آنزیم‌ها در شرایط نشانگی شوری است.

عصاره‌گیری جهت سنجد فعالیت آنزیمی: به‌دین منظور

گرم بافت نازه گیاهی به وسیله هاون و دسته هاون همراه با 3/8 pH میلی لیتر به 15 میلی‌متر سطح فسفات با 18000 در دور دیقیق و در دمای 40 به مدت 30 دقیقه سانتریفیوز شد و سپس

محول شاف روبی توسط کاغذ صاف فیلتر و برای سنجد فعالیت آنزیمی و محتوای بروتین در دمای 40 درجه فاژ ((logging) در خونی و درون های 1 میلی‌لیتر نهادی شد (19). سنجد فعالیت آنزیمی کاتالاز: سنجد فعالیت آنزیمی کاتالاز به روش کامک و هورست (16) انجام شد. پس از ریختن

2/5 میلی لیتر از بافر سلولاری در ظرف کوارتزی درست گه طبیعی و اضافه میلی‌لیتری 500 آب کامکی گرفت.

1 میلی‌متر و عصاره آنزیمی به مخلوط واکنش تجزیه آب

اکسیژن به کاهش در جذب در طول موج 240 تأثیر می‌بیند

یک دقیقه، پیکری ی شده و فعالیت آنزیمی به تغییرات جذب

به میلی‌گرم بروتین در دقیقه محاسبه شد.

سنجد فعالیت آنزیم سوپراکسید دیسوکسازن: سنجد فعالیت

این آنزیم بر طبق روش گیاکیتورتکس و رایتس (23) انجام شد.

مخلوط واکنش شامل: سنجد فعالیت HEPS-KOH میلی‌مولار به 560 pH HA و 1/2 میلی‌متر EDTA و 50 میلی‌مولار کربنات سدیم 200 میکرویولیتر عصاره آنزیمی بود. پس از مخلوط کردن مواد
سنجش فعالیت آنزیم: سنجش فعالیت آنزیم پراکسیداز بر طبق روش فانتی و همکاران (19) تعیین شد. همچنین فعالیت آنزیم از قانون تقسیم مناسب از عصاره آنزیمی به مخلوط بیانگاکولا گی گزارش 28 میلی‌میلی‌مولار و پراکسیداز هیدروژن با گلخانه 5 میلی‌میلی‌مولار که در طوف محصول دستگاه طرف سنج ریخته شده بود آزگر درد و به مدت یک دقیقه تغییرات چند در طول موج 450 نانومتر خوانده شد. فعالیت آنزیمی به ازای تغییرات چند به میلی‌گرم پروپتین در دقیقه بیان شد.

بیان شد.

بروتئین: مقدار پروتئین برگ و ریشه نیز بر طبق روش اراکتیمی (11) تعیین شد. بین میزان 0.1 میلی‌لیتر از محلول برادفورد به مهار 100 میکروایتی قرار آزمایشی پس از محلول شدن کامل در دستگاه طرف سنج قرار داده شد و جدبت محلول در طول موج 595 نانومتر لیست شد. غلظت پروتئین بر حسب میلی‌گرم بر گرم نشانه از محاسبه استاندارد تعیین شد.

نتایج و بحث
تجزیه و ارائه (جدول 1 و 9) و مقایسه میانگین (جدول 3 و 9) نشان داد که تشی شوری روم همافک و مورف بزرگ در بیز غلظت کارفیل 6 و فعالیت آنزیم سوپراکسید دیسمتاز نشان داد که تشی شوری روم همافک و مورف بزرگ در بیز غلظت کارفیل 6 و فعالیت آنزیم سوپراکسید دیسمتاز نشان داد که تشی شوری روم همافک و مورف بزرگ در بیز غلظت کارفیل 6 و فعالیت آنزیم سوپراکسید دیسمتاز در بگه خو 3 میلی‌میلی‌مولار و در بگه خو 3 میلی‌میلی‌мол
جلو 1. تجزیه و ارائه نمودارهای آزمایشات آتی اکسیدان. تجمع پرولین و مالوندی آلدهید. غلظت کارولفیل و محاوی
پروتئین بر گیاه کلزا تحت تنش نش و کاربرد آسکوربیک اسید
مالوندی آلدهید	کارولفیل	پروتئین	دیمیترز	سوپراکسید	کاتالاز	درجه آزاید	منابع تغییر	نکات
0/06	0/02	0/04	0/02	0/01	1/75	1/93	2	نکار
0/04	0/02	0/04	0/02	0/01	1/75	1/93	2	نکار
0/06	0/02	0/04	0/02	0/01	1/75	1/93	2	نکار

جلو 2. تجزیه و ارائه نمودارهای آزمایشات آتی اکسیدان. مالوندی آلدهید و محاوی پروتئین ریشه کلزا
قیمت سوپراکسید	دیمیترز	شناسنامه آزمایشات	درجه آزاید	نکات
0/06	0/02	0/04	0/02	1/75
0/04	0/02	0/04	0/02	1/75
0/06	0/02	0/04	0/02	1/75

جدو 3. مقایسه نمودارهای مناسب مربوط به پر گیاه کلزا تحت تنش نش و کاربرد آسکوربیک اسید
پروتئین	کارولفیل	سوپراکسید	دیمیترز	مالوندی آلدهید	تیمار	کاتالاز	درجه آزاید	منابع تغییر	نکات
0/06	0/02	0/04	0/02	1/75	1/93	2	نکار		
0/04	0/02	0/04	0/02	1/75	1/93	2	نکار		
0/06	0/02	0/04	0/02	1/75	1/93	2	نکار		

در هر صفحه و گره مقایسه گردیده، تیمارهای که حرف یکسان نشان داده شده‌اند بر اساس آزمون چند‌نمادی دانکان در سطح احتمال 0/05 دارای اختلاف معنی‌داری بودند. تیمارهای 1 و 2 به ترتیب مشابه و رتبه‌ای با عدم وجود مربوط هستند. غلظت آزمایشات بر حسب تغییرات علمی به میلی گرم پروتئین در دلیله، غلظت مالوندی آلدهید بر حسب میکرو مول بر سانتی‌متر و غلظت کارولفیل و پروتئین بر حسب میلی گرم بر گرم بافت نازه بان کرده‌اند.
جدول 2. مقایسه میانگین صفات مربوط به ریشه گلزا تحت تنش شوری و کاربرد آسکوربیک اسید

<table>
<thead>
<tr>
<th>تیمار</th>
<th>پروتئین</th>
<th>مالوندی آلدهید</th>
<th>پراکسیداز</th>
<th>سوپراکسیدسومتواز</th>
<th>کاتالاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش شوری</td>
<td>0.38a</td>
<td>0.019b</td>
<td>0.224b</td>
<td>0.036a</td>
<td>146/28c</td>
</tr>
<tr>
<td>ویتامین</td>
<td>0.31a</td>
<td>0.016a</td>
<td>0.203a</td>
<td>0.025a</td>
<td>125/12c</td>
</tr>
<tr>
<td>پروتئین</td>
<td>0.32a</td>
<td>0.018a</td>
<td>0.215a</td>
<td>0.026a</td>
<td>123/13c</td>
</tr>
</tbody>
</table>

در هر صفت و گروه مقایسه شده، تنها مقایسه میانگین صفات مربوط به ریشه گلزا تحت تنش شوری و کاربرد آسکوربیک اسید انجام شد. تیمار انتزاعی به صورت مکانی داده شد و در هر گروه دو تیمار میانگین صفات مربوط به ریشه گلزا تحت تنش شوری و کاربرد آسکوربیک اسید مقارن شد. است. (30). آزمیز کاتالاز این مولکول از آب آن و اکسیژن تنبل می‌کند و در طی این واکنش آسکوربیک اسید به عنوان دهنده هیدروژن عمل می‌کند (23). در واقع چنین به نظر می‌رسد که آفسایش آسکوربیک اسید خود اعضا اکسی‌کاتالازان بوده که آن‌ها نسبت به کاهش آنتی آنتی‌کاتالاز شده است. همچنین آفسایش فعال شده سی ۱۶۸۸

جدول 6. اثرات اصلی تنش شوری و آسکوربیک اسید بر آنزیم‌های آنتی آکسیدان مالوندی آلدهید و محتوا پروتئین ریشه گلزا

<table>
<thead>
<tr>
<th>تیمار</th>
<th>پروتئین</th>
<th>مالوندی آلدهید</th>
<th>پراکسیداز</th>
<th>سوپراکسیدسومتواز</th>
<th>کاتالاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش شوری</td>
<td>0.31a</td>
<td>0.018a</td>
<td>0.215a</td>
<td>0.026a</td>
<td>123/13c</td>
</tr>
<tr>
<td>ویتامین</td>
<td>0.32a</td>
<td>0.018a</td>
<td>0.215a</td>
<td>0.026a</td>
<td>123/13c</td>
</tr>
<tr>
<td>پروتئین</td>
<td>0.32a</td>
<td>0.018a</td>
<td>0.215a</td>
<td>0.026a</td>
<td>123/13c</td>
</tr>
</tbody>
</table>

سی ۱۶۸۸
آکسیداسیون چربی‌های غشا سنگین و کاهش محصول
مالونیل‌آنتی‌ژن در برگ‌ها و ریشه‌ها گردیده است. آکسی‌ریکی اسید به سبب خصوصیات آن در اثر مصرف
این اکسیداسیون غشا و تولید مونوکلر آسیکروماتوز از بررسی
آسیب به سلول و جراحی غشا جلوگیری کرده و سپس
کاهش در پراکسیداسیون لیپیدی مسئول
مونوکلر آسیکروماتوز مونوکلر آسیکروماتوز ریبدکاک
به آسیکروماتوز نیلی می‌شود. (5).

ب) سپاس از افرادی که نمونه‌های مورد نیاز را در مورد تحقیق ارائه دادند.

نتیجه‌گیری
به طور کلی می‌توان نتیجه گرفت که آسیکروماتازیم اسید به عونان
یک آنتی‌کاندیدا متره اثرات ضرری بیشتری بر اثر اثرات ضرری
کاهش می‌دهد و سبب بهبود رشد کیسه در شرایط نش شود. از این
رو می‌توان بیشترین نمونه که مصرف این ماده در گیاهان نش
دیده عاملی برای کاهش نش شود و به دنبال آن افزایش
عمدکرده می‌باشد و کاربرد آن به صورت تغذیه به روشی
گیاهان در حال نش در مزرعه توصیه می‌شود. البته تحقیقات
پیش‌تر در خصوص استفاده از این ماده در سطح مزرعه به
لحاظ مقایسه آن ضروری است.

نتیجه‌گیری افزایش چربی‌های غشا سنگین و کاهش محصول
مالونیدی انتی‌ژن در برگ‌ها و ریشه‌ها گردیده است. آکسی‌ریکی
اسید به سبب خصوصیات آن در اثر مصرف
این اکسیداسیون غشا و تولید مونوکلر آسیکروماتوز از بررسی
آسیب به سلول و جراحی غشا جلوگیری کرده و سپس
کاهش در پراکسیداسیون لیپیدی مسئول
مونوکلر آسیکروماتوز مونوکلر آسیکروماتوز ریبدکاک
به آسیکروماتوز نیلی می‌شود. (5).

ب) سپاس از افرادی که نمونه‌های مورد نیاز را در مورد تحقیق ارائه دادند.

نتیجه‌گیری
به طور کلی می‌توان نتیجه گرفت که آسیکروماتازیم اسید به عونان
یک آنتی‌کاندیدا متره اثرات ضرری بیشتری بر اثرات ضرری
کاهش می‌دهد و سبب بهبود رشد کیسه در شرایط نش شود. از این
رو می‌توان بیشترین نمونه که مصرف این ماده در گیاهان نش
دیده عاملی برای کاهش نش شود و به دنبال آن افزایش
عمدکرده می‌باشد و کاربرد آن به صورت تغذیه به روشی
گیاهان در حال نش در مزرعه توصیه می‌شود. البته تحقیقات
پیش‌تر در خصوص استفاده از این ماده در سطح مزرعه به
لحاظ مقایسه آن ضروری است.

