مقایسه برخی شاخص‌های فنی در روش‌های کم‌کوارترزی و کوارترزی مرسم

الیاس دهقانی و مرتضی‌الملسی

(تاریخ دریافت: 1387/12/24، تاریخ پذیرش: 1387/12/24)

چکیده
مدیریت علائم آمادهسازی زمین برای کشت محصولات مختلف در مناطق گوناگون نیازمند دسترسی به شاخص‌ها و اطلاعاتی در مورد شرایط، چگونگی و معتقد بر انجام روش‌های گوناگون خاک‌ورزی است. این تحقیق در نتایج سال 1382 در یک خاک رسم‌حاوی یافت که در این تحقیق، تحقیقات کشاورزی شاخص واقع در شال اموزش اجرای شد. آزمایش‌ها به صورت یک‌هفته‌ای کامل تصادفی در سه تکرار و با نشان انجام شد. نتایج و ارزیابی شاخص‌های خاک‌ورزی مرسم به صورت شکم در برگزاری به میزان 0 + دیسک + ماله (T1)، دیسک دیسک سیگی به میزان 0 + 10 = ماله (T2) و دیسک دیسک دیسک سیگی به میزان 0 + 10 = ماله (T3) و کلوپیتکور به میزان 0 + 10 = ماله (T4) کار و روش‌های دیگر دارو به صورت 0 + 10 = ماله (T5) و گزارش داد که میزان مصرف سوخت در روشن‌های T2 تا T6 به ترتیب به میزان 89، 49 و 24 درصد کاهش یافته‌اند. کاهش یافته. کل زمان فرآیند مرسم در سیستم‌های خاک‌ورزی T2 تا T6 به ترتیب به میزان 72، 44 و 31 درصد کاهش یافته‌اند. به ترتیب به میزان 27/24/18 و 23/24/18 و 27/24/18 در پنج‌شانه‌ی روز به میزان 49/49/49 و 5 درصد پیشرفت و در T6 به میزان 6 درصد کمتر شد. هزینه خاک‌ورزی T2 تا T6 نسبت به روش‌های T1 تا T5 به میزان 50/50/50/50 کاهش شده‌اند.

واژه‌های کلیدی: خاک‌ورزی مرسم، کم‌کوارترزی، دیسک، کلوپیتکور، گاوانه دوار

مقدمه
روش خاک‌ورزی غیرعامل یکی از ابزارهای مطرحی برای کنترل نوع ماسیوهای زمین و تولید محصولات کشاورزی است. این روش به شکل پیاده‌سازی، قابلیت واحدهای خاک‌ورزی یافته‌ها، و اهمیت و کاربرد آن در تولید محصولات کشاورزی دارد. بر اساس آمار و اطلاعات کشاورزی، هزینه آن‌ها زمین‌آزمایش در حدود 1385 تا 89 درصد خوزستان در سال 1382-84 افزایش یافته‌است.

1. عضو هیئت علمی بخش تحقیقات نفت و مهندسی، مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان
2. استاد مهندسی مکانیک مایک‌هایا کشاورزی و مکانیاسیون، دانشگاه کشاورزی، دانشگاه شهید چمران اهواز

elyas_dehghan@yahoo.com

* مسئول مکانیاسیون، یست دانشگاه

679
اصطلاحات و اصطلاحات علوم و فنون کشاورزی و منابع طبیعی / سال سیزدهم / شماره چهل و هفتم (ب) / بهار 1388

پیام‌های انگیزه‌آمیز روزه‌های خاک‌ورزی برای محصولات گوناگون نشان داده است که بینه شرایط محیطی، امکانات و اهداف، هر یک از روش‌های خاک‌ورزی مرسوم (3، 15 و 20) و یا خاک‌ورزی کمپیوتری (30 و 31) و یا باینری خاک‌ورزی (12) می‌تواند بر روی دیگر یکسان باشد.

مقایسه روش‌های خاک‌ورزی توسط خیره‌الله و همکاران

۶۸۰
مقدمه برخی شاخص‌های فنی در روش‌های کوکاروزی و خاکورزی مرسوم

ظاهراً و مقاومت نفوذی خاک، فرسایش بادی و آب، درصد برگدان، نقاب‌های گیاه، میزان خرد شدن خاک، زمان مورد نیاز در واحد سطح، ظرفیت بیان و اندازه مرزهای مرزهای سرمایه‌گذاری، آلوی‌های زیست محیطی و غیر مورد ارزیابی قرار می‌گیرد. این تحقیق به مبنای فهرستی به اطلاعات کمی‌پایه در مورد برخی شاخص‌های فنی، برای استفاده در شرایط کاری مشابه بررسی شد.

اطلاعات به‌دست آمده در این پژوهش می‌تواند در مدل‌سازی و برنامه‌ریزی ناگفته‌های خاکورزی در سطح اجرایی مورد استفاده قرار گیرد. علاوه بر این، در آزمایش‌های نیز که در آینده، در شرایط مناسب این تحقیق، برای مقایسه اثر روش‌های خاکورزی رژی مجموعات مختلف اجرای خواهد شد. می‌توان تهیه علائم و شاخص‌های مرتبه‌بندی گیاه را ادواردگیری نموده و از نتایج به‌دست آمده از اندماگیری شاخص‌های فنی در این آزمایش استفاده کرد و تکرار آنها برابر محسولات گوناگون خودداری نمود.

مواد و روش‌ها

این آزمایش در تابستان سال 1382 در یک خاک رسته حصاری از یک باغ گندم در استان‌های تحقیقات کشاورزی شاهور اجرا شد. این تحقیقات کشاورزی شاکور شار در داخل 50 کیلومتر شمال عاشق واقع شده است. خاک‌های این منطقه غلیظ‌تر از روش آلو و از نظر هستند. از نظر ویژه‌ای نیز این منطقه دارای اقلیم خشک و نیمه خشک بوده و مانند سالانه دما و بارندگی آن به ترتیب 32 درجه سلسیوس و 234 میلی‌متر می‌باشد. مشخصات خاک محل اجرای آزمایش در جدول 1 آورده شده است.

در این تحقیق روش خاکورزی مرسوم و پنج روش خاکورزی در قالب ترکیب بلای‌های کامل تصادفی در سه تکرار مورد مقایسه و ارزیابی قرار گرفتند. تیمارهای خاکورزی عبارت بودند از:

1- روش مرسوم یک بار گاو‌آهنت برگرداند به عمق 20 سانتی‌متر + دو بار دیسک عمود بر هم + ماله (T1)
2- دو بار دیسک سبک عمود بر هم به عمق 10 سانتی‌متر + ماله (T2)
3- دو بار دیسک سنگین عمود بر هم به عمق 15 سانتی‌متر + ماله (T3)
4- یک بار کولنوترون بلیچ‌های به عمق 10 سانتی‌متر + ماله (T4)
5- یک بار کولنوترون بلیچ‌های به عمق 15 سانتی‌متر + ماله (T5)
6- یک بار گاو‌آهنت در دور (تریپتیون) به عمق 5 سانتی‌متر.
7- مادر کوکاروزی از بالکان (الکب) به عمق 5 سانتی‌متر و بذر بررسی بود. دیل استفاده از ماله در تیمارهای T2 و T5 به دقت مانده از چکت قابل بود.

شاخص‌های مورد بررسی در این تحقیق عبارت بودند از هزینه خاکورزی در هکتار، مقدار مصرف سوخت در هکتار، زمان مورد نیاز برای انجام کار با درجه مشخصات غیر خاک. هر روش خاکورزی در قطعات به ابعاد 20×20 متر مورد ارزیابی قرار گرفت. در هر قطعه یک نوار به عرض 5 متر برای انجام تحقیقات عملکرد کار و تغییر شرایط کاری مناسب از نظر دندان و سرعت بیشتر تراکتور و درصد لغزش خاک و فاضلاب 10 متر از سر و به قطعه به اندازه‌ای فضای دور تراکتور و رسیدن به سرعت مناسب در نظر گرفته شد. سپس از مانع زمین (مانع عبارت از آبایی زمین قبل از خاکورزی با هدف کاهش مقاوت حاک در برابر عملیات نهایی زمین)، برای تغییر
جدول 1. مشخصات خاک استغلال تحقیقات کشاورزی شاور

<table>
<thead>
<tr>
<th>عناصر میکرو و قابل جذب (mg.kg⁻¹)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OC (%)</td>
<td>P (mg.kg⁻¹)</td>
<td>K (mg.kg⁻¹)</td>
<td>EC (ds.m⁻¹)</td>
<td>PH</td>
</tr>
<tr>
<td>بایانت شاخ</td>
<td>عمق شاخ (cm)</td>
<td>پیچونده نظیم توریک (cm)</td>
<td>نرخ کار اتصال</td>
<td>شرح</td>
</tr>
<tr>
<td>0/8</td>
<td>2/5</td>
<td>2/2</td>
<td>1/1</td>
<td>3/1</td>
</tr>
</tbody>
</table>

جدول 2. ویژگی‌های مناسب‌ها و ادوات مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>سرعت پیشرفت</th>
<th>عرض کار</th>
<th>یکپایه نظیم</th>
<th>شرکت سازنده و مدل</th>
<th>نام دستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلومتر بر ساعت</td>
<td>کیلومتر بر ساعت</td>
<td>کیلومتر بر ساعت</td>
<td>جانه‌گرمی</td>
<td>گیاهان</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
</tbody>
</table>

زمان مناسب صبح و شام، به شرح زیر بود:

- صبح 0:30-0:45:

- شام 0:15-0:30:

- ادامه‌گیری مصرف سوخت برای تعیین مقادیر سوخت مصرف شده از روش باک بر استفاده
دقیقه متوسط وزنی خاک (MWD)(Mean Weight Diameter) قطر متوسط وزنی شاخصی است که هم‌اکنون برای تعیین میزان خرد شدن خاک استفاده می‌شود (8). در این روش پس از انجام خاکوزی در

ش. در روشنی پر، قبل از شروع عملیات مخزن سوخت ترکیب کرده، یا با شبکه ترکیب کرده و پس از پایان عملیات نیز مخزن سوخت دوباره ترکیب می‌گردد. مقدار سوخت مورد نیاز برای پر کردن مجدد مخزن سوخت در پایان عملیات، برای استفاده مشخصی در ساخته‌بازی انجام کار توسعه مایه‌ای است.

اندازه‌گیری کل زمان مورد نیاز سیستم خاکوزی
برای تعیین کل زمان مورد نیاز برای هر سیستم خاکوزی، ابتدا مجموع زمان‌های ممیز و دور زدن مایه‌ای در ابتدا و انتهای مزرعه برای هر کدام از عملیات پیش‌بینی شده در سیستم، توسط زمان سنج به‌طور جداگانه محاسبه شده و پس به‌صورت کل زمان انجام مراحل مختلف خاکوزی کل زمان مورد نیاز سیستم محاسبه شد.

ظرفیت مزرعه‌ای
کار انجام شده (بر حسب سطح با ماده) توسط مایه‌ای در زمینه خاکوزی، کشت، داشت و برداشت را در مدت یک ساعت، مورد اندازه‌گیری می‌گردد (1). در این آزمایشات عامل مزرعه‌ای هر سیستم از مجموع کل زمان‌های ممیز و غير ممیز مصرف شده برای انجام عملیات در سطح که مکتک در شرایط مزرعه و با استفاده از رابطه 1 محاسبه شد.

\[C_a = \frac{A}{T} \]

بر اینجای

\[ha/h = \text{ظرفیت مزرعه‌ای (g)} \]

\[ha = \text{مساحت مورد عملیات (m)} \]

\[T = \text{کل زمان (مفرغ و لطف شده)} \]

میزان خرد شدن خاک
وزن مخصوص ظاهری خاک وزن مخصوص ظاهری معادل برای اندازه‌گیری فشردگی خاک می‌باشد. برای تعیین این شاخص در عملیات کاملاً از روش‌های خاکوزی قبل از خاکوزی و بعد از آن‌ها اولین توانهای تبخیر واحدی سطح خاک از سطح نقطه تصادفی به‌وسیله‌ی توانهای تبخیری و پس از خشک کردن توانهای به حجم و وزن مشخص، نگهداری و پس از خشک کردن توانهای در آزمایش‌گاه و تعیین وزن خاک خاک، وزن مخصوص ظاهری توانهای با استفاده از رابطه 3 محاسبه شد.

\[\rho = \frac{M}{V} \]

بر اینجای

\[\rho = \text{وزن مخصوص ظاهری (g/cm}^3) \]

\[M = \text{وزن خاک شبک (g)} \]

\[V = \text{حجم خاک با استونه توانهای بارداری (cm}^3) \]
هزینه خاکوزی

در شرایط یکسانی از نظر قابلیت توپیدن محصولات مختلف و
نهاده‌های مصرف مانند کود و حشره‌کش‌ها، هزینه انجام
عملیات خاکوزی کلیه تغییرات سودمندی آن‌هاست(18). در این
پژوهش، میانگین هزینه اعمال زیمن بر اساس اجرت
مجملی و مراحله بسته نفر از افراد سرشتاهی در ارائه
خدمات مکانیزه خاکوزی به صورت اندازه‌گیری و همچنین نتیجه
شرکت خدمات مکانیزه مستقر در منطقه (شرکت عبدالخان
شمالی)، به صورت ریال بر هكتار محاسبه شد. پس از انجام
ازمانی و جمع‌آوری داده‌ها تجزیه و تحلیل داده‌ها انجام شد
و میانگین صفات بهره از حوزه آزمون چند دامنه‌ای دانک مقایسه
شد.

ثبت و نتایج

مصرف سوخت

ثبت تجزیه و ارائه داده‌ها نشان داد که از نظر میزان مصرف
سوخت، بین روش‌های خاکوزی اختلاف معنی‌دار در
سطح 0/1 وجود داشت (جدول 3). روش خاکوزی در مخصوص
مجموع 29/05 لیر بر هکتار و خاکوزی گاوانه دوار با
مصرف 15/24 لیر بر هکتار به ترتیب دایر بیشترین و
کمترین مقدار مصرف سوخت بودند (جدول 4).

افاژی عمل خاکوزی و شمخ اثر پیشران چشم‌گیری بر
مصرف سوخت دارد. به این یک سانتی‌متر افزایش عمل
خاکوزی مقدار مصرف هکتاری که باید جایگا با برگرداند. شود
حدود 150 تن در هکتار افزایش می‌یابد. این کار بستگی افرازی
قابل ملاحظه در هر سوخت امکان‌پذیر نخواهد بود (9).
افرازی زیاد مقدار مصرف سوخت در خاکوزی مرسوم
نسبت به دیگر روش‌ها، به‌دلیل برگرداندن خاک و زیاد بودن
عمر خاکوزی و وفعت تردد مانندی و ادوات است. در
سیستم خاکوزی مرسوم، 42% از کل سوخت مصرفی این
برای شمخ برگرداند خاک صرف شده است (جدول 5). این
نتایج با پایه‌هایی 15 (21 و خیرالله و همکاران) مطابقت

دارد.

مقدار لغزش مثبت بین 0/1-10 درصد علاوه بر اینکه می‌توان
و جمع دنده، برای ایجاد تغییر فرم جلید شاخ و افزایش کشش
تراکتور لازم است. ولی افزایش بیش از حد آن باعث ایجاد
انزیمت می‌شود (11). در روش مرسوم، افزایش بیش از حد درصد
لغزش چرخ محرک تراکتور برای عملیات دیسک و مانند روی
خاک شمخ خوردگی نسبت به عملیات مشابه در تیمار دیسک
سپرک، باعث شده است که مقداری از سوخت مصرفی و انزیمت
رها شده برای حجم محیطی از درازات خاک به کار رود.
همچنین کاشت سرعندیده بیشتری برای دیسک در روش
مرسوم باعث کاهش ظرفیت و افزایش مزروعه‌ی افرازی
مدت کار در&M overrun تراکتور برای انجام کار معنی‌دار شده است
این عوامل روز هم رفته باعث افزایش معنی‌داری در مصرف
سوخت در تیمار خاکوزی مرسوم نسبت به دیگر تیمارها
شهده است (جدول 5).

انجام عملیات شمخ برگرداند در تیمارهای خاکوزی با
دیسک سپرک و سنگین باعث کاهش مقدار مصرف سوخت
نسبت به روشهای مرسوم شده است. دلیل افزایش معنی‌دار در مصرف
سوخت در تیمار خاکوزی با دیسک سنگین نسبت به دیسک
سپرک، افزایش عمق خاکوزی از 10 به 15 سانتی‌متر و
افرازی که ماکوتم کشی دیسک و تایک که در بهترین
و سرعت کمتر بوده است، این وضعیت در مقیاسی تیمارهای
خاکوزی با کولتونیاتور به عمق 10 و 15 سانتی‌متر نیز به خوبی
دیده می‌شد.

نتایج این تحقیق نشان داد که در عملیات کاریک خاکوز
کاربرد یک یا دو دیسک و کولتونیاتور بر روی زمین نخورد.
مقدار مصرف سوخت در دیسک 48% کمتر از کولتونیاتور
بوده است(5). این امر می‌تواند به دلیل بیشتر بودن مقاومت
کشی کولتونیاتور نسبت به دیسک باشد. زیرا در کولتونیاتور با
وجود این که عرض کار افزایش آن کمتر از دیسک بود. برای انجام
عملیات با دیده سنگینتر باید بوده و سرعت پیشروی تیمار
کمتر بود. اما استفاده از دوبار عملیات دیسک‌زنی در تیمار

682
3. جدول تجزیه واریانس برای مجموعه خاکورزی بر شاخص‌های فنی مورد بررسی

<table>
<thead>
<tr>
<th>مقدار مربوط</th>
<th>منبع تغییرات</th>
<th>درجه</th>
<th>آزادی</th>
<th>مصرف مورد سیستم</th>
<th>وزن کل‌خواها</th>
<th>شاخص موضع</th>
<th>وزن مخصص ظاهری خاک</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>کل زمان</th>
<th>مصرف مورد سیستم</th>
<th>وزن کل‌خواها</th>
<th>شاخص موضع</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>وزن مخصص ظاهری خاک</th>
<th>کل زمان</th>
<th>مصرف مورد سیستم</th>
<th>وزن کل‌خواها</th>
<th>شاخص موضع</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>وزن مخصص ظاهری خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/281</td>
<td>0/001</td>
<td>1</td>
<td>378</td>
<td>2/433</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
</tbody>
</table>

نتایج: تفاوت معنی‌دار در سطح 1%.

2. مقایسه میانگین شاخص‌های فنی مورد بررسی در سطوح مختلف روش خاکورزی

<table>
<thead>
<tr>
<th>میانگین</th>
<th>فنی</th>
<th>مقایسه</th>
<th>آزادی</th>
<th>مصرف مورد سیستم</th>
<th>وزن کل‌خواها</th>
<th>شاخص موضع</th>
<th>وزن مخصص ظاهری خاک</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>کل زمان</th>
<th>مصرف مورد سیستم</th>
<th>وزن کل‌خواها</th>
<th>شاخص موضع</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>وزن مخصص ظاهری خاک</th>
<th>کل زمان</th>
<th>مصرف مورد سیستم</th>
<th>وزن کل‌خواها</th>
<th>شاخص موضع</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>وزن مخصوص ظاهری خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>مربع (T1)</td>
<td>1/34 a</td>
<td>0/42 c</td>
<td>0/027 b</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>دیسک سیک (T2)</td>
<td>0/27 b</td>
<td>0/171 c</td>
<td>0/027 b</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>دیسک سینگ (T3)</td>
<td>0/171 c</td>
<td>0/027 b</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>کومنیتار (10 cm) (T4)</td>
<td>0/171 c</td>
<td>0/027 b</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>کومنیتار (15 cm) (T5)</td>
<td>0/027 b</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>گاوانه دور (T6)</td>
<td>0/0171 a</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>1/82</td>
<td>0/027</td>
<td>0/0171</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
</tbody>
</table>

* در هر ستون تفاوت بین میانگین‌هایی که حداقل یک حرف مشترک دارند معنی‌دار نیست.

در مورد کاهش معنی‌دار در نظر گرفتن تغییرات در نیروی خاکورزی با گاوانه دور نسبت به دیسک سینگ، خاکورزی به لحاظ کاهش عملکرد خاکورزی به سطح 5 سانتی‌متر، کاهش درصد تغذیه به حدود 2 درصد کاهش دقت آسایش می‌شود و ادامه اعمالی خاکورزی در طی پاس گزارش است. شده است که مجموعه مقایسه مصرف شده در این تیمار نسبت به نیروی خاکورزی با کومنیتار افزایش یافته (جدول 2). در خاکورزی با کومنیتار پنج‌گازی به عمق 10 سانتی‌متر، عمیق‌ترین این اثر زمان انجام برای با پاس کومنتار نسبت به یک پاس دیسک افزش یافته، با تغییر در این سیستم بهعلت پیش‌بندن به یک پاس کومنتار، مجموعه کل زمان مرزی کاهش یافته و در حدود کاهش‌های (T2) و (T3) قرار گرفته است. خاکورزی به دیسک در مقدار مصرف نیروی خاکورزی با تغییرات در روش‌های خاکورزی به لحاظ کاهش عملکرد خاکورزی به سطح 5 سانتی‌متر، کاهش درصد تغذیه به حدود 2 درصد کاهش دقت آسایش می‌شود و ادامه اعمالی خاکورزی در طی پاس گزارش است. شده است که مجموعه مقایسه مصرف شده در این تیمار نسبت به نیروی خاکورزی با کومنیتار افزایش یافته (جدول 2). در خاکورزی با کومنیتار پنج‌گازی به عمق 10 سانتی‌متر، عمیق‌ترین این اثر زمان انجام برای با پاس کومنتار نسبت به یک پاس دیسک افزش یافته، با تغییر در این سیستم بهعلت پیش‌بندن به یک پاس کومنتار، مجموعه کل زمان مرزی کاهش یافته و در حدود کاهش‌های (T2) و (T3) قرار گرفته است.
جدول ۵. منایبینش خاصیت‌های مورد بررسی برای روش‌های گوناگون خاکورزی به تکنیک نوع ادوات مورد استفاده در هر سیستم

<table>
<thead>
<tr>
<th>نوع ادوات</th>
<th>روش انجام خاکورزی</th>
<th>سرعت درجه ذوب</th>
<th>نرخ مصرف</th>
<th>مقدار خاکورزی</th>
<th>لغزش پیشروی</th>
<th>زمان نیاز</th>
<th>پردازش زمان</th>
<th>ضریب خاکورزی</th>
<th>میزان قرارگیری</th>
<th>میزان تغییر درجه ذوب</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاوش‌های بزرگ‌دیمان</td>
<td>مرسوم</td>
<td>22/62</td>
<td>1/95</td>
<td>22/62</td>
<td>1/95</td>
<td>22/62</td>
<td>1/95</td>
<td>22/62</td>
<td>1/95</td>
<td>22/62</td>
</tr>
<tr>
<td>دیسک اول</td>
<td>شخم بزرگ‌دیمان به عمق (T1)</td>
<td>20 cm</td>
<td>50</td>
<td>20 cm</td>
<td>50</td>
<td>20 cm</td>
<td>50</td>
<td>20 cm</td>
<td>50</td>
<td>20 cm</td>
</tr>
<tr>
<td>دیسک دوم</td>
<td>5/20</td>
<td>0/53</td>
<td>5/25</td>
<td>0/58</td>
<td>5/30</td>
<td>0/63</td>
<td>5/35</td>
<td>0/68</td>
<td>5/40</td>
<td>0/73</td>
</tr>
<tr>
<td>دیسک سگن به عمق</td>
<td>10 cm</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>تبلیغات</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>کولوتیوان به عمق</td>
<td>15 cm</td>
<td>80</td>
<td>85</td>
<td>80</td>
<td>85</td>
<td>80</td>
<td>85</td>
<td>80</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>کولوتیوان به عمق</td>
<td>15 cm</td>
<td>90</td>
<td>95</td>
<td>90</td>
<td>95</td>
<td>90</td>
<td>95</td>
<td>90</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>کاوش‌های بزرگ‌دیمان به عمق (T6)</td>
<td>5 cm</td>
<td>100</td>
<td>105</td>
<td>100</td>
<td>105</td>
<td>100</td>
<td>105</td>
<td>100</td>
<td>105</td>
<td>100</td>
</tr>
</tbody>
</table>

و در صورت محدود بودن زمان مناسب کاری، ناامیده‌شدن بایش در ناگفته‌کردن هر انجام به موقع عملیات است. کل زمان مورد نیاز در روش خاکورزی مرسوم ۲/۱ ساعت بر هکتار بود که پیش از این صرف انجام عملیات شخم بزرگ‌دیمان شده است. کاهش معنی‌دار در زمان مورد نیاز در روش‌های خاکورزی با دیسک سیک (۱/۸ ساعت بر هکتار) و دیسک سگن (۱/۵ ساعت بر هکتار) نسبت به بروش مرسوم عمیقاً ناشی از حذف عملیات شخم به‌دست آمده است.

با وجود نیاز به زمان بیشتر برای یک بار عبور کولوتیوانر نسبت به یک بار عبور دیسک در عمق یکسیان، پشتیبانی‌شدن به یک بار عبور کولوتیوانر در این تیمار باعث کاهش زمان مورد نیاز نسبت به دو بار عبور دیسک شده است.

عملیات پیش‌بینی شده در هر سیستم، اختلاف معنی‌دار در سطح ۲/۱ وجود داشت (جدول ۳). استفاده از روش‌های کم‌خاکورزی باعث کاهش زمان مورد نیاز نسبت به بروش مرسوم شد. این شاخه در سیستم‌های کوچک‌خاکورزی T3 و T6 به‌طور مشابه به میران بررسی کونی‌ها (T4) بهره‌برداری نمود. در نتیجه

با توجه به آمیزش و همکاری که با مقابله روش‌های خاکورزی مرسوم و بی‌خاکورزی برای کشت بی‌پاتریمبین، نظر زمان مورد نیاز برای عملیات خاکورزی و هریم کارگری روش بی‌خاکورزی را از روش مرسوم برتر دانست، هم‌خوان اولار (۱۲) انتخاب نمود.

از افراز زمان مورد نیاز برای اجرای یک سیستم نسبت به سیستم دیگر به معنی نیاز به روزهای کاری مناسب بیشتر بوده

686
نظریهی مزدروئی

نتایج جدول تجزیه واپیانس داده‌ها روش‌های آزمایش که از نظر نظریه ای مبهم می‌باشد. در نظر گرفته که این روش‌ها در سطح 0.05 سایت متراً بر روی میانگین تعداد باعث افزایش می‌شود.

وزن مختصات ظاهری خاک

از نظر وزن مختصات ظاهری خاک از آموزشی اول، بین روش‌های خاکوبری مکعب به مقدار 0.94 کروم‌برهند می‌باشد. در واحدهای مکعبی از روش خاکوبری مکعب به مقدار 0.78 کروم‌برهند می‌باشد. این نتیجه که تغییرات در وزن مختصات ظاهری خاک باعث افزایش می‌باشد و در نتیجه افزایش مزدروئی آن سایت‌ها می‌باشد.

تأثیر افزایش در تعداد تراکتور و ادوات مورد نیاز برای انجام هیچ‌گونه عملیات و
روش خاکورزی

در این تحقیق تأثیر روش خاکورزی بر تغییرات وزن خاکورز عامل (Power harrow) نسبت به روش خاکورزی با شش برگدان در تنظیم زراعی گوجه-جو-علفه در شرک کانادا (18) همکاری دارد.

نتیجه‌گیری

1. در انتخاب روش خاکورزی برای کشت بک محصول، علاوه بر شاخص‌های فنی باید عامل‌های محصول و درآمد خالص در واحد سطح نیز در نظر گرفته شود. امکان‌سازی در شرایط انجام این تحقیق، در صورت ممکن دانش‌دان تفاوت عملکرد محصول، می‌توان بر اساس شاخص‌های فنی مورد بررسی هر یک از روش‌های کم خاکورزی (قطعی) را بینه‌ای نوع ادوات و زمان در اختیار رقابتگران روش مرسوم نمود.

2. کمترین مقدار مصرف سوخت، به‌ترتیب در روش‌های کم خاکورزی با گازهای دوباره به عمق 5 سانتی‌متر، کولی‌پاتر ب به عمق 15 سانتی‌متر، دیسک سنگین و روش مرسوم به‌ترتیب درصد بهبود آمد.

هزینه خاکورزی

مقایسه روش‌های مختلف خاکورزی از نظر مبلغ هزینه مورد نیاز برای مجموع عملیات بیشتری‌های شده در هر کدام از سیستم‌های خاکورزی نشان دهنده وجود اختلاف زیادی بین روش مرسوم با دیگر روش‌های خاکورزی است (شکل 1). افزایش عمل خاکورزی از سیستم چندگی بر هرین‌ها و مصرف سوخت دارد (9). به‌دلیل کاهش عمل خاکورزی و حذف برخی عملیات و تردیدها، کل هزینه خاکورزی در روش‌های کم‌خاکورزی تا T6 به‌ترتیب به میزان 40، 54.5، 60 و 66 درصد نسبت به روش مرسوم، با هزینه 4000 زیال بر هکتار کاهش پایه است. نتایج بهبود آمده در این آزمایش با توجه به خیرالله و همکاران می‌توان بر کسب بیشترین بازده مصرف سوخت و افزایش بهترین آب دیسک، رباتور، گازهای غنی شده و گازهای برگداندار (15) و یافته سیمها و همکاران می‌توان بر 40 درصد
مقاله برخی شاخص‌های فنی در روش‌های کم‌خاکورزی و خاکورزی مرسوم

روش‌های کم‌خاکورزی با کوپیوتورزی به عمق 10 سانتی‌متر، دیسک سبک، گازگیر دوار به عمق 5 سانتی‌متر، دیسک سنگین، کوپیوتورزی به عمق 15 سانتی‌متر و روش مرسوم، به‌ترتیب، دارای کمترین هزینه‌های عملیاتی در واحد سطح بودند.

منابع مورد استفاده

1. لوران، م. 1388. مقایسه روش‌های مختلف خاکورزی با کوپیوتورزی در فاصله آجودانی شیراز. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 103-112.
2. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
3. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
4. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
5. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
6. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
7. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
8. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
9. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
10. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.
11. لوران، م. و. م. 1385. تأثیر روش‌های مختلف خاکورزی با کوپیوتورزی در کیفیت و عملکرد تعرض به بروز خشک کاری در منطقه شاورو خوزستان. مجله تحقیقات ویژه تحقیقات دانشگاه تهران. 9-69.