طرح‌سازی، ساخت و استفاده گشتاور سنج با حسگر لیزری به منظور بررسی جریان جرمی علوفه سیلوی در چاه‌های ناصر شاه‌مرایی* و سعیدت کامگار1

(تاریخ دریافت: 23/10/1387؛ تاریخ پذیرش: 1387/8)

چکیده

از مهم‌ترین حلقه‌های تشکیل‌دهنده‌ی زنجیره‌ی کشاورزی فقیه تهیه علوفه متحمل در کشور می‌باشد. در حالی که اخیراً در کشور ما به کشت طرح‌‌های خاصی شده است. این طرح شامل گزارش‌گیری و سنجش علوفه‌ای در حیطه محصولات علوفه‌ای از میان بهره‌برداری مطالعه‌های جنگلی سنجش فله‌های محصول در حال گزارش در نظر گرفته و در این مطالعه کریم می‌باشد از حسگر ضریبی به دلایل قرنیه‌ای، حسگر کشاورزی انجام مطالعه می‌باشد. روش‌های موجود مطالعه و آزمایش قرار گرفت. گشتاور سنجی ساخته شده از نوع میلهٔ پیچ‌پذید که به کمک دو حسگر لیزری مقدار پیچش محور را به صورت پر شدن پر شدن محور مورد نظر همگام نمودن داده‌ها در انتقال به رایانه در مداد واسط دیجیتالی استفاده شد. برای واسطه‌ی گشتاور سنج مذکور با جریان جرمی می‌باشد. روش‌های موجود مشخص و همگون از روش‌ها را با سرعت مورد استفاده وارد چنین جرمی می‌کنید. به کار رفته و سرعت در این مطالعه به‌کار رفته و سرعت در این مطالعه به‌کار رفته. چنین آزمایش‌ها برای سرعت جرمی در و در این مطالعه به‌کار رفته و سرعت در این مطالعه به‌کار رفته. چنین آزمایش‌ها برای سرعت جرمی در و در این مطالعه به‌کار رفته.

واژه‌های کلیدی: گشتاورسنج، جرمی، حسگر لیزری، جریان، میزان مواد. دیدگاه سیلوی

سیلوکردن و استفاده دام است(2). لذا به نظر می‌رسد اهمیت ذرت در این باره بوده و در کشورهای غربی و اصلی و در کشورهای غربی به منبع اولیه پروریت‌های اولیه می‌باشد. در حالی که اخیراً این در کشور ما توجه‌هایی به کشت ذرت شده است، به طوری که در سال‌های 1381-1380 مقدار ذرت به 200 هزار هکتار رسید(1). در مورد محصولات علوفه‌ای مثل ذرت و گیاهان میوه به عملکرد بهبودی بالا و حالت بینم‌هایی باعث شده است.

مقدمه

امروزه با توسعه کشاورزی و استانداردهای مورد نظر حساسیت به منابع سیلوی به سیلوکردن و استفاده دام است(2). لذا به نظر می‌رسد اهمیت ذرت در این باره بوده و در کشورهای غربی و اصلی و در کشورهای غربی به منبع اولیه پروریت‌های اولیه می‌باشد. در حالی که اخیراً این در کشور ما توجه‌هایی به کشت ذرت شده است، به طوری که در سال‌های 1381-1380 مقدار ذرت به 200 هزار هکتار رسید(1). در مورد محصولات علوفه‌ای مثل ذرت و گیاهان میوه به عملکرد بهبودی بالا و حالت بینم‌هایی باعث شده است.

**1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادار مکانیک مهندسی کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز
2. kamgar@shirazu.ac.ir
3. مسئول مکانیک، بست اکولوژیکی:**
پیچش ت ناچیز را می‌سرد می‌سازد(۱۰). هدف از انجام این تحقیق طراحی و ساخت دستگاه به منظور اندازه‌گیری گشتاور انتقال و نرمالسیس بی‌های رابطه‌ای بین جرایم جرمی ذرت عکس‌های و توان شبده بود. بخش (۸) ساخت نوعی گشتاورسنج پیشنهاد نمود. این وسیله محوری بود که کرنش سنج‌ها روی آن نصب شده بودند. انتقال سیگنال از کرنش سنج‌ها از طریق شانه‌های که روی محور قرار داشت صورت می‌گرفت.

(۸) نوع گشتاورسنج ساخت که از طریق اندازه‌گیری زاویه پیچش کار می‌کرد. پراون (۸) گشتاور سنجی برای اندازه‌گیری گشتاور در محورهای دور ساخت. گشتاورسنج مذکور که از محور پیچشی را با استفاده از دو حسگر مغناطیسی در ابتدای و انتهای محور و محاسبه فاصله بیانشی ارسالی از این دو حسگر کار می‌کرد. چیمتین و همکاران (۱۱) مهندس مثل دیماندو، مدل‌های تعیین گشتاور از نوع گشتاورسنج، روی میله پیچشی که مکانیکی احتراق، سیگنال‌های نوری، حسگر‌های خزاین، نسبة سیگنال نوسان، و روش‌های تعیین عیان و محور اتوکسیک متعلکه است. در عمل پیشتر از دو روش سنجش مقدار پیچش مهندس هزارنگه می‌بود. مدل‌های تعیین گشتاورسنج از نوع کرنش سنج بند در سطح و سیستم استفاده شده است ولی برای انتقال قدرت به محور خریدان و تحریک پل کرنش سنج و به دست آمده کیفیت‌های خریدان معمولاً به تجربه‌ها اضافه می‌شوند. ترانسفرمرهای خریدار و کلاسیک تهویه شده در زمینه‌های کیفیتی که در محیط کنار گیرنده بی‌هوش در خط ریزی‌ها مکانیکی که در آن‌ها از داخل الکترو‌مغناطیسی پشتون استفاده از محور محاسبه مقدار پیچش دارای مزیت‌های ویژه‌ای است. اول این احتمالیت به تعیین محل دقیق و نقطه نصب حسگر کرنش سنج است و مهمتر این که جلوگیری گشتاور به کار رفته در طول محور جمع می‌شود. لذا از تغییرات محلی در خواص گریز و بی‌های نیل‌سیس محور کاهش می‌ایسته و از طرف دیگر باید چنین پیچش آمده در زمانی که حرکت‌های به انتقال محور به همین مقاومت می‌شودند طراحی انتخاب می‌شود. ترانسفرمرهای گشتاور غیرممکن باعث یادآوری به حلقه‌های نیل‌سیس را می‌سازند(۱۲). امروزه نفوذ به فشار بی‌هوش و رو هر کدام از دیسک‌ها از آنجا که در هنگام پیشگیری در طول محور برای بری سیلو کردن آن عموماً از ماهیان خارج شده است. لذا به نظر می‌رسد این توان مصرف ماهیان و جرایم جرمی عکس‌های ورودی به چپر رابطه‌ای وجود داشته باشد. برای یکند این رابطه‌ای باید لحظه توان مصرف ماهیان را تابع نمود.

راهین منظر دستگاه گشتاور سنج دیجیتالی ساخته شد که به‌طور لحظه به چپر گشتاور و دور محور را گزارش نماید. برای ساختن و سیستمیک به منظور اندازه‌گیری گشتاور روش‌های متعادل ارائه شده هم که شامل استفاده از روش‌های مکانیکی مثل دیماندو، مدل‌های تعیین گشتاور از نوع گشتاورسنج، روی میله پیچشی که مکانیکی احتراق، سیگنال‌های نوری، حسگر‌های خزاین، نسبة سیگنال نوسان، و روش‌های تعیین عیان و محور اتوکسیک متعلکه است. در عمل پیشتر از دو روش سنجش مقدار پیچش مهندس هزارنگه می‌بود. مدل‌های تعیین گشتاورسنج از نوع کرنش سنج بند در سطح و سیستم استفاده شده است ولی برای انتقال قدرت به محور خریدان و تحریک پل کرنش سنج و به دست آمده کیفیت‌های خریدان معمولاً به تجربه‌ها اضافه می‌شوند. ترانسفرمرهای خریدار و کلاسیک تهویه شده در زمینه‌های کیفیتی که در محیط کنار گیرنده بی‌هوش در خط ریزی‌ها مکانیکی که در آن‌ها از داخل الکترو‌مغناطیسی پشتون استفاده از محور محاسبه مقدار پیچش دارای مزیت‌های ویژه‌ای است. اول این احتمالیت به تعیین محل دقیق و نقطه نصب حسگر کرنش سنج است و مهمتر این که جلوگیری گشتاور به کار رفته در طول محور جمع می‌شود. لذا از تغییرات محلی در خواص گریز و بی‌های نیل‌سیس محور کاهش می‌ایسته و از طرف دیگر باید چنین پیچش آمده در زمانی که حرکت‌های به انتقال محور به همین مقاومت می‌شودند طراحی انتخاب می‌شود. ترانسفرمرهای گشتاور غیرممکن باعث یادآوری به حلقه‌های نیل‌سیس را می‌سازند(۱۲). امروزه نفوذ به فشار بی‌هوش و رو هر کدام از دیسک‌ها
طرح 1: شماتیکی از قرارگیری حسگر لیزری و مدار واسط دیجیتالی آن

شکافی در جهت شعاع و نزدیک به محیط انجام شد. دو کرنش برای محاسبه توان مصرفی از معادله زیر استفاده شد (3). با تقسیم نرخ توان به دست آمده برای هر دور چرخش محور به سرعت زاویهای محور در همان دور مقدار گشتاور نیز قابل دستیابی است:

\[P = \frac{\pi \times 0.9 R^4 \omega}{V} \]

در این رابطه:
- \(P \) توان (W)
- \(\omega \) زاویه پیچش (rad)
- \(G \) مدول استیسیون در بریش (Pa)
- \(R \) شعاع محور (m)
- \(\omega \) سرعت زاویهای دوران محور (rad/s)
- \(L \) طول محور انتقال توان بین دیسک (m)

مراحل طراحی و ساخت اجزای تشکیل دهنده گشتاورسنج

اف) محور پیچشی

ANSYS در ابتدا شبیهسازی محور انتقال توان در نرم افزار انجام گرفت و بر اساس آن و عکس العمل نمونه در محدوده
تهیه بیت تحریک فلای فستا را به قسمت دوم می‌فرستاد (شکل 3). قسمت دوم مدار به وضوح این آمده که سرعت مکانیکی در انتقال داده‌ها به گریپپر هست (شکل 4) با این‌حال را از تقویت کننده جریان که پل ارتباطی قسمت دیگر است دریافت کرد و با استفاده از MAX232 بطور دوباره به کامپیوتر رسال می‌کرد. برنامه‌ای که به زبان ویژوال پی‌اسک نوشته شد کار دریافت و ذخیره داده‌ها را انجام می‌داد. این داده‌ها به صورت زوج‌های گشتاور و دور ذخیره می‌شوند.

واسنجی دستگاه

برای پیدا کردن رابطه بین توان مصرفی و گریپپر جرمی موارد قانونی (درجه سیستمی) در چارخ، لازم بود توان مصرفی را در جنب گریپپر جرمی مقایسه بدهد. این کار می‌بایست عملکرد چپ‌را در شرایط آزمایشگاه شیب‌سازی نمو به گونه‌ای که پچ و سیستم محیطی روز را در گرمی همگون و مشخص حرکت کنند و از طریق مشاهده زیراندازه شده، عدد متوسطی برای ان جرمی بدست آورد. برای استفاده از این مهین با ثابت تغییرات چپ و راست با سرعت ثابت از زیر آن اقدام به ثبت داده‌ها شد (شکل 3). عملکرد سیستم به این نحو بود که درشهای کپناهجا (از نظر قانون و زن) و نتایج اصلی بیان‌بردار با سرعت ثابت و قابل‌توجه فعالیت قرار گرفت و برای استفاده روز را در محدوده مستقیر (40 سانتی‌متر) به لحاظ استادی روز را به توجه ستود. مقدار می‌شود (شکل 2) و با سرعت ثابت از زمان مماین خودش، که استادی لی در حال کود ابعاد می‌کرد. زیر مذکور که توسط موتور DC محکم می‌کرد، روز چیدمانی به طول 1/5 متر را 3 متر جابجا می‌بود. میس داده‌های استادی و اندازه‌گیری‌های حذف و داده‌های 1 متر و سرعت می‌ترود و قرار گرفت. آزمایش به‌طور بی‌پایان با جرمی 3/7 و 7 (کیلوگرم بر ثانیه) و برای سرعت مکانیک می‌تواند در شناخت دنباله 20.1 و 23 که در دنباله 1 متر جلو بیشترین سرعت مکانیک را دارد (انجام می‌کرد). آزمایش با سه تکرار و در نهایت 37 آزمایش انجام تغییرات گشتاور در چاره‌ای دو روزه، جنس و ابعاد محور انتقال توان (محور پیچشی) انتخاب شد که مشخصات آن به قرار زیر بود:

شیوع محور (pto) = 20/0.045 متر

فاصله طولی محاسبه پیچش (L) = 1/0 مت

جنس قطعت: 45٪ پس از ساخته، محور مذکور از یک طرف به محور توامده (محور PTO) تراکتور منفصل شد و طرف دیگر آن به محور هزارآخور جوی کاری شد (شکل 2). برای جلوگیری از ارزش، انتهای محور از طریق بلبینگ رابطه به مالبند ثابت شده تراکتور حالت شد. به نحوی که هیچ نیروی زمینی از طرف بلبینگ به محور وارد نمی‌شود و آن محور فقط دور و گشتاور را مستقل می‌کرد. ورود محور دیگر به مکانگر بلبینگ دیسک‌ها محکم شدند. محور گردان چپ به محار محور پیچشی منفصل شد و توان را به آن منتقل می‌کرد (شکل 2). سپس دو دیسک به فاصله معینی روی محور ثابت گردید و روی هر دیسک شبیه با یک جسم سیستم محور و چرخ دیسک، شبایا بسیار به باسیلار شدن حسگر می‌گردید.

ب) مدار واسط دیجیتالی

روی هر دیسک یک فستونه پیچی‌بندی‌شده (به دلیل بایاس کردن مطمئن و نیز اثر بودن در مقابل تغییرات نسبت مولکولی و گرد) خاص قرار داشت که با سیستم شکاف دیسک به آن پرتو لیزر به‌گیرنده حساس اتصالی کرد و سپس یا بایاس سیستم می‌شود. مدار واسط دیجیتالی به قسمت اندازه‌گیری شده است. سمت اول شال پر کردن شماره پنک میکروکنترولر که بر اساس سیگنال ارسالی از حسگر اول پر کردن و بر اساس سیگنال ارسالی از حسگر دوم خاموش می‌شود. سیگنال‌های ارسالی از سنسورها به پایه‌های ارسالی 5 و 6 میکروکنترولر وارد شده و تایم‌ریزه و ارسال خاموش می‌کند. داده‌ها به صورت 8 بیتی از طریق سرور ارسال می‌شود. به نحوی که سه بایت را که شامل هستش بیت پایینی، هستش بیت بالایی و
طراحی، ساخت و واسطی گشناور سنج با حسگر لیزری به منظور بررسی...

شکل 2. محور پیچشی مورد استفاده

شکل 3. آنتن محور پیچشی از یک طرف به تکتور و از طرف دیگر به چاپر

شکل 4. مدار واسط دیجیتالی. در این مدار سیگنال‌های ارسالی از سنسورها به پایه‌های شماره 5 و 6 وارد شدند و تاپر را
روشن و خاموش می‌کنند. داده‌ها به صورت 8 پیتی از پورت صفر ارسال می‌شود.
شکل 5. مدار تبدیل داده‌ها از موازی به سری. داده‌ها بعد از تقسیم چیزیان توسط بافر وارد پورت شماره ۲ شده و به داده‌های سری تبدیل می‌شوند و سپس از پایه‌های ۱۰ و ۱۱ خارج شده و به نرم‌افزار MAX232 می‌رonden.

شکل ۶. ریل کالیبراسیون، همانطور که در شکل نشان داده شده است، دو رادیف ذرت به صورت ایستاده و در شرایط کاملاً شیبی مزرعه رفیق ریل قرار گرفته و با سرعتی ثابت وارد دهانه چاپر می‌شود.

گرفت. در تمام آزمایش‌ها موان رطوبت بر مبنای نر از ۶۲ تا ۶۸ نا درصد بود. مشخصات تراکتور و چاپر مورد استفاده به شرح زیر بود:

الف) تراکتور:
- جاندار: ۳۱۴۰
- پژو: ۱۵۸۰

ب) چاپر:
- ارتفاع قطعه: ۳۰ سانتی‌متر
نتایج
پس از استنتاج دستگاه تناوبی به شرح زیر حاصل گردید:
الف) بررسی خروجی حسگر نسبت به تغییرات در دیس
جرم مواد و سرعت مکشک دهانه تنظیم
با اجرای برنامه تکه شده به منظور اندازه‌گیری کشتنویس، رایانه
شروع به ذخیره‌داده می‌کرد. داده‌هایی شامل دو قسمت زمان
ثبت شده برای اکثریت دیسک‌ها قبل از بارگیری و جریان
سرعت دوران محور در آن هالت بود. این هالت به دو زمان
دکمه شروع، توسط کاربر داده‌ها ذخیره می‌شده تا زمانی که کاربر
دکمه پایان را در رایانه کلید کند. به این ترتیب فاصله از داده‌ها
قابل خوشنویسی بود یا به شکل ساده آنها نمودار نمود.

پیش از استنتاج دستگاه تناوبی به شرح زیر حاصل گردید:
الف) بررسی خروجی حسگر نسبت به تغییرات در دیس
جرم مواد و سرعت مکشک دهانه تنظیم
با اجرای برنامه تکه شده به منظور اندازه‌گیری کشتنویس، رایانه
شروع به ذخیره‌داده می‌کرد. داده‌هایی شامل دو قسمت زمان
ثبت شده برای اکثریت دیسک‌ها قبل از بارگیری و جریان
سرعت دوران محور در آن هالت بود. این هالت به دو زمان
دکمه شروع، توسط کاربر داده‌ها ذخیره می‌شده تا زمانی که کاربر
دکمه پایان را در رایانه کلید کند. به این ترتیب فاصله از داده‌ها
قابل خوشنویسی بود یا به شکل ساده آنها نمودار نمود.

نمودار ۱. درصدی از تکرارهای مؤثر در پایت پرآورش تایمر در دنه‌های یک

نمودار ۲. درصدی از تکرارهای مؤثر در پایت پرآورش تایمر در دنه دو

جریان‌های جرمی بالاتر را توجه می‌کند. هر چند که با قیاس دندان‌های مختلف در یک جریان جرمی خاص نمی‌توان پک رابطه مستقیم برای آن بیان کرد. ب) روند تغییرات گستارن به تغییرات دی‌بی‌جرمی موارد و سرعت مکش دهانه تغییرهای باعثالدنشه‌های مختلف و بررسی آن در جریان‌های یک و دو بروند پیشر شده است. با افزایش دنه چای و کاهش سرعت خطی ورود مواد به محفظه که یک جریان جرمی مشخص حضور بوته در دهانه ورودی برای برده شدن پیشر می‌شوند. این حضور ترکیبی تری به صرف توان پیشری براش و سایر عمليات دارد و این افزایش درصد پرند در دنه یک و دو در
نمودار ۳-۲ درصدی از تکرارهای مؤثر در پایت پردازش تایمر در دندانه‌ه‌

جدول ۱- نمایش وضعیت داده‌ها در دست پایی به حدود استاندارده‌ی میانگین گشتاور در دندانه و جریان جرمی مختلف

<table>
<thead>
<tr>
<th>محاسبه‌ی اعداد</th>
<th>مقادیر</th>
<th>تعداد داده‌ه</th>
<th>احراز از معیار</th>
<th>خطای استاندارده‌</th>
<th>جریان جرمی</th>
<th>میانگین داده‌</th>
<th>ردیج از اعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸۸±۳۳/۵</td>
<td>۲/۱/۰۹۹۲۲</td>
<td>۲۸</td>
<td>۹/۴</td>
<td>۱۹</td>
<td>۳</td>
<td>۱۴۸</td>
<td>۳</td>
</tr>
<tr>
<td>۲۹۶±۲۷/۵</td>
<td>۲/۱/۰۹۹۱۵</td>
<td>۱۷</td>
<td>۲/۱۷</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۲۴۶</td>
<td>۵</td>
</tr>
<tr>
<td>۳۷۶±۲۳/۴</td>
<td>۲/۱/۰۹۰۲۴</td>
<td>۱۹</td>
<td>۱۸/۵</td>
<td>۲۰</td>
<td>۸۲</td>
<td>۳۸۶</td>
<td>۷</td>
</tr>
<tr>
<td>۱۷۹±۲۱/۴</td>
<td>۲/۱/۰۹۰۱۶</td>
<td>۱۷</td>
<td>۱/۰</td>
<td>۸</td>
<td>۱۷۹</td>
<td>۳</td>
<td>۱۸</td>
</tr>
<tr>
<td>۳۳۱±۲۵/۷</td>
<td>۲/۱/۰۹۱۱۶</td>
<td>۱۷</td>
<td>۲/۱۷</td>
<td>۱۸</td>
<td>۸۶</td>
<td>۳۳۱</td>
<td>۵</td>
</tr>
<tr>
<td>۴۲۳±۲۵/۳</td>
<td>۲/۱/۰۹۰۲۴</td>
<td>۱۹</td>
<td>۱۲/۰</td>
<td>۲۰</td>
<td>۲۴۲</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۲۰۴±۲۵/۳</td>
<td>۲/۱/۰۹۱۱۶</td>
<td>۱۷</td>
<td>۱/۰</td>
<td>۸</td>
<td>۲۰۶</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۱۸۸±۲۳/۶</td>
<td>۲/۱/۰۹۱۱۵</td>
<td>۱۷</td>
<td>۲/۱۴</td>
<td>۱۸</td>
<td>۹۱</td>
<td>۳۸۸</td>
<td>۵</td>
</tr>
<tr>
<td>۹۱±۲۳/۷</td>
<td>۲/۱/۰۹۱۱۵</td>
<td>۱۷</td>
<td>۲/۱۲/۳</td>
<td>۱۸</td>
<td>۵۴</td>
<td>۹۱</td>
<td>۷</td>
</tr>
</tbody>
</table>

نمودار ۲- مختلی و استاندارد برای درست‌گذار در دندانه
نمودار ۵ متوحه و استنگی برای دستگاه در دنده.

نمودار ۶ متحنی و استنگی برای دستگاه در دنده.

ج) متحنی و استنگی

برای این سری داده‌ها، میانگین برای این سری داده‌ها (Conf. level) به دست آمده است. همچنین از جدول ۱ مشخص است برای دنده پیک و در تکرارهای که از جریان جرمی ۳ کیلوگرم بر ثانیه اخذ شده است، میانگین (Mean) مقدار گشتاور از این میانگین ۲۸ (Standard deviation) نیوتن/میلی‌سانتی‌متر اضافه شده است. حالا با دیدن نمودار بودن توزیع به کمک جدول T-student (Conf. level) در سطح اطمینان (۹۵%) بررسی کنیم حدود اطمینان از میانگین به دست آمده از داده‌ها (Conf. limit).
طراحی، ساخت و استند گشتاور سنج با حسگر لیزری به منظور بررسی ...