مقایسه برخی شاخ‌های فنی در روش‌های کم‌خاکورزی و خاکورزی مرسوم

الیاس دهقان1 و مرتضی الماسی2

(تاریخ دریافت: ۱۳۸۶/۱۲/۲۴؛ تاریخ پذیرش: ۱۳۸۷/۶/۲۴)

چکیده

میدانی عمليات آماده‌سازی زمین برای کشت محصولات مختلف در مناطق گوناگون نیازمند دسترسی به شاخ‌های و اطلاعاتی در مورد شرایط، میزان چراغ و صورت اجسام روش‌های گوناگون خاکورزی است. این تحقیق در تابستان سال ۱۳۸۲ بر روی یک حاکم در استگاه تحقیقات کشاورزی شاهرود واقع در شمال ایران انجام شد. آزمایش‌ها به صورت بلکه به کاملاً تصادفی در سه تکرار و با شش تیم انجام شد. تیمارهای شامل روش‌های خاکورزی مرسوم به صورت شرکت پرگدانی به عمق ۵۰ در دیسرت + دیسرت + دیسرت (T1)، دیسرت + دیسرت سیبی به عمق ۲۰ در دیسرت (T2)، دیسرت + دیسرت + دیسرت به عمق ۲۰ در دیسرت (T3) کولیوبورتر به عمق (T4) + دیسرت + دیسرت به عمق ۵۰ در دیسرت (T5) و گاوانه دوار به عمق ۵۰ در دیسرت (T6) انجام شد. نتایج نشان داد که میزان مصرف سوخت در روش‌های T2 تا T6 به ترتیب به میزان ۲۹.۷۴، ۲۴.۷۳، ۲۴.۵۳ و ۱۹ درصد نسبت به روش مرسوم، با ۳۶ لیتر در هکتار، کاهش یافت. کل میزان مورد نیاز در سیستم‌های خاکورزی T2 تا T6 به ترتیب به میزان ۲۵.۷۴، ۲۸.۹۲ و ۲۴ درصد نسبت به روش مرسوم بلند می‌شود. ساعت حکاری، کاهش پدیداری از طرفیت مزرعه در روش‌های T2 تا T6 نسبت به روش مرسوم، با ۲۷۷٪/۰ درصد کاهش پدیداری از طرفیت مزرعه در سه تکرار (MWD) Nب در T2 و ۱۵ تکرار Nب در T4 نسبت به روش مرسوم با میانگین (MWD) Nب و ۲۴ تکرار Nب در T6 به ترتیب به میزان ۲۹.۷۴، ۲۴.۵۳ و ۱۹ درصد پنجم تفاوت و در T6 به میزان ۲۴.۵۳ درصد کمتر بشنوید. هزینه خاکورزی T2 تا T6 نسبت به روش مرسوم با هزینه ۱۰۰۰۰۰۰۰۰۰۰۰۰ ۵ درصد بالاتر، به ترتیب به میزان ۵۰، ۲۵ و ۲۴ درصد کاهش نشان داد.

واژه‌های کلیدی: خاکورزی مرسوم، کم‌خاکورزی، دیسرت، کولیوبورتر، گاوانه دوار

مقدمه

روش خاکورزی طبقه‌بندی بیان کننده نوع منابع‌ها و ادنات به‌کار رفته بوده و دارای روش‌های تعیین شده و گاه تعریف نهداهی است که به شرایط آب و هوا و تغییرات و شیمیایی خاک، نوع محصولات هدف تولید زمان و نوع منابع‌ها و ادنات در اختیار دارای آثار سودمند و گاه بیابانی است.

ساخت اجسام کار و انزیم‌های بودن عمليات آماده‌سازی

۱. هعس هبسته‌ی علمی بخش تحقیقات فنی و مهندسی، مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان
۲. استاد مهندسی مکانیک ماشینهای کشاورزی و مکانیاسیون، دانشکده کشاورزی، دانشگاه شهید چمران اهواز
elyas_dehghan@yahoo.com

479
با گنده، چم، در و بهتر بهتریت برای بررسی‌های ۱۳۸۷، ۱۳۸۸ و ۱۳۸۹ درصد بود (۳). گستردگی عملیات خاکورزی و هزینه‌های آن از یک طرف و از طرف دیگر آن‌ها زیان‌بار خاکورزی بیش از حد و ناماسی، نشان‌دهنده ضرورت بررسی و بازنشر در روش‌های آزمایشی زمین است.

استفاده از ماسیموها و ادوات گوناگون خاکورزی آثار متغیرین روی خاک، گیاه و محیط‌های گیاهی بر جای می‌گذارد. در سیستم‌های خاکورزی بقا‌ی گیاهی تا حدود زیادی در سطح خاک باقی مانده، لذا وجود یافتن مکانیک است در عملیات تهیه بست و کاشت به‌اختلال ایجاد نامناسب. بکی از ادوات آماری کار در این گونه می‌باشد گوناگون پنجه‌گاه خاکی است.

کلیاتورهایی سبکتر از جهیل سبک‌تر و برای کار در سطح گامتر و حذف‌های (پنجه‌گاه خاکی) کاربردی‌تر به شرح می‌رسند (۲). خانواده‌ها و بیشتر یا گاهی را در سطح خاک باقی‌مانده یا آن‌ها را تا عملیات دانسته‌های بزرگ‌تری از خاک سطح مخاطب می‌کنند (۱۰). بررسی آثار افزایش بر فشار گیاه یک‌گانه خاک و مقایسه آن با سایر روش‌های خاکورزی نشان داد که در خاکورزی با دیسک، بدان این که لایه فشرده و سختی در زیر لایی شگی ایجاد گردید و نکته‌ای در حجم خاک حفظ می‌شود. همچنین خاکورزی با دیسک علاوه بر این که منافع فشاری دیسک‌های خاکی در دو باره بهبود در بهبود یافته‌های جلوگیری از فرآیندهای دیسک‌های می‌شود، به‌طور می‌رسد باعث می‌شود که گسترده‌تر بوده و به‌طور می‌رسد باعث می‌شود که گست
مواد و روش‌ها

ابن آزمایش در تاسیسات سال ۱۳۸۲ در یک خاک رسته حاوی یک گیاه گند در ابتدا تحقیقات کشاورزی شاور اجرا شد. این تحقیقات کشاورزی شاور در فاصله ۲۰ کیلومتر شمال اهواز واقع شده است. خاکهای این منطقه غالباً از نظر مواد آلی و اکسیژن مناسب دارای اقلیم خشک و نیمه خشکی بوده و مصالح سالانه ۲۵۰ تا ۲۵۰ میلی‌متر می‌باشد. مشخصات خاک محل اجرای آزمایش در جدول ۱ آورده شده است.

در این تحقیقات روش خاکورزی مرسوم و پنج روش کم‌خاکوری در قالب طرح بلوکی کاملاً تصادفی در سه نمونه مورد مقباسه و ارزیابی قرار گرفتند. تیم‌های خاکورزی عبارت بودند از:

۱- روش مرسوم
۲- روش مرسوم برگرداراند
۳- روش مرسوم برگرداراند
۴- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۵- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۶- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۷- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۸- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۹- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۱۰- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۱۱- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۱۲- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۱۳- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۱۴- دو در بار دیسک عمود بر ه مال + سانتی‌متر
۱۵- دو در بهزیستی روش‌ها

جدول 1. مشخصات خاک استفاده تحقیقات کشاورزی شاور

<table>
<thead>
<tr>
<th>عناصر میکرو و قابل حذف (mg.kg⁻¹)</th>
<th>PH</th>
<th>عمق خاک (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>Mn</td>
<td>Zn</td>
</tr>
<tr>
<td>0.8</td>
<td>7/5</td>
<td>220</td>
</tr>
</tbody>
</table>

جدول 2. ویژگی‌های ماسیون‌ها و ادوات مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>شرکت سازنده و مدل</th>
<th>شرح</th>
<th>تاریخ نصب</th>
<th>نام دستگاه</th>
<th>شرکت سهامی</th>
<th>قطعات این‌گری (mg.kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاوهان (GAK)</td>
<td>نیش</td>
<td>12 24</td>
<td>12 24</td>
<td>3/6</td>
<td>(John Deere)</td>
</tr>
<tr>
<td>برگوراندار</td>
<td>باروئی</td>
<td>165</td>
<td>165</td>
<td>کوله‌پوش</td>
<td>150</td>
</tr>
<tr>
<td>دنیک افت</td>
<td>(John Deere)</td>
<td>150</td>
<td>150</td>
<td>کوله‌پوش</td>
<td>150</td>
</tr>
<tr>
<td>اسک اپارات</td>
<td>(SNOW PARS)</td>
<td>150</td>
<td>150</td>
<td>کوله‌پوش</td>
<td>150</td>
</tr>
<tr>
<td>جنگل</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>کوله‌پوش</td>
<td>90</td>
</tr>
<tr>
<td>تراکتور</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>کوله‌پوش</td>
<td>250</td>
</tr>
</tbody>
</table>

در روش باک پر، قبل از شروع عملیات مخزن سوخت تراکتور را کاملاً پر و لب غیر به سبب این عملیات نیز مخزن سوخت دوباره ابیرژ می‌گردد. مقدار سوخت مورد نیاز باعث پر کردن مجدد مخزن سوخت در بودن انجام می‌گردد، با توجه به تعداد کار یک تا توسط ماشین است.

اندازه‌گیری کل زمان مورد نیاز سیستم خاکورزی
برای تعیین کل زمان مورد نیاز برای هر سیستم خاکورزی، ابتدا مجموع زمان‌های میانه و دور زدن ماشین در ابتدا و انتهای مزرعه برای هر کدام از عملیات پیش‌بینی شده در سیستم توسط زمان سنج به‌طور جداگانه محاسبه شده و سپس با جمع کردن زمان‌های مختلف مختلف خاکورزی کل زمان مورد نیاز سیستم محاسبه شده.

ظرفیت مزرعه‌ای
کار انجام شده (بر حسب سطح با ماه) توسط ماشین در زمینه خاکورزی، کشت، داشت و ردگیری را در مدت یک ساعت، ظرفیت مزرعه‌ای می‌گویند (1). در این آزمایشات ظرفیت مزرعه‌ای هر سیستم به معادله مجموع کل زمان‌های میانه و غیر میانه مصرف شده برای انجام عملیات در سطح که مفکور (در شرایط مزرعه) و با استفاده از رابطه ۱ محاسبه شد.

\[C_s = \frac{A}{T} \]

در اینجا:
- \(ha/h \) = ظرفیت مزرعه‌ای (g)
- \(A = \) مساحت مزرعه عمیکردها (m²)
- \(T = \) زمان خودش (s)

میزان خرد شدن خاک
قطر متوسط وزنی شاخصی است که هموارا برای تعیین میزان خرد شدن خاک استفاده می‌شود (2). در این روش پس از انجام خاکورزی در
جدول 3. تجزیه و تحلیل مربوطات اثر روش‌های خاکوروزی بر شاخص‌های فنی مورد بررسی

<table>
<thead>
<tr>
<th>مقدار مربوطات</th>
<th>درجه</th>
<th>منبع نگذاری</th>
<th>آزادی ذوب</th>
<th>مصرف نیاز سیستم</th>
<th>وزن نیاز سیستم</th>
<th>فشار نیاز سیستم</th>
<th>ظرفیت مصرف (ها/ها)</th>
<th>وزن مخصوص ظاهری</th>
<th>قطر متوسط مخصوص ظاهری</th>
<th>وزن کل خاک</th>
<th>قطر متوسط خاک کل خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه 1</td>
<td>0/259</td>
<td>نیکار</td>
<td>2</td>
<td>0/43</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>درجه 2</td>
<td>0/259</td>
<td>روش خاکوروزی</td>
<td>5</td>
<td>0/62</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
<tr>
<td>درجه 3</td>
<td>0/259</td>
<td>خطای آزمایشی</td>
<td>10</td>
<td>0/81</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006</td>
</tr>
</tbody>
</table>

نتایج تجزیه و تحلیل نشان داد که بین روش‌های خاکوروزی با یکدیگر با تیمار کولتوپاتور باعث کاهش معنی‌دار کل مصرف سوخت در تیمار خاکوروزی با گاو‌های دوادن نسبت به دیگر روشهای خاکوروزی بهدلیل کاهش عمق خاکوروزی به 5 سانتی‌متر، کاهش درصد لغزش به حدود صفر، کاهش رفت و آمد ماشی‌ها و ادوات و انجام همه عملیات خاکوروزی در یک پار بزرگ است.

كل زمان مورد نیاز
نتایج چند تجزیه و تحلیل نشان داد که بین روشهای خاکوروزی از نظر کل زمان مورد نیاز برای انجام مجموعه

(*) در هر ستون تفاوت بین میانگین‌هایی که حداکثر یک حرف مشترک دارند معنی‌دار نیست.
جدول ۵: میانگین شاخص‌های مورد بررسی برای روش‌های گوناگون خاکورزی به تفکیک نوع ادوات مورد استفاده در هر سیستم

<table>
<thead>
<tr>
<th>نوع ادوات</th>
<th>مصرف (l/ha)</th>
<th>مورد نیاز (ha/h)</th>
<th>بارده مزرعه‌ای</th>
<th>ظرفیت</th>
<th>زمان</th>
<th>لغزش</th>
<th>سرعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش خاکورزی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاوبانی بکرگندانر</td>
<td>۲/۲۴</td>
<td>۱/۹۵</td>
<td>۲/۵۰</td>
<td>۶/۱۹</td>
<td>۶/۵۶</td>
<td>۸/۶۸</td>
<td>۱/۸۸</td>
</tr>
<tr>
<td>دیسک اول</td>
<td>۱/۸۷</td>
<td>۱/۹۷</td>
<td>۱/۹۱</td>
<td>۴/۶۷</td>
<td>۴/۳۸</td>
<td>۶/۴۸</td>
<td>۱/۷۳</td>
</tr>
<tr>
<td>شخم بکرگندانر به عمق T1 (۲۰ cm)</td>
<td>۶/۷۵</td>
<td>۴/۹۲</td>
<td>۸/۹۲</td>
<td>۸/۹۸</td>
<td>۸/۲۶</td>
<td>۴/۷۴</td>
<td>۷/۴۳</td>
</tr>
<tr>
<td>دیسک دوم</td>
<td>۴/۱۰</td>
<td>۹/۱۱</td>
<td>۴/۵۷</td>
<td>۴/۵۵</td>
<td>۴/۲۸</td>
<td>۶/۵۶</td>
<td>۴/۵۴</td>
</tr>
<tr>
<td>شخم بکرگندانر به عمق T2 (۱-۱۵ cm)</td>
<td>۴/۱۱</td>
<td>۹/۱۰</td>
<td>۴/۳۰</td>
<td>۴/۳۸</td>
<td>۴/۲۹</td>
<td>۷/۸۲</td>
<td>۴/۳۲</td>
</tr>
<tr>
<td>دیسک سیکر به عمق T3</td>
<td>۲/۱۹</td>
<td>۷/۹۹</td>
<td>۱/۹۷</td>
<td>۷/۹۱</td>
<td>۷/۱۴</td>
<td>۹/۳۸</td>
<td>۷/۱۲</td>
</tr>
<tr>
<td>کشکول‌نوار به عمق T4</td>
<td>۱/۹۰</td>
<td>۱/۸۷</td>
<td>۱/۸۹</td>
<td>۳/۸۰</td>
<td>۱/۸۷</td>
<td>۱/۸۰</td>
<td>۱/۸۳</td>
</tr>
<tr>
<td>دیسک دوم</td>
<td>۳/۵۰</td>
<td>۳/۵۰</td>
<td>۳/۵۰</td>
<td>۵/۳۸</td>
<td>۵/۳۸</td>
<td>۵/۳۸</td>
<td>۵/۳۸</td>
</tr>
<tr>
<td>شخم بکرگندانر به عمق T5</td>
<td>۴/۶۱</td>
<td>۱/۹۱</td>
<td>۴/۵۷</td>
<td>۱/۹۳</td>
<td>۴/۱۹</td>
<td>۷/۸۲</td>
<td>۱/۹۳</td>
</tr>
<tr>
<td>کاوبانی بکرگندانر</td>
<td>۱/۹۵</td>
<td>۷/۸۲</td>
<td>۷/۸۲</td>
<td>۱/۹۶</td>
<td>۱/۹۶</td>
<td>۱/۹۶</td>
<td>۱/۹۶</td>
</tr>
</tbody>
</table>

و در صورت محدود بودن زمان مناسب کاری، نیازمند افزایش عملیات پیش‌بنی شده در هر سیستم، اختلاف معنی‌دار در سطح ۱/۲ وجود داشت (جدول ۶). استفاده از روش‌های کم‌خاکورزی باعث کاهش زمان مورد نیاز توسط برخورد مرسوم شده شد. این شاخص در سیستم‌های خاکورزی T1 و T6 بهترین نسبت T3 توسط T6 و T4. T1 نسبت به روش مرسوم با زمان ۵/۶۱ ساعت در هکتار بهترین سرعت به سهمیان بهروش مرسوم به بهره‌برداری تکنیک آبیوسا و همکاران که با مقایسه روش‌های خاکورزی برای عملیات خاکورزی و هرینه کارگری، روش پی‌خاکورزی را از روش مرسوم برتر دانستند، هم‌خوانی دارد (۱۲). افزایش زمان مورد نیاز برای اجرای یک سیستم نسبت به سیستم دیگر به معنی نیاز به روزها در کاری مناسب بیشتر بوده.
مفهوم برخی شاخص‌های فنی در روش‌های کوکاکورزی و خاکورزی مسوم

اطرافین عملکرد خاکورزی در تیمار کوکاکورزی به عمق 15 سانتی‌متر نسبت به کوکاکورزی به عمق 10 سانتی‌متر، باعث کاهش شدید در سرعت پرورش و در نتیجه افزایش زمان مورد نیاز شده است (جدول 5).

دهفان و الکسا و منابعی ارث‌روش‌های خاکورزی مسوم، دوبار دیسک، کوکاکورزی و گاو‌ان دوبار بر عملکرد و اجرای عملکرد برخی در منطقه شاوح خوزستان، گزارش نمودند که روش‌های صورتی مسوم به عنوان یکی از نظیر عملکرد شاتلوک تفاوت معنی‌داری نداشتند و روش خاکورزی یا کوکاکورزی به عمق 5 سانتی‌متر را برای کشت برنج پیشنهاد نمودند (5). در این تحقیق نیز با وجود که زمان مورد نیاز برای یکبار عبور ریتوان در تیمار خاکورزی با گاو‌ان دور، برای یکبار عبور ریتوان یا کوکاکورزی است، منابعی اشارت نشان دادند که عملیات اجتمال دیسک و ماله در این تیمار باعث کاهش در کل زمان مورد نیاز شده است.

ظرفیت مزروعهای تکنیک جدول تجزیه و ارتباطات داده‌ها روش‌های کوکاکورزی از نظر ظرفیت مزروعهای تفاوت بین روش‌های خاکورزی در سطح 1/100 معنی‌دار بود (جدول 6). روش‌های خاکورزی با دیسک سبک، دیسک سنگین، کوکاکورزی به عمق 15 سانتی‌متر و ریتوان ضمن قرار گرفتن در یک گروه آماری از روش‌های مسوم و کوکاکورزی به عمق 15 سانتی‌متر برتر بودند. ظرفیت مزروعهای تفاوت بین روش‌های خاکورزی تیمار T2 تا T6 نسبت به روش مسوم با ظرفیت مزروعهای T2/22/21/24/22/24، به ترتیب به میزان 2/27 و 2/27 برای افزایش ظرفیت مزروعهای و زمان مورد نیاز در واحد سطح، می‌توان نتیجه گرفت که هر عمایی که باعث کاهش زمان مورد نیاز برای انجام خاکورزی در یک سطح معین شود می‌تواند باعث افزایش ظرفیت مزروعهای آن شود و مانندن شده و در نتیجه اعمال فیروینست در سطح خاکورزی. با آب‌زایه‌ای اول و احتیام‌دار در فرآیند دوباره خاک، از میان می‌روید. لازم به ذکر است که

ظرفیت مسوم

وژن مخصوص ظاهرا خاک

از نظر وژن مخصوص ظاهرا خاک بعد از آب‌زایه اول، بین روش‌های خاکورزی تفاوت معنی‌دار وجود نداشت (جدول 2). بیشترین وژن مخصوص ظاهرا به مقدار 0/37 گرم بر سانتی‌متر مکعب از روش خاکورزی مسوم و کوکاکورزی در پلاژه به حداکثر آب و کمترین آن تا 0/37 گرم بر سانتی‌متر مکعب از روش خاکورزی با دیسک سنگین به عمق 15 سانتی‌متر حاصل شد (جدول 2). این نتیجه نشان می‌دهد که تغییر احتمالی در وژن مخصوص ظاهرا خاک ناشی از روش خاکورزی، با آب‌زایه‌ای اول و احتیام‌دار در فرآیند دوباره خاک، از میان می‌روید. لازم به ذکر است که

878
نتیجه‌گیری:

1. در انتخاب روش خاکورزی برای کشت یک محصول، علاوه بر شاخص‌های فنی به اعمالکرده محصول و درآمد خالص در واحد سطح نیز مورد توجه قرار گرفت. امواج در شرایط اقتصادی این تحقیق، در صورت معنی‌دار نشدن تفاوت عملکرد محصول، می‌توان بر اساس شاخص‌های فنی مورد بررسی داشته باشد.

همچنین خاکورزی مکعبه روش‌های مختلف خاکورزی از نظر مبلغ هزینه مورد نیاز برای مجموع عملیات بی‌پیش‌بینی شده در هر کدام از سیستمهای خاکورزی تهیه‌دهنده وجود اختلافات زیادی بین روش مرسوم با دیگر روش‌های خاکورزی دیده می‌شود (شکل 1).

از افزایش عمق خاکورزی برای چند کیلومتر بر هر هکتار و مصرف سوخت دار (9). به‌دلیل کاهش عمق خاکورزی و خیز عملیات و تردد، کل هزینه خاکورزی در روستاهای گزارش خاکورزی T6 بیشترین به‌ميزان 40 تا 32.50 و 6 درصد نسبت به مرسوم، با هزینه 150000 ریال بر هکتار، کاهش یافته است. به‌دست آمده در این آزمایش به‌پایه‌های خیرالله و همکاران می‌بر کسب بیشترین پاداش مصرف سوخت و انرژی بی‌پیش‌بینی دیسک، زیری و گواهین برگردانی (15) و پیش‌بینی همکاران می‌بر 14-40 درصد.
مقاله برخی از محصولات کشاورزی در روستاهای کوخاروزی و خاکوروزی مسوم

منابع مورد استفاده

1. بالاسی، م.، ش. کیانی و ن. لبوقی، 1388. میزان کنترل سیستم کشاورزی چاب دوم. مؤسسه انتشارات حضرت موسیم (س). قم.
2. بالاسی، م.، ع. رفیقی و ت. نوکلی، 1379. فرآیند کشاورزی و منابع طبیعی. جلد نهم. ماهیت‌های کشاورزی. انتشارات و چاپ دانشگاه تهران.
3. بیان، ا.، 1387. هزینه تولید محصولات کشاورزی (متوسط هزینه تولید یک هکتار محصولات کشاورزی به تفکیک مراحل مختلف)
4. چکش در کل کشور در سال‌های 1385-1386 (روزبندی). جهاد کشاورزی تهران.
5. خسرویان، ع. م.، (پرسنلی)، م.، 1386. ماهیت‌های محصولات کشاورزی در کشور.
7. دهقان، ا.، و. م. بالاسی، 1385. تاثیر روش‌های مختلف کشاورزی بر عملکرد و اجرای عملکرد در بخش زراعی خاک تکیه دار
8. منطقه شاور خوزستان. مجله تحقیقات مهندسی کشاورزی، 7(29): 98-100.
10. روزبه، م.، ع. پوستکانی، م.، شاکر و. و. ب. نیکزاد، 1379. تأثیر روش‌های مختلف کشاورزی بر عملکرد ذرت دانه‌ای بعد از گندم.
11. گزارش نهایی، مؤسسه تحقیقات فنی و مهندسی کشاورزی، نشریه شماره 166.
12. صلح جو، م. و. لوگی. ج. احمدی و م. روزبه، 1386. تأثیر درصد رطوبی خاک و عملکرد ذرت دانه‌ای بعد از گندم.
13. مهارت‌های کشاورزی نایین. مجله تحقیقات مهندسی کشاورزی 7(29): 1-12.
15. ملی، ا. ف. و. و. و. بر. کومر، 1374. تأثیر روش‌های مختلف کشاورزی جلد اول. چاپ. چاپ. انتشارات دانشگاه بومی سینا، همدان.
16. میرزا، ع. و. ا. ع. د. خوشبو، 1374. تأثیر روش‌های مختلف کشاورزی بر عملکرد ذرت دانه‌ای بعد از گندم.
17. پایه‌ی ا.، ن. و. ا. ع. د. خوشبو، 1385. تأثیر روش‌های مختلف کشاورزی بر عملکرد ذرت دانه‌ای بعد از گندم.