مقایسه برخی شاخه‌های فنی در روش‌های کم‌خاکوری و خاکوری مرسم

الیاس دهقان، مرزپی الماسی
(تاریخ دریافت: ۱۳۸۶/۱۲/۲۴ تاریخ پذیرش: ۱۳۸۷/۱۲/۲۴)

چکیده
میدریت عملیات آماده‌سازی زمین برای کشت محصولات مختلف در مناطق گوناگون تا نیازمند دسترسی به شاخه‌ها و اطلاعاتی در مورد شرایط، چگونگی و معایب انجام روش‌های گوناگون خاکوری است. این تحقیق در بنیاد سال ۱۳۸۲ در یک خاک ریس در حوزه بیابان گندم در ایستگاه تحقیقات کشاورزی شاپور واقع در شمال اهر جنگل آزمایش‌ها به صورت بلعکسی کامل نظارتگی در سه تکرار و با شش نمونه انجام شد. نتایج خاکوری مشابه خاکوری مرسم به صورت شعبک مرگان به طرق

کامبیوزی، دیوکس + ماله (T4)، دیوکس ماله به طرق ماله (T3)، دیوکس ماله به طرق ماله (T2). نتایج نامناسب که میزان مصرف سوخت در روش خاکوری T2 نا T6 به ترتیب به میزان ۲۴، ۲۵ و ۲۴ درصد نسبت به روش مرسم و با T6 نسبت به روش مرسم: ۴۳، ۴۴ درصد نسبت به روش مرسم. با به سعت بر هکتار، کاهش یافته کل زمان مورد نیاز در سیستم‌های خاکوری T2 T6 به ترتیب به میزان ۲۴، ۲۵ و ۲۴ درصد نسبت به روش مرسم. با ۴۳ درصد به سعت بر هکتار، کاهش یافته و در حوزه یک نمو در سیستم‌های خاکوری T2 T6 به ترتیب به میزان ۵۰، ۵۰ و ۵۰ درصد کاهش نشان داد.

واژه‌های کلیدی: خاکوری مرسم، کم‌خاکوری، دیسک، کولتوپور، گاوانه دوار

مقدمه
روش خاکوری علاوه بر کنده نوع مشابههای A و ادوات به کار رفته بوده و دارای ویژگی‌های تعیین شده و کار تغییر نشده‌ای است که به‌همراه آب و هوا و فیزیکی و شیمیایی خاک، نوع محصول، هدف تولید، زمان و نوع مشابههای ادوات

در اختیار، دارای آثار سودمند و که زبانی است.

در انجام کار و ارزیابی به دست آمده عملیات آماده‌سازی

۱. عضو هیئت علمی بخش تحقیقات قیمتی و مهندسی، مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان
۲. استاد مهندسی مکانیک مشابههای کشاورزی و مکانیزاسیون، دانشگاه کشاورزی، دانشگاه شهید چمران اهواز
elyas_dehghan@yahoo.com

* مسئول مکتوبات، پست الکترونیکی
سپیده به دنیا آمدی که در یک جنبه محسوسی و در دیگری نمحسوسی. انتخاب روش خلاکورزی و مدیریت و برنامه‌ریزی عملیات آن را ممکن می‌سازد.

روش‌های خلاکورزی برای محصولات گوناگون نشان داده است که به شیراز می‌تواند، اکتشافات و انگیزه، هر یک از روش‌های خلاکورزی برای خلاکورزی که در بررسی روش‌های خلاکورزی، بسته به اهداف و شرایط، شاخص‌های گوناگونی مانند هزینه عملیات، میزان مصرف سوخت و انرژی، فشارگذاری خلاک و وزن مخلوط مواد نیاز دارد.

در این دوره، به بررسی این روش‌ها و عملکرد بلند مدت آنها تمرکز خواهد شد.

بنابراین، در این روز و در این زمینه، استفاده از روش‌های خلاکورزی می‌تواند به بهبود کارایی و کاهش هزینه‌ها کمک کند.

برای گذشتن به روش‌های خلاکورزی، نیاز به بازخوری شما در این زمینه است.

نتایج پژوهش‌های انجام شده در دنیای روش‌های خلاکورزی برای محصولات گوناگون نشان داده است که به شیراز می‌تواند، اکتشافات و انگیزه، هر یک از روش‌های خلاکورزی برای خلاکورزی که در بررسی روش‌های خلاکورزی، بسته به اهداف و شرایط، شاخص‌های گوناگونی مانند هزینه عملیات، میزان مصرف سوخت و انرژی، فشارگذاری خلاک و وزن مخلوط مواد نیاز دارد.

می‌توان برای دیگری پیروی کنید.

پیشنهاد برخی از انجام‌های طیب‌الرسول و همکاران

680
جدول 1. مشخصات خاک استفاده تحقیقات کشاورزی شاور

<table>
<thead>
<tr>
<th>عناصر میکرو و قابل جذب (mg.kg⁻¹)</th>
<th>PH</th>
<th>مقدار خاک (cm)</th>
<th>بانک خاک</th>
<th>عمق خاک (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC (%)</td>
<td>P (mg.kg⁻¹)</td>
<td>K (mg.kg⁻¹)</td>
<td>EC (ds.m⁻¹)</td>
<td></td>
</tr>
<tr>
<td>0/8</td>
<td>7/5</td>
<td>220</td>
<td>3/1</td>
<td>7/2</td>
</tr>
</tbody>
</table>

جدول 2. یوزگرهای مانیشی و ادوات مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>شرکت سازنده و مدل</th>
<th>سرعت پیچوکنی نظیم (km/h)</th>
<th>نرخ کار (توربیکی)</th>
<th>شرکت سهامی (هانگرهای گیاران)</th>
<th>تعداد بهره‌برداری</th>
<th>سرعت و فعالیت (کیلومتر در ساعت)</th>
<th>بهره‌برداری (کیلومتر در ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گیاران</td>
<td>6/3</td>
<td>25</td>
<td>برگدازه‌دار (GAK)</td>
<td>24</td>
<td>24</td>
<td>15 برقه (گروه جنوبی)</td>
</tr>
<tr>
<td>استون پارس ایران (SNOW PARS)</td>
<td>15</td>
<td>25</td>
<td>12 برقه (گروه غربی)</td>
<td>24</td>
<td>24</td>
<td>15 برقه (گروه جنوبی)</td>
</tr>
<tr>
<td>گیاران</td>
<td>6/3</td>
<td>25</td>
<td>برگدازه‌دار (GAK)</td>
<td>24</td>
<td>24</td>
<td>15 برقه (گروه جنوبی)</td>
</tr>
</tbody>
</table>

زمان مناسب شاور ورزی نمونه‌برداری از خاک از عمق‌های 0-15 سانتی‌متر انجام و درصد رطوبت خاک بر میان وزن خاک خشک محاسبه شد. درصد رطوبت خاک در زمان عملیات تیمار‌های خاک روزه مرسوم (شیمی) دیسک، کولیوتور و گاوانه دار به ترتیب 19/3، 19/6، 18/5 درصد بود. با توجه به نتایج اطلاعات قبلی در مورد درصد رطوبت مناسب خاک برای شکم برگدان، به صورت بکر روز در میان یک تا نوار از زمین با توصیه گاوانه شکم زده و همچنان از خاک نیز نمونه‌گیری تصادفی انجام و رطوبت آن معین است.
مقایسه برخی شاخص‌های فنی در روش‌های کم‌خاکوزی و خاکوزی مزوسوم

هر تیمار، ابتدا نمونه‌های حجمی از خاک در محدوده کادر 50×50 از سطح تا عمق خاکوزی، به صورت عمودی، برداشتند و سپس نمونه‌ها از اکثریت متوالی که قطر روزنی آن‌ها بین ۱۲-۲۷، ۲۴-۵۴، ۳۶-۶۳، ۶۳-۲۵۰، ۲۵۰-۶۰۹ و ۶۰۹-۲۵۰۰ می‌باشد، به جمعیت انتخاب داده و روزن‌های هر کدک و همچنین وزن کل‌خاک‌های باقی‌مانده روي هر کدک و ۲۵ گرم وزن کل‌خاک‌های عبور کرده از اکثیر نمونه (با کمترین قطر روزنه) تعیین و با استفاده از رابطه ۳ مقدار محاسبه شد (۵).

\[\text{MWD} = \sum_{i=1}^{n} \frac{D_i W_i}{W_i} \]

در اینجا:
- قطر متوسط وزنی کل‌خاک‌ها (cm) = MWD
- میانگین قطر‌های خاک در هر محدوده کدک (cm) = Di
- وزن خاک عبور کرده از اکه مربوط به روزن‌های کدک زیرین (g) = Wi
- آن باقی‌مانده است (g) = \(\sum_{i=1}^{n} \frac{D_i W_i}{W_i} \)
- وزن کل نمونه‌های خاک (g) = Wi

وزن مخصوص ظاهری خاک
وزن مخصوص ظاهری معیاری برای اندازه‌گیری فشردگی خاک می‌باشد. برای تعیین این شاخص در عمل، هر کام گرم از روشن‌های خاکوزی، قبل از خاکوزی و بعد از آزمایش، نمونه دست نخورده خاک از سه نقطه تصادفی، به‌وسیله‌ی نمونه‌برداری از خاک برداشته و در ظرف‌های استوانه‌ای با حجم و وزن مشخص، نگهداری و پس از خشک کردن نمونه در آزمایشگاه و تعیین وزن خالص خاک، وزن مخصوص ظاهری نمونه‌ها با استفاده از رابطه ۳ محاسبه شد.

\[\rho = \frac{M}{V} \]

در اینجا:
- (g/cm³) وزن مخصوص ظاهری (g) = \(\rho \)
- وزن خاک شامل (cm³) = M
- حجم خاک با استوانه‌نمونه‌برداری (cm³) = V

شکر به اینکه کمال برادر و پس از انجام عملیات نیز مخت尔 سوخت دوباره امپرس می‌گردید. مقدار سوخت مورد برای بردن مجدد سوخت در پایان عملیات، برای مقدار سوخت معرفی در مباحث‌ها می‌شود کار کار توسط ماشین است.

اندازه‌گیری کل زمان مورد نیاز سیستم خاکوزی
برای تعیین کل زمان مورد نیاز برای هر سیستم خاکوزی، ابتدا مجموع زمان‌های مقدار و دور زدن ماشین در ابتدا و انتهای مزرعه برای هر کدام از عملیات بینی شده در سیستم، توسط زمان‌سنج به‌طور جداگانه محاسبه شده و سپس با جمع کردن زمان‌انجام‌های مختلف خاکوزی کل زمان مورد نیاز سیستم محاسبه شد.

ظرفیت مزرعه‌ای
کار انجامش (بر حسب سطح با ماهه) توسط ماشین در زمینه خاکوزی، کاشت، داشت و برداشت را در مدت یک ساعت، ظرفیت مزرعه‌ای می‌گویند (۱). در این آزمایش، ظرفیت مزرعه‌ای هر سیستم از معکوس مجموع کل زمان‌های مقدار و غير مقدار مصرف شده برای انجام عملیات در سطح یک مترکوب در دوشایه‌ای مزرعه و با استفاده از رابطه ۱ محاسبه شد.

\[C_h = \frac{A}{T} \]

در اینجا:
- (ha/h) ظرفیت مزرعه‌ای = C_h
- مساحت مورد عملیات = A
- هر زمان (مقدار و تلف شده) = T

میزان خرد شدن خاک
قطر متوسط وزنی شاخص شاخصی است که حاوی میزان خرد شدن خاک استفاده می‌شود (۸). در این روش پس از انجام خاکوزی در
هزینه خاکورزی

در شرایط یکسان از نظر اقیانس تولید محصولات مختلف و
نهاده‌های مصرفی مانند کود و حشره‌کش‌ها، هزینه انجام
عملیات خاکورزی کلید تعیین‌سازنده آن‌هاست(18). در این
پژوهش، میانگین هزینه عملیات نهی زمین بر اساس اجرت
محقق و با مراجعه به شیپ نفی از افتادگی‌سازی در ارائه
خدمات مانکنی خاکورزی به صورت افتراقی و همچنین نتایج
شرکت خدمات مکانیزه مستقر در منطقه (شرکت عبادالخان
شمالی) به صورت ریال بر هکتار محاسبه شد. پس از انجام
آزمایش و جمع آوری داده‌ها تجزیه واریانس داده‌ها انجام شده
و میانگین صفات بروز آزمون چند دامنه‌ای دانک مقایسه
شد.

تایب و بحث

قیمت صربت

نتایج تجزیه واریانس داده‌ها نشان داد که از نظر میزان صربت
سخن، بین روش‌های خاکورزی اختلاف معنی‌دار در
سطح (1) وجود نداشت (جدول 3). روش خاکورزی مرسم با
میانگین 49/05 لبر بر هکتار و خاکورزی با گازآهن دوار با
میانگین 15/39 لبر بر هکدار به ترتیب در رتبه اول و
دوم قرار گرفته و سایر روش‌های عملیاتی، شامل پایین‌تر
در ساختار فنی و تفاوت دارد. این وضعیت در مقایسه تیمارهای
خاکورزی با کولیولیسکه به عمق 6 و 75 سانتی‌متر نیز بخوبی
دیده می‌شود.

نتایج این تحقیق نشان داد که در عملیات کار یکسان برای
کاربرد یک باکس دیسک و کولیولیسکه بر روی زمین شکم تخریبی،
قیمت صربت سخن در دیسک 27% کمتر از کولیولیسکه
بود (جدول 5). این امر می‌تواند به دلیل بیشتر بودن مقاومت
کشی کولیولیسکه به دیسک یکسان باشد. زیرا در کولیولیسکه
وجود این که عرض کار از دیسک بود، برای اجرای
عملیات به دنبال سنگین‌تری نازک بوده و سرعت نیروی نزد
کمتر بود. اما استفاده از دوبار عملیات دیسک‌زنی در تیمار

دارد.

مقدار لغزش مثبت بین 15-20 درصد علاوه بر امینی موثر
و جمع دندان، برای ایجاد تغییر فرصتی را که گند آن‌ها کشش
تراکتور باید است. ولی افتراقی بیش از حد از انجام
انرژی می‌شود (11). در روش مرسم، افتراقی بیش از حد درصد
لغزش خر محرک تراکتور برای عملیات دیسک و ماله روی
خاک شکم خورده نسبت به عملیات متمایز در تیمار دیسک
سبک، باعث شده است که مقدار از سوخت مصرفی و انرژی
که شده باید بر حسب پیشرفت در روش مورد باعث کاهش
تهیه کننده افزایش سرعت پیشرفتی برای دیسک در روش
ارد افتراقی که دستگاه انتقال انرژی به کار کرد.
مقدار مصرف کلی موثر تراکتور برای انجام کار معین شده است.
این عوامل روی هر فرآیند افزایش معنی‌دار مصرف
سوخت در تیمار خاکورزی مرسم نسبت به دیگر تیمارها

شده است (جدول 5).

حذف عملیات شکم برگردان در تیمارهای خاکورزی با
دیسک سبک و سنگین باعث کاهش میزان مصرف صربت
نسبت به روش مرسم شده است. دلیل افتراقی علیه دیسک
مورد است. در این تحقیق عملیاتی در 15 سانتی‌متر و
افرازی کل مفاوت کشی دیسک و تازه بکار در دندان بیابان‌تر
و سرعت کمتر بوده است. این وضعیت در مقایسه تیمارهای
خاکورزی با کولیولیسکه به عمق 6 و 75 سانتی‌متر نیز بخوبی
دیده می‌شود.

نتایج این تحقیق نشان داد که در عملیات کار یکسان برای
کاربرد یک باکس دیسک و کولیولیسکه بر روی زمین شکم تخریبی،
مقدار صربت سخن در دیسک 27% کمتر از کولیولیسکه
بود (جدول 5). این امر می‌تواند به دلیل بیشتر بودن مقاومت
کشی کولیولیسکه به دیسک یکسان باشد. زیرا در کولیولیسکه
وجود این که عرض کار از دیسک بود، برای اجرای
عملیات به دنبال سنگین‌تری نازک بوده و سرعت نیروی نزد
کمتر بود. اما استفاده از دوبار عملیات دیسک‌زنی در تیمار

684
جدول ۳: تجزیه و ارتباط معیارهای فنی در روش‌های خاکوروزی بر شاخص‌های فنی مورد بررسی

<table>
<thead>
<tr>
<th>مقدار مربوط</th>
<th>درجه</th>
<th>منع تغییرات آزادی</th>
<th>مصرف سوخت</th>
<th>مورد نیاز سیستم</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>قطع متوسط ظاهری خاک</th>
<th>ضریب تغییرات (C.V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰/۷۱</td>
<td>۰/۸۷۲</td>
<td>۰/۹۹۰</td>
<td>۰/۹۵۸</td>
<td>۰/۸۸۲</td>
<td>۰/۸۲۷</td>
<td>۰/۸۸۲</td>
</tr>
<tr>
<td></td>
<td>۰/۷</td>
<td>۰/۸۷۲</td>
<td>۰/۹۹۰</td>
<td>۰/۹۵۸</td>
<td>۰/۸۸۲</td>
<td>۰/۸۲۷</td>
<td>۰/۸۸۲</td>
</tr>
<tr>
<td></td>
<td>۰/۷</td>
<td>۰/۸۷۲</td>
<td>۰/۹۹۰</td>
<td>۰/۹۵۸</td>
<td>۰/۸۸۲</td>
<td>۰/۸۲۷</td>
<td>۰/۸۸۲</td>
</tr>
</tbody>
</table>

نکته: تفاوت معنی‌دار در سطح ۰/۱.

جدول ۴: مقایسه میانگین شاخص‌های فنی مورد بررسی در سطوح مختلف روش خاکوروزی

<table>
<thead>
<tr>
<th>میانگین صفات و مقایسه آنها بر روی آزمون چند دامنه‌دار (در سطح احتمال ۵/۰٪)</th>
<th>مصرف شده</th>
<th>مورد نیاز سیستم</th>
<th>ضریب تغیرات (C.V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن (g/cm³)</td>
<td>مصرف سوخت (h/ha)</td>
<td>وزنی کل‌خاک (h/ha)</td>
<td>مصرف سوخت (h/ha)</td>
</tr>
<tr>
<td>۱/۳۳</td>
<td>۰/۹۴</td>
<td>۰/۲۲۷</td>
<td>۰/۹۴</td>
</tr>
<tr>
<td>۱/۲۷</td>
<td>۰/۹۴</td>
<td>۰/۲۲۷</td>
<td>۰/۹۴</td>
</tr>
<tr>
<td>۱/۲۴</td>
<td>۰/۹۴</td>
<td>۰/۲۲۷</td>
<td>۰/۹۴</td>
</tr>
<tr>
<td>۱/۲۴</td>
<td>۰/۹۴</td>
<td>۰/۲۲۷</td>
<td>۰/۹۴</td>
</tr>
<tr>
<td>۱/۲۴</td>
<td>۰/۹۴</td>
<td>۰/۲۲۷</td>
<td>۰/۹۴</td>
</tr>
</tbody>
</table>

ملاحظه: در هر ستون تفاوت بین میانگین‌هایی که حداقل یک هفتم پرانته دارند معنی‌دار است.

خاکوروزی با دیسک در مقایسه با تیمار یکبار کوتوباتور باعث شده است که مجموع سوخت مصرف شده در این تیمار نسبت به تیمار خاکوروزی با کوتوباتور افزایش یابد (جدول ۴). در حالی که در روش خاکوروزی با دیسک شنیده شد که مصرف کل زمان مورد نیاز برای کار با پاس کوتوباتور نسبت به پاس دیسک افزایش یافته، به وسیله در این سیستم به دلیل عملکرد شرایط تغییرات با پاس کوتوباتور، مجموع کل زمان مورد نیاز برای کاهش توده و در حدود معمولی باند (T2 و تیم ۳) روبرو که قرار گرفته است.

کل زمان مورد نیاز

نتایج چند جدول تجزیه و ارتباطات نشان داد که بین روش‌های خاکوروزی از نظر کل زمان مورد نیاز برای انجام مجموعه کاهش توده و در حدود معمولی باند (T2 و تیم ۳) قرار گرفته است.
جدول 5. میانگین شاخص‌های مورد بررسی برای روش‌های گوناگون خاک‌ورزی، به تفکیک نوع ادوات مورد استفاده در هر سیستم

<table>
<thead>
<tr>
<th>نوع ادوات</th>
<th>مصرف (l/ha)</th>
<th>موردنیاز (ha/h)</th>
<th>ظرفیت بهاردزهای (ha/h)</th>
<th>لغزش (km/h)</th>
<th>سرعت پیشروی</th>
<th>کلاه‌های بکرگردن‌دار</th>
<th>شحم بکرگردن‌های عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرسوم</td>
<td>22/62</td>
<td>0/56</td>
<td>0/15</td>
<td>6/05</td>
<td>12/99</td>
<td>1/95</td>
<td>1/90</td>
</tr>
<tr>
<td>دیسک اول</td>
<td>12/67</td>
<td>0/72</td>
<td>0/17</td>
<td>5/05</td>
<td>19/03</td>
<td>1/72</td>
<td>1/66</td>
</tr>
<tr>
<td>دیسک دوم</td>
<td>12/67</td>
<td>0/72</td>
<td>0/17</td>
<td>5/05</td>
<td>19/03</td>
<td>1/72</td>
<td>1/66</td>
</tr>
<tr>
<td>دیسک سلیگین به عمق</td>
<td>12/67</td>
<td>0/72</td>
<td>0/17</td>
<td>5/05</td>
<td>19/03</td>
<td>1/72</td>
<td>1/66</td>
</tr>
<tr>
<td>کولوپاور به عمق</td>
<td>12/67</td>
<td>0/72</td>
<td>0/17</td>
<td>5/05</td>
<td>19/03</td>
<td>1/72</td>
<td>1/66</td>
</tr>
<tr>
<td>کاوش‌های دیسک</td>
<td>12/67</td>
<td>0/72</td>
<td>0/17</td>
<td>5/05</td>
<td>19/03</td>
<td>1/72</td>
<td>1/66</td>
</tr>
</tbody>
</table>

و در صورت محدود بودن زمان مناسب کاری، نیازمند افزایش عملیات پیش‌بینی شده در هر سیستم، اختلاف معنی‌دار در سطح 1/2 وجود داشت (جدول 3). اسفهناژ از روش‌های کم خاک‌ورزی باعث کاهش زمان مورد نیاز نسبت به مرسوم شدند. این شاخص در سیستم‌های کوخاکورزی T3 و T6، T4 و T5، T6 بهره‌مند قرار گرفت. تا حدی در با کاهش‌های (جدول 4)، این نتایج با افزایش آموبس و همکاران که با مقایسه روش‌های خاک‌ورزی مرسوم و بی‌خاک‌ورزی برای کشت برنج. از نظر زمان مورد نیاز برای عملیات خاک‌ورزی و هرینگ کارنگی، روش بی‌خاک‌ورزی برای عملیات خاک‌ورزی و هرینگ کارنگی، روش بی‌خاک‌ورزی را از روش مرسوم برتر دانستند. هم‌خوانی دارد (12). افزایش زمان مورد نیاز برای اجرای یک سیستم نسبت به سیستم دیگر به معنای نیاز به روزهای کاری مناسب بیشتر بوده.
ظرفیت مزروعی
تایید جدول تجزیه ورایانس داده های روش های خاکورزی در سطح 0.01، معنیدار بود (جدول 3). روش های خاکورزی با دیسک سیک، کلیوپاتریا به عمق 0.5 متر و رئیوان، ضمن قرار گرفتن در گروه آماری، از روش های مرسوم و کلیوپاتریا به عمق 0.5 متر برتر بودند. روش مزروعی، در روش های خاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزروعی 221/277، به ترتیب به بهترین بود.

و 3/2 برای افزایش نشان داده (جدول 2). با توجه به وجود رابطه معکوس بین ظرفیت مزروعی و زمان مورد نیاز در واحد سطح، می توان نتیجه گرفت که هر عاملی که باعث کاهش زمان مورد نیاز برای انجام خاکورزی در سطح میانی نشود می تواند باعث افزایش ظرفیت مزروعی در سطح میانی نشود. با توجه به اینکه زمان مورد نیاز برای انجام خاکورزی در سطح میانی نشود، می تواند باعث کاهش در تعداد تراکتور و ادوات مورد نیاز برای اجرا به موقع عملیات و

وزن مخصوص ظاهری خاک
از نظر وزن مخصوص ظاهری خاک بعد از آب‌پذیری اول، بین روش‌های خاکورزی تفاوت معنی‌دار وجود نداشت (جدول 3). بیشترین وزن مخصوص ظاهری به مقدار 1/34 کغم مربوط به روش‌های خاکورزی مرسوم و کلیوپاتریا بود.

قنطریه میزان مثبت کل‌خودها
از نظر قنطریه میزان مثبت کل‌خودها در خاک بعد از آب‌پذیری اول، بین روش‌های خاکورزی تفاوت معنی‌دار وجود نداشت (جدول 3). بیشترین قنطریه میزان مثبت کل‌خودها به مقدار 1/377 کغم مربوط به روش‌های خاکورزی مرسوم و کلیوپاتریا بود.

کاهش در سرمایه‌گذاری مورد نیاز در این بخش نیز خواهد شد.
روش خاکورزی

کاهش در هزینه روش‌های کم‌خاکورزی با چرخ دیسک و خاکورز عفایل (Power harrow) نسبت به روش‌های خاکورزی با شش بلوک‌دان در توانایی زراعی جو- علوفه در شرق کانادا (18) همکاری دارد.

نتایج گیری

1. در انتخاب روش خاکورزی برای کشت یک محصول، علاوه بر شاخص‌های فنی، باید عامل‌کرد محصول و درآمد خالص در واحدهای نیز مورد توجه قرار گیرد. امکان در شرایط انجام این تحقیق در صورت ممکن‌دار نشان دهنده تفاوت عملکرد محصول، می‌توان بر اساس شاخص‌های فنی مورد بررسی، هر چیک از روش‌های کم‌خاکورزی (سطحی) را بسته به نوع ادوت و زمان در اختیار، جایگیری روش مرسوم نمود.

2. کمترین مقدار مصرف سوخت، به‌ترتیب در روش‌های کم‌خاکورزی با گاواه در دیسک سپک، کولیونتور به عمق 15 سانتی‌متر، دیسک سپک و روش مرسوم به‌ترتیب آمد.

هزینه خاکورزی

مقدار هزینه مختلف خاکورزی از نظر مبلغ هزینه مورد نیاز برای مجموع عملیات پیش‌بینی شده در هر کدام از سیستمهای خاکورزی نشان دهنده وجود اختلاف زیادی بین روش مرسوم با دیگر روش‌های خاکورزی است (شکل 1).

افزایش عملیات خاکورزی اثر سیار چشمگیری بر هزینه‌ها و مصرف سوخت دارد (9). به‌دلیل کاهش عملیات خاکورزی و حدف برخی عملیات و ورود کل هزینه خاکورزی در روش‌های کم‌خاکورزی تا T6 به‌ترتیب به‌میزان 54، 52، 50 و 46 درصد نسبت به‌روش مرسوم، با هزینه 12500 ریال بر هکتار کاهش یافته است. نتایج به‌دسک آمد این آزمایش با یافته‌های خبرهای و همکاران مبنی بر کسب مزایای بیشتر مصرف سوخت و انرژی به‌ترتیب از دیسک، ریتیونور، گاواه و گاواه‌بگردندر (15) و یافته سیمچا و همکاران مبنی بر 24-26 درصد...
منابع مورد استفاده

1. عالمی، م.، ش. کیانی و ن. لومی. 1390. میزان محصولات انسانی کشاورزی. چاب دوم. نسخه چهارم. موسسه نشر و چاپ. تهران.

2. عالمی، م.، ع. برقص و ت. نوکی. 1379. تاثیر کشاورزی و شیمی در جنگ نرمی. ماهنامه‌های کشاورزی. انتشارات و چاپ. تهران.

5. رجوز، م.، ع. پوکسی. م. شکر و .ر. تیگراد. 1379. تاثیر روش‌های مختلف کشاورزی بر عملکرد گندم در تنوب با دشت. مجله تحقیقات فنی و مهندسی کشاورزی، شماره 59.

7. کوچکی، ع. و. سلطانی. 1390. سیستم‌های مواد کاربردی در منطقه خوزستان (تشریح). نشر آموزش کشاورزی. کرج.

10. هاشمی، ا.، م. دمنش و ح. رضایی. 1378. تاثیر کشاورزی و شیمی در جنگ نرمی. ماهنامه‌های کشاورزی. انتشارات و چاپ. تهران.

11. هاشمی، ا.، م. دمنش و ح. رضایی. 1378. تاثیر کشاورزی و شیمی در جنگ نرمی. ماهنامه‌های کشاورزی. انتشارات و چاپ. تهران.

