بررسی سطوح مختلف شوری بر تنظیم کننده‌های اسمزی و فعالیت آنزیم‌های آنتی اکسیدان‌های حرارتی
صفورا بزی، مصطفی حیدری، نیما مهدی نژاد و فروغ عباسی
(تاریخ دریافت: 16 06/08/1387، نظر پذیرش: 16 08/08/1387)

چکیده
جهت مقاومت به شوری، گیاهان علاوه بر تنظیم اسمازی از مکانیسم افزایش فعالیت آنزیم‌های آنتی اکسیدان نیز استفاده می‌کنند. به منظور بررسی نقش آنزیم‌های آنتی اکسیدان کالسلاز (CAT)، اسکوربیات آنزیم‌های GPX و گاما اکسیژن آنزیم (APX) در رده‌بندی و تنظیم اسمازی گیاهان بخصوص پیشگیری از ضرر شوری در سال 1384 تا 1388 در مرکز زیست-پژوهشی دانشگاه زابل (پیونر) تحقیق مورد بررسی قرار گرفت. مطالعه سطح شوری شاهد (0) و 200 میلی‌مولار NaCl به عنوان فاکتور A و 200 میلی‌مولار پیشگیری از افزایش شوری به عنوان فاکتور B در نظر گرفته شدند. نتایج حاصل نشان داد با بالا رفتن سطح شوری از شاهد به 200 میلی‌مولار پیشگیری از افزایش شوری به عنوان شهید بود. این نتایج می‌تواند به حل مسئله افزایش شوری در گیاهان کمک کند. این نتایج نشان می‌دهد که در ارتفاعات کوهی گیاهان به دو روش افزایش همبندی کربنی در فعلیت آنزیم‌های آنتی اکسیدان نیز استفاده می‌کنند.

واژه‌های کلیدی: شوری، آنتی اکسیدان‌های آنزیمی، تنظیم کننده‌های اسمازی، سطح شوری، پیشگیری

مقدمه
شری یکی از عوامل مهم کاهش رشد و عملکرد بسیاری از گیاهان زراعی به خصوص در مناطق خشک و نیمه خشک دنبال می‌گردد. واقع معمول گیاهان به بالا رفتن فشار نرم در 1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد باز زیست شناسی دانشگاه علوم دانشگاه آزاد اسلامی، واحد مشهد
2. به ترتیب استادیار و مربی زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه زابل
3. مسئول مکاتبات، پست الکترونیکی: Haydari2005@yahoo.com

Downloaded from ipipp.ut.ac.ir at 3:25 IRST on Saturday September 28th 2019
هدف از این آزمایش بررسی تأثیر سطوح مختلفی شوری بر میزان
فعالیت آنزیم‌های آنتی اکسیدان، GPX و APX و CAT، در زمان
سوری‌گر در منطقه حسین‌آباد و در طول زمان رابطه آنها با میزان
دو تغییرات مورد روش‌های کیوپیویرتات و پرولین بوده است.

مواد و روش‌ها
این آزمایش به صورت فاکتوریل و از طرف کاملاً تصادفی
با سه تکرار در سال 1386 در مرکز بیماری‌های دانشگاه
راهنمای زیست‌پژوهی دانشگاه شازل (روزبانی) انجام گرفت. سه سطح شوری
S0=0، S1=50 و S2=100 میلی‌مولار نمک NaCl به عنوان فاکتور
A = 1، 2، 3 و در رقم سوختگری با B=1=تیم پیو، 2=تیم پیو
+ نمک NaCl و در نظر گرفتند. جهت اندازه‌گیری این
آزمایش در گل‌دانه‌های کوکی پلاستیکی به قطر
60 cm و طول 60 cm در حالی به داده شده، کشت شد. گل‌دانه به اندازه کافی
راز انجام برای داده شده. پس از جوانه‌داندن و کامل شدن ظهور اولین برگ، اعمال نش شوری در گیاهان آغاز و
به مظهر جلوگیری از وارد شدن یکپارچه شوک به گاه‌جه‌ها
تیمارهای شوری با اندازه روزانه 25 میلی‌مولار
горدد. در نهایت بعد از 3 روز سطح شوری به عدد مورد نظر
رسانده شدند. اعمال نش شوری کلتا 20 روز ادامه یافت و پس
از میزان فعالیت آنتی اکسیدان و تنظیم کنندرهای اسموزی در
بخش هوای گیاهان (حافظ سبز گیاه) ادامه گیری شد.

استخراج عصاره و روش اندازه‌گیری آنزیم‌ها
مواد و محلول‌های

Ice-Cold Extraction
نیه پار
این محلول شامل محلول باری که تپاسیم فسفات 100 میلی‌مولار باید
و محلول EDTA 0.1 mM در حجم 4 سی سی برای
K2HPO4 و KH2PO4 محلول تپاسیم فسفات از دو نمک
استفاده شدند. جهت نیه محلول این محلول 1 میلی‌مولار از برداشت، با هم
کدام از این نمک‌ها نته مسیس CC سی سی از آنها برداشت، با هم

(حیز ۲ و ۳).
در طی بررسی از گیاهان زراعی همانند کندم (۱۵) و بیان (۸)
با رنگ میزان فعالیت این آنزیم‌ها در طی پروت شوری
گزارش شده است. با این نمک میزان فعالیت آنزیم‌های
آنتی اکسیدان در گیاهان تحت تنش نش این مکانیسم تحمل به
شوری نیست، این مکانیسم می‌تواند در کنار ترکیبات سازگار
کننده مانند برولین و کریوپریدراتها ب رهبر تداخل گیاهان

مطالعات بیوشیمیایی نشان داده که در گیاهان تحت تنش
خشکی و شوری تعدادی از ترکیبات آلی (محلول‌های سازگار
کننده) تجهیز می‌شود، این ترکیبات تداخلی در فرآیندهای
شیمیایی آنها وارد می‌کنند. این ترکیبات می‌تواند به ویژه از
کریوپریدرات‌های محلول (مانیتول، ساکارز، رافینوز، و الیگو
سازگار) و ترکیبات تریتوژن (ایمید آمینه، پرولین و گلیسین
- بیتاین) اشتهار کرده ترکیبات سازگار کننده نقش مهمی در بهبود
تنظیم اسموزی در گیاهان تحت تنش دارد (۷ و ۱۲).

(۱۲). از این رو

امکانات کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و هشتم (الف) / زمستان ۱۳۸۷
در تابعی به جهت اندازه‌گیری آنزیم‌ها می‌توان جز به این شرح برای در دیجی‌کالری با درافشات در بافر نیتریل (ICE-Cold Extraction) و بافر غلظت شده شده به صورت همست‌گیری در آورده شده مختل از کاهش نسبت به مدت 15 دقیقه می‌باشد باعث افزایش نسبت به میزان‌ها در برابر یک‌میلی‌مترول در نسبت به بافت سیستم‌هایی در میدان ۸ درصد (۱۲) (۱۶) افزایش آنزیم‌ها با مهاجر (SAS) توصیه می‌کند با استفاده از نرم‌افزار آماری مورد تجزیه و تحلیل فرگ همکاران. تاکنون گزارش روز ناکارا و (APX) از روش اوروبانک و آسادا (۱۳) و کاراکول پراکسیداز (GPX) از روش اوروبانک و همکاران. همچنین جهت اندازه‌گیری پروتئین آئین آنزیم‌ها به طور دو بعدی (۲D) بر اساس فرمول (۱۶) (۱۴) استفاده گردید. در نتایج داده‌های به دست آمده با استفاده از نرم‌افزار آماری مورد تجزیه و تحلیل فرگ می‌توان به گونه‌ای که از موارد بررسی مطرح شده روندهای چند دانه دانست در سطح ۱۵٪ نتایج و بحث

الف) انزیم‌های آتی اکسیدان

در تابعی به جهت اندازه‌گیری آنزیم‌هایی در جدول ۱ نشان داده می‌شود افزایش معمول روز در دهنده شوری و اثر مقایسه آن با باف بر فعالیت انزیم‌های آتی اکسیدان کانالز (CAT) اسکوربات (APX) و کاراکول پراکسیداز (GPX) رشته‌های شوری از دیدگاه به ۲۰۰ میلی‌مترول در میزان فعالیت
جدول ۱. تجزیه و اریالیت فعالیت آنزیم‌های آتی اکسیدان و تسئیم کننده‌های اسمزی

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>وزن تک بونه</th>
<th>پروپیلین</th>
<th>CAT</th>
<th>GPX</th>
<th>درجه مشابهت</th>
<th>افزایش تغییرات</th>
<th>آزیدی (μmol H₂O₂ min⁻¹ mg⁻¹ prot)</th>
<th>در کرم و تر (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری جنگل</td>
<td>۹۹/۷**</td>
<td>۱/۰م/۰۰۷**</td>
<td>۰/۰۱۱۷**</td>
<td>۰/۰۰۵۲**</td>
<td>۲</td>
<td>۲</td>
<td>۸/۷/۱۸</td>
<td>۲۰/۵</td>
</tr>
<tr>
<td>شوری جنگل</td>
<td>۱/۰م/۰۰۱۸**</td>
<td>۱۸/۶/۱۲۸**</td>
<td>۰/۰۵۲**</td>
<td>۰/۰۰۵/۸۹**</td>
<td>۱</td>
<td>۱</td>
<td>۲۴/۱/۰۲</td>
<td>۱۶/۳</td>
</tr>
<tr>
<td>شوری جنگل</td>
<td>۰/۳۴</td>
<td>۰/۲۲</td>
<td>۰/۰۳۴</td>
<td>۰/۰۹۵</td>
<td>۲</td>
<td>۲</td>
<td>۳/۸/۲۲</td>
<td>۳۳/۷</td>
</tr>
</tbody>
</table>

میزان CV: به ترتیب نشان دهنده معنی‌دار بودن در سطح ۵٪ و ۱٪ و عدم معنی‌دار بودن می‌باشد.

جدول ۲. مقایسه سایر نشانه‌ها فعالیت آنزیم‌های آتی اکسیدان و تسئیم کننده‌های اسمزی

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>وزن تک بونه</th>
<th>پروپیلین</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
<th>تیمار</th>
<th>(μmol H₂O₂ min⁻¹ mg⁻¹ prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری (میلی مولار)</td>
<td>۱۰/۱۵</td>
<td>۱/۰۵۲</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
<td>۰/۰۹۵</td>
</tr>
<tr>
<td>شوری (میلی مولار)</td>
<td>۱۸/۱۱</td>
<td>۰/۱۱۱</td>
<td>۰/۰۴۹</td>
<td>۰/۰۴۹</td>
<td>۰/۰۴۹</td>
<td>۰/۰۴۹</td>
<td>۰/۰۴۹</td>
</tr>
</tbody>
</table>

توابع حریف در هر ستون نشان دهنده اختلاف معنی‌دار براساس آزمون چند دامنه‌ای دانکن در سطح احتمال ۵ درصد می‌باشد.
بررسی سطوح مختلف شوری بر تنظیم کندنهای اسمری و فعالیت آنزیمی...

نمودار ۲. اثر مقابل سطوح شوری و رنگ بر فعالیت آنزیم APX

نمودار ۳. اثر مقابل سطوح شوری و رنگ بر فعالیت آنزیم CAT

در سلول دارد.

نتایج حاصل از داده‌های این آزمایش نشان داد، همبستگی معنی‌دار و مثبت بین میزان فعالیت هره سه آنزیم در طی بروز تشی شوری وجود دارد (جدول ۳). این امر بیان می‌کند که در ورود شوری مورد مطالعه هره سه نوع آنزیم اکسیداز با هم فعال شده، سبب کاهش اثرات سوی تشی اکسیدازی بر گیاهان می‌شوند.

ب) تنظیم کندنهای اسمری

در جدول ۱ مشاهده می‌شود تأثیر معنی‌داری بر میزان تجمع دو تایی کندنهای اسمری کربوهیدرات و پروپون در بافت سیب به خواص سرورگوم دارد. با بالا رفتن میزان شوری از...
<table>
<thead>
<tr>
<th>جدول 3: همبستگی بین فعالیت آنزیم‌های آنتی اکسیدان و با تظیم کندِه‌ها</th>
<th>اسم‌زی</th>
<th>وزن بی‌ته</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>کروپرسیدات</td>
<td>1</td>
<td>0/67**</td>
<td>CAT</td>
<td>0/67**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0/56**</td>
<td>CAT</td>
<td>0/56**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0/59**</td>
<td>CAT</td>
<td>0/59**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0/57**</td>
<td>CAT</td>
<td>0/57**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0/46**</td>
<td>CAT</td>
<td>0/46**</td>
<td>1</td>
</tr>
<tr>
<td>و...</td>
<td>**</td>
<td>به ترتیب نشان دهنده معنادار بودن در سطوح 5% و 1% می‌باشد.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*غلظت این دو تركیب در آرا یافته معمولی دارای با هم بودن |
*به‌طور که بالاترین میزان پرولین مربوط به رقم مثبت سیستم |
*و کروپرسیدات مربوط به رقم چپ بود (جدول 1 و 2). |
*در زمان فرارگیری این ارقام در معرض سطوح مختلف |
*شوری (شکل‌های 4 و 5) مشاهده می‌شود غلظت پرولین در |
*رقم مثبت چند در تمامی سطوح شوری همان چنین سطح |
*رقم مثبت چند در تمامی سطح شوری، اما در زمان افراشیت |
*غلظت پرولین در رقم پلاستیک رکورد بوده، به‌طوری که در بالاترین |
*سطح شوری (5 میلی‌مول‌الی) میزان پرولین آن از افراشیت |
*معادل 67 درصد نسبت به شاهد برخورد است اما این |
*افراشیت برای رقم مثبت میان معادل 24/8 درصد می‌باشد. این |
*امن نشان می‌دهد که غلظت پرولین در رقم حدود سه برابر |
*رقم مثبت افراشیت شناخته شده است. |

**محققین مختلف از جمله مارتينو و همکاران (10) از |
*افراشیت میزان پرولین در گندم و سولانا و همکاران (17) در |
*برخی نتیجه‌های خرید می‌دهند. کاوالرل (6) اعلام کرد |
*افراشیت پرولین در کیهان تحت نشش شوری در مقطع نوکی |
*واکنش گرافی به یک کاهش پنید آب در محیط رشد |
*است. در این زمان پرولین با کم کردن پنید استموزی |
*سلول‌های ریشه، شرايط لازم برای بذب آب و عناصر غذایی |
*را فراهم می‌کند به سبب افراشیت پرولین در حجم کمی از آب |
*سلول، پنیده‌ای کل آب در سلول افراشی مشاهده و این امر |
*شاپیت لازم برای باز آب در حال توسط سلول‌های ریشه را
بررسی سطوح مختلف شوری بر تنظیم گاهی و توالی آزمایشات

شکل 4. تغییرات کربوهیدرات دو رقم سورگوم در سطوح مختلف شوری

شکل 5. تغییرات پروتئین دو رقم سورگوم در سطوح مختلف شوری

شکل 6. تغییرات وزن تک بوته دو رقم سورگوم در سطوح مختلف شوری

گود و زایلیچینسکی (7) اعلام کرد تنظیم اسمزی با به کارگیری ترکیبات آلی یکی از فراوردهای سازگاری در گیاهان است که به حفظ پتانسیل تروکدر در طی بروز تنبل شوری و خشکی کمک می کند. این امر مانع گهداری شدن سلول‌های بودن این رقم نسبت به رقم اصلاح شده پیام است. پیام مشابه از دلایل این عدم تغییر مربوط به واکنش محرک رقم محلی سیستم به ترکیبات آلی کربوهیدرات و پروتئین برابر تنظیم اسمزی است. چرا که این ترکیبات برای گیاه هزینه بر هستند.

