بررسی سطوح مختلف شوری بر تنظیم کننده‌های اسمری و فعالیت آنزیم‌های آتی اکسیدان در رقم سورگوم

صفهرا بی‌یزی، مصطفی حیدری‌پور، نیکی‌الهی‌نژاد و فرخزاد عباسی

(تاریخ دریافت:۱۶ خرداد ۱۳۸۹)

چکیده
جهت مقاومت به شوری، گیاهان علاوه بر تنظیم اسمری از مکانیسم افزایش فعالیت آنزیم‌های آتی اکسیدان نیز استفاده می‌کنند. به منظور بررسی تأثیر آنزیم‌های آتی اکسیدان کنیوزی (CAT) و بروډکاتی‌وکسیژن (APX) در موضوع سطح شوری در میزان تحلیل بیشتری از شوری و مرطوب شوری در میزان متوسط و در قاب طرح کاملاً تصادفی با سه تکرار در سال ۱۳۸۶ در مرکز زیست‌پژوهی دانشگاه زابل (پیوندر) انجام گرفته. میزان سطح شوری شاده (۰)، ۱۰۰ و ۲۰۰ میلی‌مولار NaCl به عنوان فاکتور B در تفاوت محلی سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان نجات به آتش در شکم‌ها و مرطوب شوری در میزان نجات از شکم‌ها و مرطوب شوری در میزان نجات در شکم‌ها و مرطوب شوری در میزان نجات به وسیله گل‌های سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان نجات به وسیله گل‌های سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان نجات به وسیله گل‌های سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان نجات به وسیله گل‌های سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان نجات به وسیله گل‌های سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان نجات به وسیله گل‌های سیستم و آنزیم‌های مورد نظر در حاضر سئول داد و پس از رفتن نسبت شوری به میزان مورد نظر از سطح شوری در میزان متوسط در شکم‌ها و مرطوب شوری در میزان N5

واژه‌های کلیدی: شوری‌های آتی، آنزیم‌های آنزیم‌های آتی‌کسیدان، تنظیم کننده‌های اسمری، سمند. محقق که سمعه به شوری تحلیل با شوری

محیط ریشه تنش اسمری، سمت پوستی و کم‌بود عناصر غذایی است (12). شوری ریشه دیگر تنش‌های محیط‌های متغیر

مقدمه
شوری یکی از عوامل مهم کاهش رشد و عملکرد بسیاری از گیاهان زراعی به صورت در مناطق خشک و نیمه‌خشک دنبال است. واکنش معمول گیاهان به پایان نهایی حفظ شده‌ای در این حالت پایدار می‌کند. شوری
مطالب جامعه‌ی برخی شناسی‌های گیاهان به‌طور کلی در گیاهان تحت تنش شکن و شوری تغییراتی در ترکیبات آنزیمی (محلول‌های سازگار کننده) نمی‌باشد. این تغییرات تداخلی در فرآیندهای شیمیایی آنها وارد سلول به‌وجود می‌آید. از ترکیبات می‌توان به انتقال از کربوهیدرات‌های محلول (ماننیول، ساکاراز، رافینوز، و ایکوک) و ترکیبات نیتروزون (آسید آمینی، پروپولین و گلیسین) - به‌طور آکیرا کرد. ترکیبات سازگار کننده نقش مهمی در بهبود تنش اسمزی در گیاهان تحت تنش دارند (۱۷ و ۱۲)

در اثر گیاهان زراعی از جمله سورگوم بررسی‌های متدی که در مورد واکنش به افزایش شوری و تغییراتی که در میزان ترکیبات سازگار کننده آنها وجود می‌آید، صورت گرفته است. واکنش به خوراک رابطه بین میزان این ترکیبات با مقدار فعالیت آنزیم‌های آنیکی اکسیدان مشخص نیست (۱۷). این رو

استخراج عصاره و روش اندازه‌گیری آنزیم‌ها

مواد و محلول‌ها

Ice-Cold Extraction

تهیه با این مطلی شامل محلول بذر پاتیسیف فسفات ۱۰۰ میلی‌مولار با pH۵ در حجم ۴CC در محلول محلول
تنبیه مخلوط و به حجم ۱۰۰۰ سی سی رسانده شدند. این محلول در حد ۷ تهیه گردید.

TEHIEH MOLAL

اين محلول در حجم ۴۰ سی سی و با غلظت ۲ مولار ساخته شد. برای تهیه بافر Ice-Cold Extraction از ۵۰۰ میکرویتر این بافر تناسب فسفات به همراه ۲۰ میکرویتر EDTA برداشت و به حجم ۳۰۰ سی سی رسانده شدند.

جهت اندمازی آنزیم‌ها ۲/۵ گرم از بافت سبز برگ برداشت و با ۴ سی سی بافر سرده كاملسایده، به صورت همگن در آوردشده، محلول همگن از کاذب صاف بود و به مدت ۱۵ دقیقه دور انستیتوژن شدن. سپس فاز بالایی به عنوان عصاره پروتئینی برای منش جفت فعالیت آنزیمی استفاده شد. همه این عملیات‌ها در دمای ۴ درجه سانتی‌گراد انجام گرفت. در نهایت برای اندازه‌گیری فعالیت آنزیمی (CAT) از روش بیرز و میژر (۵)، آنزیم آسکوربیت پراکسیداز از روش تاکانوا و آسدا (۱۳) و گلیکوکل پراکسیداز (GPX) از روش اوربانک و همکاران استفاده شدند.

منهجین جهت اندمازی کردن پروتئین از روش اسلک (۱۶) استفاده گردیدند. دانشگاه هادری از دست آمده با استفاده از نرم افزار آماری مورد تجزیه و بررسی قرار گرفتند. مقایسه میانگین‌ها براساس آزمون بردی هانکی در سطح ۰/۵ درصد مورد گرفت.

نتایج و بحث

الف) آنزیم‌های آنزیمی

نتایج تجزیه آماده ها در جدول ۱ تشابه دارند. تفاوت معنی‌داری بین ارقام، سطوح مختلف نوری و اثر متقلبی این دو بر فعالیت آنزیم‌های آنزیمی (CAT) و گلیکول پراکسیداز (APX) و پراکسیداز (GPX) وجود دارد. با بالا رفتن میزان نوری از شاهد به ۲۰۰ میلی میلار بر میزان فعالیت
جدول ۱. تجزیه واریانس فعالیت آنزیم‌های آنتی اکسیدان و تنظیم کندنده‌های اسپرس

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>وزن تک بونه پروپلین</th>
<th>APX (میکرومول گلوکز در کرم وزن تر)</th>
<th>CAT (میکرومول گلوکز در کرم وزن تر)</th>
<th>GPX (میکرومول گلوکز در کرم وزن تر)</th>
<th>درجه ذرات تغییرات (آزادی H2O2 min⁻¹ mg⁻¹ prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری</td>
<td>0/88 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/005 **</td>
<td>2</td>
</tr>
<tr>
<td>رقم</td>
<td>0/61 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>1</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>0/61 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>2</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>1/12 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>12</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>0/22 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0</td>
</tr>
<tr>
<td>% CV</td>
<td>12/0/7</td>
<td>17/2</td>
<td>10/7</td>
<td>1/16</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. مقایسه بیانگی‌های فعالیت آنزیم‌های آنتی اکسیدان و تنظیم کندنده‌های اسپرس

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>وزن تک بونه پروپلین</th>
<th>APX (میکرومول گلوکز در کرم وزن تر)</th>
<th>CAT (میکرومول گلوکز در کرم وزن تر)</th>
<th>GPX (میکرومول گلوکز در کرم وزن تر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری</td>
<td>0/88 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/005 **</td>
</tr>
<tr>
<td>رقم</td>
<td>0/61 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>0/61 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>1/12 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>0/22 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
<td>0/001 **</td>
</tr>
<tr>
<td>% CV</td>
<td>12/0/7</td>
<td>17/2</td>
<td>10/7</td>
<td>1/16</td>
</tr>
</tbody>
</table>

تفاوت حروف در هر ستون نشان دهنده اختلاف معنی‌دار براساس آزمون چند دامنه‌ای دانکن در سطح احتمال ۵ درصد می‌باشد.

نمودار ۱. اثر متقابل سطوح شوری و رقم بر فعالیت آنزیم GPX
نمونه‌های کنده‌های اسپرمی در جدول ۱ مشاهده می‌شود. تأثیر معنی‌داری بر میزان تجمع تکانه‌ای کروپیدرات و پرولین در بافت سبز می‌شود. میزان میزان در بافت سبز بخش هواپیمای سورگوم دارد. با بالا رفتن میزان میزان در بافت سبز می‌شود.
جدول ۳: همبستگی بین فعالیت آنزیم‌های آنتی اکسیدان و با تغییر کندن‌های اسمروی

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>وزن بونه</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ملاحظه:
- **GPX** افزایش محسوسی در این آزمایش‌ها دارای نتایج بی‌معنی‌دار با هم بودند.
- به طوری که بالاترین میزان پرولین مربوط به رقم مطلق سیستم و کربوهیدرات مربوط به رقم پیام بود (جدول ۲ و ۳).
- در زمان فارغ‌التحصیل این ارقام در معرض سطوح مختلف شوری (شکل‌های ۴ و ۵) مشاهده می‌شود. غلظت پرولین در رقم محلی به‌جای هر دو سطح شوری و حتی در سطح شاهد بالاتر از رقم پیام بود. اما در افزایش غلظت پرولین در رقم پیام بیشتر از رقم محلی بود به طوری که در بالاترین سطح شوری (+۰۰ میلی‌مولار) میزان پرولین آن از افزایش معادل ۶۷ درصد سیستم به‌شاهد برخورد است اما این افزایش برای رقم محلی تنها معادل ۷۴ درصد می‌باشد. این امر نشان می‌دهد که غلظت پرولین در رقم حدود سه برابر رقم محلی افزایش داشته است.
- محققین مختلف از جمله مارکرتین و همکاران (۱۵) در افزایش میزان پرولین در کنگدم و سولتوهان و همکاران (۱۷) در برنج تحت تنش شوری خبر می‌دهند. کاوالیلر (۶) اعلام کرد افزایش پرولین در کاهش شوری تحت تنش شوری در واقع نویع واکنش از طرف گیاه به کاهش پتانسیل آب در محیط رشد است. در این زمان پرولین با کم کردن پتانسیل اسمروی سلول‌های ریشه، شرایط لازم برای جدید آب و عناصر غذایی را فراهم می‌کند. به سبب افزایش پرولین در جسم کمی از آب سلول، پتانسیل کل آب در سلول افزایش می‌یابد و این امر شرایط لازم برای جذب آب از خاک توسط سلول‌های ریشه را فراهم می‌کند.
بررسی سطوح مختلف شوری بر تنظیم کننده‌های اسمزی و فعالیت آنزیم‌های …

شکل ۴ تغییرات کربوهیدرات به رقم سوورگوم در سطوح مختلف شوری

شکل ۵ تغییرات پروپلین در رقم سوورگوم در سطوح مختلف شوری

شکل ۶ تغییرات وزن تنک بوته در رقم سوورگوم در سطوح مختلف شوری

پژوهشگرین این رقم نسبت به رقم اصلاح شده یا پام است. این رقم از دایرکر
به‌کارگیری ترکیبات آلی یکی از فرآیندهای سازگاری در گیاهان
است که به حفظ پتانسیل تورگر در طی بروز تنک شوری و
خشنده کمک می‌کند. این امر مانع دی‌هیدراته شدن سلول‌های
گیاه و زابل‌چینی‌سکی (۷) اعلام کرده تغییر اسمنزی با
سیستم‌های به‌کارگیری ترکیبات آلی یکی از فرآیندهای سازگاری در گیاهان
است که به حفظ پتانسیل تورگر در طی بروز تنک شوری و
خشنده کمک می‌کند. این امر مانع دی‌هیدراته شدن سلول‌های

مباحث مورد استفاده

