تحلیل پایداری افزایش سطح زیر کشت کلزا در دشت نمدان استان فارس:
کاربرد مدل برنامه‌ریزی ریاضی مثبت

ابوالفضل محسنی و منصور زیباپور

(تاریخ دریافت: ۱۳۸۷/۰۶/۲۵، تاریخ پذیرش: ۱۳۸۸/۱۰/۳۰)

چکیده
به این علت که سیاست‌های کشاورزی مختلفی در مورد قرار داد، اثر بالقوه سیاست‌ها بایستی قابل حل
تربیتی، به طور کلی و با در نظر گرفتن ارزش ویژه کشت حنیف کله در سطح مزرعه‌های فراوان، کاربرد
از ارزیابی اختصاص بافت که این کلزا باشد. یکی از محبوب‌ترین مزایای آن، بزرگی و طولانی‌الحیات.

مقدمه
روغن خوراکی از جمله اقلام غذایی است که از طریق واردات
تأمل می‌شود و هر سال به‌钇ش از منابع کمیاب ارژی به این
کلا اختصاص می‌پذیرد. به عوامل مشابه در سال ۱۳۷۹ بایگان
می‌باشد. روغن خوراکی که در محدوده ۱۲۰۰ تا ۱۵۰۰ برای مورد
و نهایت حدود ۸ درصد از نیاز کشور به روغن از منابع داخلی
تأمل شده است. افزایش مصرف داخلی خوراکی به‌روش تولید روغن
خوراکی می‌تواند راهکار مناسب برای صرفه‌جویی در منابع

1 به ترتیب دانشجوی سابق کارشناسی ارشد و استاد افتاده کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
2 zibaei@shirazu.ac.ir

773
استان مازندران با تولید ۶۹٫۹۱۹ تن قرار دارد. پس از این دور استان که کلارا اکثر از آنها به‌صورت درم کشت می‌شود، استان فارس با تولید ۹۲۵۹۰۰ تن در دل مالیه سرم قرار دارد. البته اگر فقط کشت کلارا را در نظر بگیریم، استان فارس رتبه نخست را در اختیار خود داشته. همچنین استان فارس با تولید ۱۹۲۰۰ کیلوگرم در هزارالتین عملکرد، را در هر استانی که در سال ۱۳۸۵ به‌طور اختصاصی دارد است (۴). یا اینکه چگونه جاده ریزی شد و چه طرح‌های محصول در سرویس کشتی به تأخیر پر بگری کشت، درآمد زراعی و میزان استفاده از منابع آب و خوراک کاشته است.

در حال حاضر مدل‌های برنامه‌ریزی ریاضی تبدیل به یک وسیله مهم و به‌کارگیری معمول در حل مسائل سیاست‌کشی کشاورزی شده‌اند. یک مدل سیستم‌های برنامه‌ریزی ریاضی در حل مسائل سیاست‌کشی کشاورزی توانایی این مدل‌ها در بررسی جزئی‌تر تأثیر سیاست‌ها در سطح مزرعه‌ای می‌باشد (۲۱).

مدل‌های برنامه‌ریزی ریاضی سیستم‌های نوین (NMP) (Normative Mathematical Progamming) مدل‌های بهینه‌سازی، مدل‌های برنامه‌ریزی ریاضی مثبت (PMP) و مدل‌های برنامه‌ریزی ریاضی اقتصادسنجی (EMP) (Econometrics Mathematical Progamming) می‌باشد (۵)。

در ۵۵ سال است که در اقتصاد کشاورزی مورد استفاده قرار می‌گیرند. در این نوع مدل‌ها یک جواب بهینه از میان جواب‌های ممکن با استفاده از قوانین تصمیم‌گیری قبل تعیین شده انتخاب می‌شود (۲)。

در این نوع مدل‌ها پارامترهای تابع هدف و محدودیت‌ها بر اساس داده‌های تهیه کننده محصول به سیستم مدل‌سازی کاهش یافته و مدل‌های لازم برای این اسکات، اطلاعات به‌نیاپیا بی‌ربط سیستم به سیستم کافی است. با توجه به اینکه استفاده مدل‌های NMP در این است که تحلیل تربیت کشاورزی، جواب‌های سال پایه باشد (۱۷).

همچنین تکنیک مناسب ایجاد‌های کارب منبع موجود در آن، موجب نتایج آن بازارهای جهانی روند شده است (۱). علاوه بر ضرورت تأمین روش‌های دیگر نیاز جامعه از منابع داخلی، پارامتر تأمین عوامل ملایم‌تر و مناسب‌تر نیاز می‌گذارد. این وزارت جدای کشاورزی، معرفی کاره‌ای که اگر کشت زراعی را به‌عنوان یک سیاست مناسب توجه داشت، اهم این ملاحظات به‌قرار زیر است (۳).

۱- می‌توان کلارا را در تناوب با گندم و حدود کاشت و باعث کاهش پیمانه‌ها، افزایش و عفونت‌های مرگ غلظ در شد.
۲- جنگل‌های محصولی شتوی می‌باشد، بر خلاف سایر دانهای روغنی در رقابت با محصولات برنامه‌ریزی بهبود قرار نمی‌گیرد.
۳- آن‌ها تأثیر مثبت در میزان ماده آمی اکس کشاورزی و در تأمین علوفه مورد نیاز دام‌زایین نیز می‌باشد است.
۴- زمینه‌که اثرات تأثیر روغن کشی خالی است این گیاه برداشت می‌شود.
۵- می‌توان یک کلارا به‌عنوان از قوام زودرس، مشکلات ناشی از هیزم‌پاری آبیاری محصولات بهار را حل نمود. در دو دهه اخیر جهت وارد کردن کلارا به کشاورزی تحقیقات به‌نژادی و بی‌بزرگی متعددی در رابطه با این محصول صورت گرفته است. تأثیر این تحقیقات، حکایت از آن دارد که تهیه کردن کلارا در ایران امکان‌پذیر است و می‌تواند در کاهش وابستگی به خارج در زیمن روغن کافی باشد، مؤثر باشد. با توجه به این یافته‌ها، در برنامه‌بندها سیستم تأمین‌سازی اقتصادی و اجتماعی کشور، پیشنهادات شده است که سطح زمین کشت این محصول به

۷۶۷ حزار هکتار افزایش یابد (۱)。

در عمل تولید محصول کلارا در کشور از ۱۲۵/۶۵ در سال ۱۳۸۷ به ۳۱۵/۶۹۹ در سال ۱۳۸۵ رشد تحت‌الیکی است که گویا به رشد متوسطی معادل ۹/۵۶ درصد در سال است. در مبانی استک‌های کشور در سال ۱۳۸۵ استان در استان کلستان با تولید ۱۱۹/۵۵۵ می‌شود و به‌بیشتر تولید را داشته است. پس از استان کلستان نیز

۷۷۴
تحلیل پیامدهای افزایش سطح زیر کشت کارا در دشت تعداد استان فارس:

نتایج هجیپری که محدودیتهای سنگینش دیکته می‌کند، را به‌دست می‌دهند. به‌ویژه در مدل‌های PMP، برای دسترسی به PMP در مدل‌های PMP، برخی پارامترهای برای ارزیابی داده‌های مشاهده شده در سال پایه تعیین می‌شوند. بنابراین، PMP تضمین می‌کند که جواب‌های مدل‌های جواب‌های سال پایه باشند که این مسائل باعث محدودیت‌های سیاست‌های است. اولین پارامترهای که پایان‌دار مورد تعیین هزینه خیبرخوانی مربوط به ناحیه هدف‌های PMP مدل‌های اولیه PMP در نظر گرفتن هزینه درجه دوم صفر است و سپس این مسائل در هزینه PMP اندازه‌گیری می‌شود تا درجه آزادی این سنتی‌بندی هزینه خیبرخوانی مربوط به PMP مدل‌های اولیه PMP در نظر گرفتن هزینه درجه دوم صفر است و سپس این مسائل در هزینه PMP اندازه‌گیری می‌شود تا درجه آزادی این سنتی‌بندی

با این فرض تأثیرات هموگون اثرات نسبی به مقدار متفاوت مصرفی که مقدار متفاوت M

\[
\text{Max } Z = R'x - c'x \\
\text{Sub.to: } A x \leq B \ [\pi] \\
x \leq (x^0 + \epsilon) \ [\xi] \\
x \geq 0
\]

که در آن:

\[Z\] مقدار هدف که باشیت حداکثر شود

\[R\] برد درآمد (حاصل ضرب قیمت در عملکرد) محصولات

مواد و روش‌ها

مدل برنامه‌ریزی ریاضی مبتلا تحلیل سیاست‌های بر اساس مدل‌های تجویزی (Normative Models) که تأثیر فاکتوریهای میانجی، سطح موجود و فعالیت‌ها نشان می‌دهند. در حالی که این قابلیت نیست. در این حال، سنجش با اضافه‌کردن محدودیت‌های خیبرخوانی تیز چندان رضایت‌بخش نیست. مدل‌هایی که به‌همراه Dariy محدودیتهای اضافی را می‌گذارند، فقط یک مجموعه‌ای از
یک از محصولات

A: ماتریس ضرایب فنی

\(\beta \) و \(\pi \) به ترتیب بردار مجموع و متغیرهای دوگان (یا

B: فیشتهای‌سایه‌ای) این متاب

سطح فعالیت مشاهده هدف در سال پایه

\(\alpha \) در اعداد کوچک مثبت و متغیر دوگان

محصولات کالیبوسیون

زمانی که آب محصولات است و هدف تخصیص بهینه منابع آب

نهد دارد، چنین مدل‌های با دمای عدم تخصیص بهینه آب

از کارایی لازم برخوردار نمی‌باشند. بنابراین ضروری است که

استراتژی‌های آب‌یابی متفاوت برای هر محصول در نظر گرفته

شود. بنابراین این مسئله سطح آب‌یابی برای هر یک از

محصولات شماره آب‌یابی کمیل. آب‌یابی با \(\alpha \) نیاز آبی محصول,

\(\alpha\beta \) نیاز آبی محصول و آب‌یابی با \(\beta \) نیاز آبی گیاه

در نظر گرفته شده است. هر استراتژی آب‌یابی به‌صورت یک

فعالیت در مدل وارد می‌شود. بنابراین با توجه به وجود بینج

محصولات، مدل دارای 20 فعالیت می‌باشد. تمام فعالیت مشتمل

است بر نام محصول و شماره‌های که منعکس کننده استراتژی

آب‌یابی است. به عنوان مثال دو فعالیت کد 1 و گذشته \(\alpha \) هر

چندین دفع فعالیت هر دو مربوط به کد هستند. اما استراتژی

آب‌یابی آنها متفاوت است. بنابراین شماره، مقادیر آب مصرفی

کاسته شده و در نتیجه عملکرد نسبی عینی نسبت عملکرد فعال

به عملکرد بالقوه عینی عملکرد تحت شرایط آب‌یابی کامل

به (Ya)

\(\Psi \) کاسته شود.

برای محاسبه نسبت عملکرد فعال به عملکرد بالقوه از

رابطه زیرک به‌وسیله میبر و همکاران (19) پیشنهاد شده است.

\[\frac{Y_n}{\Psi} = \beta Y \times Y_p \]

\(\beta \) در آن:

\[Y_p = 1 - \beta Y \times Y_p \]

\(\beta \) ها به توجه به ارزو آب در کشاورزی و بحران انسانی:

Mهم و حیاتی و وجود خشکسالی‌های مناسب و نیاز به توجه به

اهمیت زمان در مورد این منبع، لازم است تا تخصیص این منبع

\[Y_p \]
جدول ۱ ضریب واکنش عملکرد به آب (۷۴) در کل دوره و شدد گیاه

<table>
<thead>
<tr>
<th>محصول</th>
<th>ضریب واکنش عملکرد به آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدس</td>
<td>۱/۱۵</td>
</tr>
<tr>
<td>جو</td>
<td>۱/۱۵</td>
</tr>
<tr>
<td>نخود</td>
<td>۱/۱۵</td>
</tr>
<tr>
<td>لویی</td>
<td>۱/۱۵</td>
</tr>
</tbody>
</table>

محاسبه: نشان شماره ۶۴. فالو

ضریب و اکتش عملکرد به آب

حساب تومان در هکتار.

در مراحل دوم مقدار PMP مقدار پایایی به‌دست آوردن یک نتایج هزینه متغیر غیرخطی مورد استفاده قرار می‌گیرد. معمولاً برای آسان‌سازی و مقدار دلایل از تابع نتایج دیگر، از نتایج هزینه متغیر درجه دوم زیر استفاده می‌گردد.

\[C^v = d'x + \left(x^q Q \right) \]

که در آن:

- هزینه متغیر
- \(C^v \)
- یک بردار \((n \times 1)\)
- منابع از پارامترهای مربوط به کاله‌های تابع
- \(Q \)
- متغیر غیرخطی با این شرط که هزینه متغیر تابع فعالیت‌ها با مجموعه‌های حساس‌سازی فعالیت‌ها \((c)\) و متغیر دوگان محدودیت کالیرایسون \(\lambda \) برای باشند، به‌دست می‌آید. نتایج پارامترهای نتایج هزینه باشد با شرط زیر محاسبه شوند:

\[MC^v = \frac{\partial C^v}{\partial x} = d + Qx - c + \lambda \]

در رابطه بالا، یک پایستی پارامتر برای دو به‌عنوان متغیر بودن \(Q \) پارامتر به‌زودی \(n+1 \) و به‌عنوان متغیر بودن \(Q \) پارامتر به‌زودی \(n+1 \) به‌عنوان متغیر تابع. در کل پایستی مقدار عددی \(n \) مقدار به‌زودی \(n \) به‌عنوان M

با استفاده از روابط بالا می‌توان کلیه عناصر بردار d ماتریس Q را به دست آورد. اما این روابط فقط عنصری به کمک شرایط مربوط به دوم برای تایب دهنی به وسیله صادق باشند. با توجه به این نکته ما می‌توانیم به کلیه عنصری مقادیری را انتخاب کنیم که رابطه Q باز باشد. بنابراین فرضیه یک ماتریس مناسب ماتریسی می‌باشد. بنابراین Q به علاوه ضریب یک ماتریس پایه مثلثی (L) و انتهای آن که کل ماتریس باسلامی است (L'). نتیجه حاصل ضریب یک ماتریس پایه مثلثی ماتریسی می‌باشد. بنابراین Q به علاوه ضریب یک ماتریس پایه مثلثی (L) و انتهای آن که کل ماتریس باسلامی است (L'). نتیجه حاصل ضریب یک ماتریس پایه مثلثی ماتریسی می‌باشد.

\[
Q = LL'
\]

برای مثل اگر M و Q بدین نشان داده شده. آنگاه بر اساس این روش تجربه چالسکی عنصری به صورت زیر می‌تواند یک روش باشد. اگر

\[
\begin{bmatrix}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{bmatrix} = \begin{bmatrix}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{bmatrix}
\]

برای بابند. سایر متغیرها نیز قبلآ تعریف شده‌اند.
تحليل پیامدهای افزایش سطح زیر کشت گلزا در شدت نمادن استان فارس

گرددند. به اینصورت که ابتدا لیست کشاورزان هر روستا از
خدمات روستایی دهنده‌های خنجه‌نشت و شهروندی به‌دست
آمده، سپس با توجه به تعداد کشاورزان و حجم تنظیم بر روی به
هر روستا تعیین گردید که از هر چند شاخص (n) بایستی پک
کشاورز انتخاب گردد و سپس بر طبق روش سیستمیک
کشاورزان 1, 2, 4, 6, 9, 11, 13, 15 را انتخاب گردیدند.
از آنجا که تهیهگر بریم‌مرزی خصی برای تمام
به‌هم‌بوداران تنظیم که تعداد آنها شاید به صداه تنوع بیشتر شود.
کار پیشبرد وقت و پرورشین بود و نتایج حاصله نیز از کارایی
لازم برخوردار نخواهد بود. لذا لازم است که به‌هم‌بوداری‌های
نومنه را به طبقات هم‌گونی طبقه‌بندی نموه و برای هر طبقه
همگین یک به به‌هم‌بوداری ساخته شود.
با توجه به موارد فوق به‌هم‌بوداران با استفاده از تحلیل
خوشه‌ای به سه گروه زیر تقسیم شدند:
گروه 1: با اندامه مزرعه کمتر از 12 هکتار
گروه 2: با اندامه مزرعه 12 تا 20 هکتار
گروه 3: با اندامه مزرعه بیشتر از 25 هکتار

نتایج و بحث

در این قسمت به بررسی اثرات ورود گلزا بر گروهی کشت
گروه‌های همکار زارعین پرداخته شده است. بدین منظور گروه‌های
از گروه کشت به‌هم‌بوداری‌ها نشان می‌گورد فشاره سنگین زیر کشت آن که صرف کاشت داده می‌شود و سپس با استفاده از
به بررسی آثار این تغییر پرداخته می‌شود.

و در نتیجه حفظ گلزا در به‌هم‌بوداری‌ها سرگرد در جداول
2 تا 4 آورده شده است. همان‌طور که در جدول 2 دیده
می‌شود، در مزرعه به‌هم‌بوداری‌ها گروه 1 مجموع سطح زیر
کشت محصولات کنند، کلارا چندان و لوباپی در سال پایه
بهترین 23.7 و 15/5 هکتار می‌باشد و در مجموع این
مزرعه نمایندگی 8 هکتار است. با توجه به مدل
PMP با حفر
کلارا از گروه کشت مجموع سطح زیر کشت کنند از
33 هکتار به 5/15 هکتار افزایش یافته که معادل

با اضافه کردن این معادلات به عناوین محاسبه و اعمال این
 CU4 با توجه به فلک هم‌بوداری‌ها Q برگزارت از صف (کوک‌چینر با
GE 7 مسایل شناسانه‌ای) با بهبود، می‌توان نتایج
کرد که شرایط مربوط به برای تابع هزینه‌های سایه‌ای صادق
کن. در مرحله سوم PMP با استفاده از تابع هزینه‌های
کالیبره شده و محدودیت‌های منابع، یک مدل برناوری‌یزی

$
\text{Max } Z = p'x - d'x - xQx / 2
$

Ax \leq b
$
$

Sub.to: x \geq 0$

ضرایب و متغیرهای این مدل همان ضرایب و متغیرهای
می‌باشد که یک توضیح داده شدند. همان‌طور که دیده می‌شود
در این مدل دیگر انتخابی به محدودیت کالیبراسیون تنیست و
فقط با استفاده از تابع هدف کالیبره شده و محدودیت‌های منابع
جدب آن در شرایط سال پایه به دقت سطح غلظت سال پایه
خواهد بود و می‌توان با تغییر شرایط و تعویض سفارش‌های
مختلف با استفاده از این مدل به تحلیل سیستم پرداخت.

روش نمونه‌گیری

با توجه به اهمیت کشت گلزا در جدول نمادن که در Q فرود
مورد بررسی قرار گرفت، این دست به عنوان منطقه مورد مطالعه
انتخاب گردید. سپس با استفاده از یک روش نمونه‌گیری
خوشه‌ای دورحلقه‌های حفظ آبادی شامل آبادی‌های خنجه‌نشت،
چشمه رعیا، حسن‌آباد و سفالتی از دهستان شهرمیان و
آبادی‌های آب‌بادک، پنج آبادی و پنجادکی از دهستان شهرمیان
انتخاب شدند و مناسب با تعداد کشاورزان روستاها تعداد
۴۵ پرسشنامه از آبادی‌های خنجه‌نشت، ۳۵ پرسشنامه از آبادی
چشمه‌رده، ۱۵ پرسشنامه از آبادی حسین‌آباد، ۲۰ پرسشنامه
از اباده‌سفلات، ۸ پرسشنامه از آبادی فتح‌آباد، ۷ پرسشنامه
از آبادی‌های آب‌بادک و سرایشی، یک پرسشنامه از آبادی آب‌بادکی
(در مجموع ۱۲۸ پرسشنامه) تکمیل گردید. کشاورزان هر

روستا نیز با استفاده از روش نمونه‌گیری سیستمیک انتخاب

779
جدول 2: اثرات ورود کلزا بر الگوی کشت درامد زارع، ریسک و مصرف نهادها در مزرعه نماینده (به‌پردازیان گروه 1)\\n
<table>
<thead>
<tr>
<th>الگوی پس از حذف کلزا</th>
<th>PMP</th>
<th>جواب</th>
<th>فعالیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کندم 1 (کتان)</td>
<td>875</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>کندم 2 (کتان)</td>
<td>327</td>
<td>15</td>
<td>1/5</td>
</tr>
<tr>
<td>کندم 3 (کتان)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>کندم 4 (کتان)</td>
<td>379</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>کلزا 1 (کتان)</td>
<td>899</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>کلزا 2 (کتان)</td>
<td>105</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>کلزا 3 (کتان)</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>کلزا 4 (کتان)</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>چندگانه 1 (کتان)</td>
<td>0/1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>چندگانه 2 (کتان)</td>
<td>529</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>لوئیا 1 (کتان)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>لوئیا 2 (کتان)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>لوئیا 3 (کتان)</td>
<td>0</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>لوئیا 4 (کتان)</td>
<td>0</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>مجموع (کتان)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>درامد (تومان)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>انحراف معیار (تومان)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>محصول آب (متر مکعب)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>مصرف آب (گیاهی)</td>
<td>105</td>
<td>1/5</td>
<td>1/5</td>
</tr>
</tbody>
</table>

از گندم‌های دیگر پیشتر است. این قفسه در چند‌گانه و لوئیا نیز تقریباً به همین طریق است. در نتیجه این تغییرات در الگوی کشت، درامد مزرعه از 2500 و تا 3100 تومان به 8000 تومان کاهش می‌یابد. این کاهش درامد به دو دلیل رخ می‌دهد. عامل اول همان حذف کلزا از الگوی کشت است که باعث درامد بان‌دار کلزا نسبت به محصولات دیگر باعث کاهش درامد مزرعه می‌گردد. اما عامل مؤثر دیگر مربوط به آب می‌شود. بجای تمایل مصرف موجود در گندم یا چهار محصول مختلف لوئیا که از نظر مقداری امکان مصرف می‌توانست که گیاهی در پیش آورده باشد با یک میزان تغییر نمی‌کنند. در گندم سطح زیر کشت گندم 5 نه تا افزایش نمی‌یابد بلکه سطح زیر کشت آن از 1% هکتار کاهش می‌یابد. اما سطح زیر کشت سه گندم دیگر که در مورد آنها کم‌آبیاری اعمال گردیده با مقدار زیادی افزایش می‌یابد و این افزایش در گندم 4

780
تحلیل یادداشت‌های افرازی سطح زیر کشا که در دشت مهندس استان فارس به‌دست آمده است.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

در دسترس قرار دارد که می‌توان این مزرعه با ورود کلمه به آتشک کشت کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.

می‌توان گفت حرارت این مزرعه با ورود کلمه به آتشک، کشاورز، در دامنشان یافته است. اما با حذف کل نارضایتی این اثر می‌تواند به مقدار 3895/60 درصد کاهش داشته باشد.
جدول 3: آثارات ورود کلزا بر الگوی کشت. درمای دارمانی، ریسک و مصرف نهاده در مزرعه (نمایندگان بهره‌برداران گروه 2)

| الگوی پس از حذف کلزا | PMP | حذف | مصرف کم | کندم 1 (هکتار) | کندم 2 (هکتار) | کندم 3 (هکتار) | کلزا 1 (هکتار) | کلزا 2 (هکتار) | کلزا 3 (هکتار) | مجموعه (هکتار) |
|----------------------|-----|-----|---------|----------------|----------------|----------------|---------------|---------------|---------------|----------------|----------------|
| جواب | عمل | 18 | 11776975 | 11776975 | 11776975 | 11776975 | 11776975 | 11776975 | 11776975 | 11776975 |
| 1/29/23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/27/23 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/23/23 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/18/23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/14/23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/10/23 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/6/23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/2/23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 26/12/22 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 21/12/22 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 16/12/22 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 11/12/22 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/12/22 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

درصد کاهش در درمای مزرعه است، بنابراین ورود کلزا به الگوی کشت باعث افزایش درمای گردیده است. انحراف معیار یا به عبارتی ریسک الگو تغییر چندانی نکرده و از 100 به مراتب افزایش گرفته است. بنابراین هم‌مانا باپسی با سیاست‌های افزایش عامل‌کرد در هکتار کنده به مسایل مانقلی نمود.

1- نتایج نشان داد که با وارد شدن کلزا به الگوی کشت بهره‌برداران نماییدن، از سطح زیر کشت افزایش گردید. کندم گاسته می‌شود که این امر می‌تواند خودکاری در تولید کندم را با مشکل همراه سازد. بنابراین هم‌مانای باپسی با سیاست‌های افزایش عامل‌کرد در هکتار کنده به مسایل مانقلی نمود.

2- از آنجا که با وارد شدن کلزا به الگوی کشت، ورایانه درمای با عبارت گیری ریسک الگوی کشت افزایش می‌یابد، لازم است که با کشش بیمه مبناهای کشاورزی و بیمه‌های مبناهای کشاورزی رابطه‌ای با عامل‌کرد در هکتار کنده به مسایل مانقلی نمود.

3- هر چند میزان مصرف آب در هکتار کنده کمتر از میزان مصرف آب در هکتار گندم است، اما جایگزینی این دو محصول، تأثیر معنی‌داری بر کاهش مصرف آب در مزرعه نماییده نداشت و حتی در برخی از هره‌برداران نماییدش، موجب افزایش مصرف آب کرد. بنابراین به سیاست جایگزینی کلزا
جدول ۳ اثرات ورود کلزا بر الگوی کشت، درصد زارعیان، ریسک و مصرف نهاده‌ها در مزرعه (نمونه‌برداری گروه‌های وعده‌داران گروه۳)

<table>
<thead>
<tr>
<th>الگوی از حذف کلزا</th>
<th>پمپ</th>
<th>فعلی</th>
</tr>
</thead>
</table>
| ۱۲/۱۸| ۷ | ۷ | گندم ۱ (ahkan)
| ۰| ۵ | ۵ | گندم ۲ (ahkan)
| ۰/۰۴۱| ۲ | ۲ | گندم ۳ (ahkan)
| ۰| ۹ | ۹ | کلزا ۱ (ahkan)
| ۰| ۲ | ۲ | کلزا ۲ (ahkan)
| ۰| ۱ | ۱ | کلزا ۳ (ahkan)
| ۰/۷| ۵/۲ | ۵/۵ | چندرن ۱ (ahkan)
| ۰/۵۳| ۰/۵ | ۰/۵ | چندرن ۲ (ahkan)
| ۰/۵۲| ۰/۵ | ۰/۵ | چندرن ۳ (ahkan)
| ۰/۵۴| ۰/۵ | ۰/۵ | چندرن چهار (ahkan)
| ۰/۵۴| ۰/۵ | ۰/۵ | مجموع (کلزا)
| ۰/۵۴| ۰/۵ | ۰/۵ | مجموع (پمپ)
| ۰/۵۴| ۰/۵ | ۰/۵ | مجموع (فعالی)

<table>
<thead>
<tr>
<th>درصد (تومان)</th>
<th>انحراف معیار (تومان)</th>
<th>مصرف آب (متر مکعب)</th>
<th>مصرف کود (کیلو)</th>
<th>مصرف سم (تومان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸۰/۳۶۵</td>
<td>۲۰۶/۵۵۸</td>
<td>۲۰۶/۵۵۸</td>
<td>۲۰۶/۵۵۸</td>
<td>۲۰۶/۵۵۸</td>
</tr>
<tr>
<td>۱۰۱/۵۲۵</td>
<td>۱۰۱/۵۲۵</td>
<td>۱۰۱/۵۲۵</td>
<td>۱۰۱/۵۲۵</td>
<td>۱۰۱/۵۲۵</td>
</tr>
<tr>
<td>۲۳۴/۱۱۱</td>
<td>۲۳۴/۱۱۱</td>
<td>۲۳۴/۱۱۱</td>
<td>۲۳۴/۱۱۱</td>
<td>۲۳۴/۱۱۱</td>
</tr>
<tr>
<td>۳۶۴</td>
<td>۳۶۴</td>
<td>۳۶۴</td>
<td>۳۶۴</td>
<td>۳۶۴</td>
</tr>
<tr>
<td>۲۷۱/۰۵۷</td>
<td>۲۷۱/۰۵۷</td>
<td>۲۷۱/۰۵۷</td>
<td>۲۷۱/۰۵۷</td>
<td>۲۷۱/۰۵۷</td>
</tr>
</tbody>
</table>

با گندم نمی‌توان بعثتان یک سیاست مدیریت تقاضای آب باوران یاد به مسأله‌ای ازودیک محیط زیست در افزایش سطح زیر کشت این محصول نیز توجه نمود. مباحث مورد استفاده‌

۱. دهشیری، ع. ۱۳۷۸: زراعت کلزا. سازمان تحقیقات، اورشه و ترویج کشاورزی، تهران.
۲. سازمان مدیریت و برنامه‌ریزی کشور. ۱۳۸۰: نظام هدفمند پاره‌های، تهران.
۳. شبیلی، ر. ح. و. دهشیری، ع. ۱۳۸۱: راهنماهای کلزا (کاشتات، داشت و پرداشت)، سازمان تحقیقات و آموزش کشاورزی، معاونت آموزش و تجهیز نیروی انسانی، نشر آموزش کشاورزی، کرمان.
۴. وزارت جهاد کشاورزی (سال‌های مختلف). آموزش کشاورزی، دفتر آمار و فناوری اطلاعات.
۵. صبحی، صبیحی. م. ۱۳۸۵: بهینه سازی الگوهای کشت با توجه به مزیت نسبی هزینه آب در تولید محصولات زراعی: مطالعات موردی استان خراسان رضوی. رساله دکتری اتمیک کشاورزی، دانشگاه شیراز.

policies. EAAE seminar, Ancona, Italy