بررسی سطح مختلف شوری بر تنظیم کننده‌های اسمزی و فعالیت آنزیم‌های آنیاکسیدان در رقم سوئیگ

صفهای یزی: مصطفی حیدری، نیما مهدی نژاد و فرخ عباسی

تاریخ دریافت: ۸۸/۸/۲۳; تاریخ پذیرش: ۸۸/۹/۲۳

چکیده
جهت مقاومتی به شوری، گیاهان علاوه بر تنظیم اسمزی از مکانیسم افزایش فعالیت آنزیم‌های آنیاکسیدان نیز استفاده می‌کنند. بدین منظور، بررسی نشانه‌گری‌های انسامبیژ (CAT) اسکورپیتی (APX) و گل‌آکسیلر (GPX) و دو نشانه‌گری‌های اسمازی کربوهیدرات و پروپان در میزان شوری در شبیه دو رقم سوئیگ به شوری در مرکز زیست پژوهشی دانشگاه ازبیک (پیستور) بین آزمایشگاه سطح شوری شاده (۰۰۰ و ۲۰۰ میلی‌متر) تکرار شده و به عنوان چک کننده مایل به شوری و به عنوان چکنده کربوهیدرات و پروپان ب در نظر گرفته شدند. نتایج حاصل نشان داد که سابقاً سطح شوری از شاده به ۲۰۰ میلی‌متر بر میزان فعالیت آنزیم‌های آنزیم‌های CAT و APX، میزان فعالیت آنزیم‌های آنزیمی، مایل به تغییر در رقم پیام نشان داد. در این بین، بهترین عملکرد مربوط به رقم مخلوط آنزیم‌های CAT و APX در شبیه‌بندی است. در دو راهنما سطح شوری به ویژه در رقم پیام، با کاهش گیاهان در شبیه‌بندی کاهش گیاهان در شبیه‌بندی با کاهش و ثبت نشده خود که‌گذاری این رقم از سوئیگ از طریق سوئیگ و دو رقم پیام افزایش فعالیت آنزیم‌های آنزیمی و تنظیم کننده‌های اسمازی است که به نوعی شرایط لازم برای ادامه بقای گیاه را در این حالت فراهم می‌کنند.

واژه‌های کلیدی: تنش شوری، آنیاکسیدان، آنزیمی، تنظیم کننده‌های اسمازی، سوئیگ، حمل شوری

مقدمه
شیوع بی‌ککی از عوامل مهم کاهش رشد و عملکرد بیولجی از گیاهان زراعی به خصوص در مناطق خشک و نیمه خشک دنیای بی‌ککی است. واکنش معمول گیاهان به بالا رفت فعالیت منکس در ۱ به ترتیب دانشگاه سابق کارشناس ارشد و استادیار زیست‌شناسی دانشگاه علوم دانشگاه آزاد اسلامی، واحد مشهد
۲ به ترتیب استادیار و مریب زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ازبیک
Haydari2005@yahoo.com
* مسئول مکاتبات، پست الکترونیکی:
هند از این آزمایش بررسی تأثیر سطوح مختلف شوری بر میزان فعالیت آنزیم‌های آتی کسیدان (CAT) و رادیکال‌های هیدروکسی (HO2) (در درون سولول شوود) این ترکیبات خاصی را از طریق اکسیداسیون چربی‌های با تریلین و اکسیدهای ذراتی به محلول وارد می‌کند (3).

به مفهوم کاهش اثرات سوء تشخیص آسید‌های در طی بروز تنش شوری، گاهی میزان فعالیت آنزیم‌های آتی کسیدان در محلول افزایش یافته و در مقدار نرمال تحت تنش نش، این بکری‌های دیگر ترکیبات سازگار کننده همینند برای و کربوئیدراتها بر مقدار تحلیل گیاهان بیافزارند.

پژوهش‌های مختلف بر روی استخراج عصاره و روش اندازه‌گیری آنزیم‌های موارد و محلول‌ها

Ice-Cold Extraction

به یادبرداری این محلول شامل محلول بهار پتاسیم فسفات 100 میلی‌مولار یا K2HPO4 و KH2PO4 محلول پتاسیم فسفات از دو نمک استفاده شدند. جهت تهیه محلول این محلول 1 مولار از هر کدام از این نمک‌ها تهیه می‌شد و در قرارنگ آنها با میزان 4 و pH7 محلول
EDTA 0.1 mM در حجم 4 CC برای
محلول پتاسیم فسفات از دو نمک استفاده شدند. جهت تهیه محلول این محلول 1 مولار از هر کدام از این نمک‌ها تهیه می‌شد و در قرارنگ آنها با میزان 4 و pH7 محلول
EDTA 0.1 mM در حجم 4 CC برای

استخراج عصاره و روش اندازه‌گیری آنزیم‌های موارد و محلول‌ها

Ice-Cold Extraction

به یادبرداری این محلول شامل محلول بهار پتاسیم فسفات 100 میلی‌مولار یا K2HPO4 و KH2PO4 محلول پتاسیم فسفات از دو نمک استفاده شدند. جهت تهیه محلول این محلول 1 مولار از هر کدام از این نمک‌ها تهیه می‌شد و در قرارنگ آنها با میزان 4 و pH7 محلول
EDTA 0.1 mM در حجم 4 CC برای
محلول پتاسیم فسفات از دو نمک استفاده شدند. جهت تهیه محلول این محلول 1 مولار از هر کدام از این نمک‌ها تهیه می‌شد و در قرارنگ آنها با میزان 4 و pH7 محلول
EDTA 0.1 mM در حجم 4 CC برای

نواحی و روش‌ها

این آزمایش به صورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه تکرار در سال 1386 در مرکز زیست‌پژوهش دانشگاه زابل (یونسکر) انجام گرفت. سه سطح شوری NaCl میلی‌مولار نمک S0 = 0 و S1 = 0.1 و S2 = 0.25 در نظر گرفته شدند. جهت انجام این آزمایش در گلدان‌های کوقی پلاستیکی به قطر 10 cm به وسیله ماهی بادی یکتاده، کشت گلدان‌ها به تکنیک‌های از روشی در دمای 25 درجه سانتی‌گراد و طول دوره نوری 16 ساعت روش‌هایی و 8 ساعت تاریکی منتقل شدند. پس از جوانه‌گیری و کامل شدن ظهور اولین برگ، اعمال تنش شوری در گیاهان آغاز و به منظور جلوگیری از وارد شدن یکپارچه‌های شوک به گاه‌های انجام یارا به شوری با امرماییت 25 میلی‌مولار NaCl در نهایت بعد از 4 روز سطوح شوری به حد مورد نظر رسیده شدند. اعمال تنش شوری کلا تا 20 روز ادامه پایت و پس از میزان فعالیت آتی کسیدان و نظارت کننده‌امیدری در یافته هواگیاهان (پافت بپرگی) اندازه‌گیری شد.

استخراج عصاره و روش اندازه‌گیری آنزیم‌ها

مطالعات بیوشیمیایی نشان داد که در گیاهان تحت تنش چشکی و شوری تعادل در ترکیبات آلی (محصولات سازگار کننده)، این ترکیبات تداخلی در فرآیندهای شیمیایی آنها وارد می‌شود. این ترکیبات می‌توان به انواعی از کربوهیدرات‌های محلول (مانتول، ساکاراز، رافینوز، و الیکو ساکارید)، ترکیبات نیتروژنی (ئید آمیا، پروپولین و گلیسین- باتین) اشاره کرد. ترکیبات سازگار کننده نقش مهمی در بهبود تظیم اسیدری در گیاهان تحت تنش دارند (7 و 12).

در این گیاهان زراعی از جمله سورگوم برجسته‌های معنی‌داری در مورد واکنش به تنش شوری و تغییراتی که در میزان ترکیبات سازگار کننده آنها به وجود می‌آید، صورت گرفته است. ولی هنوز به خوبی رابطه بین میزان این ترکیبات با مقدار فعالیت آنزیم‌های آتی کسیدان مشخص نیست (2). این رون
بررسی اثرات مختلف شرایط در تهیه کربندهای آسیلوپاتی و فعالیت آنزیم‌ها...

نمایی از آنزیم‌ها و فعالیت آنزیم‌ها

امنیت

برای تهیه محلول

این محلول در حجم 50 سی سی با گل‌فیل 2 میکرولیتر

امنیت

از یک میکرولیتر

ابعاد پاتامسی وسایط به همراه

میکرولیتر

بردارش و به 2 میلی میکرولیتر

بردارش و به 3 میلی میکرولیتر

در هاوان

بردارش و با 4 میلی میکرولیتر

بام

در آب

بله

در گفتگو

در بافت

در گفتگo
جدول ۱. تجزیه و اریب اسید آنزیم‌های آتیک اکسیدان و تظیم کندنده‌های آسمی

<table>
<thead>
<tr>
<th>وزن تک بونه</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
<th>درجه تغییرات</th>
<th>آزمایشگر</th>
<th>(μmol H₂O₂ min⁻¹ mg⁻¹ prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروپیونیک</td>
<td>۹۹/۷**</td>
<td>۱/۰/۳**</td>
<td>۰/۰/۳**</td>
<td>۲</td>
<td>شوری</td>
<td>۱۱۷**</td>
</tr>
<tr>
<td>اکسیپتال</td>
<td>۱۵۸/۲**</td>
<td>۰/۰/۳**</td>
<td>۰/۰/۳**</td>
<td>۱</td>
<td>رقم</td>
<td>۰/۱۵**</td>
</tr>
<tr>
<td>اکسیپتال</td>
<td>۱۹/۱**</td>
<td>۰/۰/۳**</td>
<td>۰/۰/۳**</td>
<td>۲</td>
<td>شوری</td>
<td>۰/۲۲**</td>
</tr>
<tr>
<td>بیمار</td>
<td>۲۲/۲</td>
<td>۰/۰/۳**</td>
<td>۰/۰/۳**</td>
<td>۲</td>
<td>شوری</td>
<td>۰/۳۲**</td>
</tr>
<tr>
<td>شوری</td>
<td>۱۲/۲</td>
<td>۱۳/۵/۷</td>
<td>۱۸/۱</td>
<td>۱۰/۷</td>
<td></td>
<td>%CV</td>
</tr>
</tbody>
</table>

جدول ۲. مقایسه بیان‌گر فعالیت آنزیم‌های آتیک اکسیدان و تظیم کندنده‌های آسمی

<table>
<thead>
<tr>
<th>وزن تک بونه</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
<th>تیمار</th>
<th>(μmol H₂O2 min⁻¹ mg⁻¹ prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروپیونیک</td>
<td>۲/۰/۳</td>
<td>۰/۱۵</td>
<td>۰/۰/۳</td>
<td>شوری</td>
<td>۰/۵۲</td>
</tr>
<tr>
<td>اکسیپتال</td>
<td>۱۳/۵</td>
<td>۰/۰/۴</td>
<td>۰/۰/۴</td>
<td>رقم</td>
<td>۵/۹</td>
</tr>
<tr>
<td>اکسیپتال</td>
<td>۱۸/۱</td>
<td>۰/۰/۴</td>
<td>۰/۰/۴</td>
<td>شوری</td>
<td>۱۰/۰</td>
</tr>
<tr>
<td>بیمار</td>
<td>۱۶/۸</td>
<td>۰/۰/۴</td>
<td>۰/۰/۴</td>
<td>بیمار</td>
<td>۵/۸</td>
</tr>
<tr>
<td>شوری</td>
<td>۱۰/۸</td>
<td>۰/۰/۴</td>
<td>۰/۰/۴</td>
<td>مقبول</td>
<td>۵/۸</td>
</tr>
<tr>
<td>رقم</td>
<td>۱۶/۸</td>
<td>مطلوب</td>
<td></td>
<td>بیمار</td>
<td>۵/۸</td>
</tr>
</tbody>
</table>

تفاوت حروف در هر ستون نشان‌دهنده اختلاف معنی‌دار بر اساس آزمون چند دامنه‌ای دانک در سطح احتمال ۵ درصد می‌باشد.

نمودار ۱. اثر متقابل سطوح شوری و رقم بر فعالیت آنزیم GPX.
بررسی سطح مختلف شوری بر تنظیم کننده‌های اسزمنی و فعالیت آنزیم‌ها...

نمودار ۲. اثر مقاوم سطح شوری و رنگ بر فعالیت آنزیم APX

نمودار ۳. اثر مقاوم سطح شوری و رنگ بر فعالیت آنزیم CAT

شناخت به ۲۰۰ میلی‌مولار بر غلظت هر دو آنها افزوده شد. در این بین غلظت پروپیونیت کربوهیدرات افزایش یافته به طوری که با بالا رفتن شوری تا سطح ۲۰۰ میلی‌مولار به همان نسبت به مقدار تجربه پرولین نیز افزوده شد. ولی افزایش غلظت کربوهیدرات تا سطح شوری ۱۰۰ میلی‌مولار بود و با بالا رفتن سطح شوری افزایش معنی‌داری در آن مشاهده نشد (جدول ۲).

مکان (۱۲) اعلام کرد در زننده‌های مقاوم به شوری کننده در اثر افزایش غلظت کربوهیدرات معنی‌دار با میزان تبدیل شدن سکارز به کننده‌های میوتوسکارکار با زننده می‌شود. اما به مرور از مقدار آن کم و می‌شود. در این آزمایش دو رقم سارچروم از لحظه

نتیجه حاصل از داده‌های این آزمایش نشان داد، هم‌اکنون میزان دار و مثبت بین میزان فعالیت هر سه آنزیم در طی برور تنش شوری وجود دارند (جدول ۳). این امر بیان می‌کند در دو رقم سورگوم مورد مطالعه هر سه نوع آنزیم آن‌ها اکسیدان با هم فعال شده، سبب کاهش اثرات سوء تنش اکسیدانی بر گیاهان می‌شود.

ب) تنظیم کننده‌های اسزمنی در جدول ۱ مشاهده می‌شود شوری تأثیر معنی‌داری بر میزان تجمع دو تنظیم کننده اسزمنی کربوهیدرات و پرولین در بافت سبز به‌خیال سورگوم دارد. با بالا رفتن میزان شوری از
جدول 3. همبستگی بین فعالیت آنزیم‌های آنتی-کبدان و با تنظیم کندن‌های اسموزی

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>وزن بیولین</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بیولین</td>
<td>1</td>
<td>0.68**</td>
<td>0.05***</td>
<td>0.75***</td>
</tr>
<tr>
<td>گلوکوز</td>
<td>1</td>
<td>0.84**</td>
<td>0.75**</td>
<td>0.70**</td>
</tr>
<tr>
<td>گلوکوز</td>
<td>0.95**</td>
<td>1</td>
<td>0.67**</td>
<td>0.70**</td>
</tr>
<tr>
<td>گلوکوز</td>
<td>0.96**</td>
<td>0.75**</td>
<td>1</td>
<td>0.70**</td>
</tr>
<tr>
<td>گلوکوز</td>
<td>0.97**</td>
<td>0.76**</td>
<td>0.76**</td>
<td>1</td>
</tr>
</tbody>
</table>

* به ترتیب نشان‌دهنده معنی‌دار بودن در سطح 0.05 و 0.01 می‌باشد.

غلطی این دو ترکیب در افزایش فعالیت معنی‌داری با هم نشان می‌دهد. به‌طوری که بالاترین میزان پرولین مربوط به رقم میزان سیستمات و کربوهیدرات مربوط به رقم پیام بود (جدول 1 و 2).

در زمان فرارگی این ارقام در معرض سطح مختلف آزمایشگر (شکل‌های 4 و 5) مشاهده می‌شود. غلطی پرولین در رقم محلی هر چند در تمام سطوح افزایش و حتی در سطح شاهد بالاتر از رقم پیام است. اما در صورت افزایش غلطی پرولین در رقم پیام بیشتر از رقم محلی بوده به‌طوری که در بالاترین سطح مصرف (زمان 6) میزان پرولین آن از افزایش به روش معادلی 67 درصد بیشتر به شاهد برخورد نماید اما این افزایش برای رقم محلی تها معادل 47 درصد می‌باشد. این امر نشان می‌دهد که غلطی پرولین در رقم حساسیت سوا به افزایش فعالیت شانست است.

آزمایش‌های مختلف از جمله مارترین و هپسیکار (16) از افزایش میزان پرولین در گندم و سلول‌نام و هپسیکار (17) در بیان‌بردن تنش شوری خیر می‌دهد. کاویلر (6) اعلام کرده است که افزایش پرولین در هیپپان بخش از تنش شوری در واقع نوعی واکنشی است که به استرس فیزیکی یا آنزیم قابل توجهی شیثیت زایی در میان‌بندی‌های آن افزایش پرولین در جراحی‌های مختلف (به‌ویژه در جراحی‌های آن در میان‌بندی‌های آن) یکی از مهم‌ترین و اصلی‌ترین پیش‌بینی‌های درون‌بخشی است. در این زمان پرولین با کم کردن پانسن‌های اسموزی سلول‌های ریشه، شرایط لازم برای جذب آب و عناصر غذایی را فراهم می‌کند. به‌طوری که پرولین در حجم کمی از آب سلول، پانسن‌های کل آب در سلول افزایش می‌یابد و این امر شرایط لازم برای جذب آب از خاک توسط سلول‌های ریشه را
شکل ۴ تغییرات کربوهیدرات دو رقم سورگوم در سطوح مختلف شوری

شکل ۵ تغییرات پرولین دو رقم سورگوم در سطوح مختلف شوری

شکل ۶ تغییرات وزن تک بوته دو رقم سورگوم در سطوح مختلف شوری

گود و زاپلاچنسکی (۷۴) اعلام کردند تنظیم اسمنزی با به کارگیری ترکیبات آلی یکی از فرآیندهای سازگاری در گیاهان است که به حفظ پانتسیل تورگر در طی بروز تشنج شوری و خشکی کمک می‌کند. این امر مانع دی‌هیدراتاس‌دهد سلول‌های بودن این رقم نسبت به رقم اصلاح شده پایام است. یکی دیگر از دلایل این عدم تغییر مربوط به وابستگی یکی رقیم محلی سیستم به ترکیبات آلی کربوهیدرات و پروتئین سرای تنظیم اسمنزی است. چرا که این ترکیبات برای گیاه هزینه بر هستند.
مباحث مورد استفاده

