تغییرات عملکرد دانه و ویژگی‌های فیزیولوژیکی مرتبط با آن در ارقام گندم

اصلاح شده بین سال‌های ۱۳۸۰ تا ۱۳۸۰ در ایران

حمیدرضا میری

(تاریخ دریافت: ۸/۶/۱۳۸۸، تاریخ پذیرش: ۸/۷/۱۳۸۸)

چکیده

به منظور آگاهی از تغییرات صفات مورفولوژیک و فیزیولوژیکی در طی اصلاح گندم در فاصله سال‌های ۱۳۸۰ تا ۱۳۸۰ در کشور و تعیین رابطه این صفات با افزایش عملکرد دانه، آزمایش‌ها با استفاده از ۱۵ رقم کنمد از ارقام اصلاح شده در سال گذشته در شهرستان ارسجان (شمال شرق هشتستان گیلان) در دو سال زراعتی ۱۳۸۰ و ۱۳۸۵ استحکام و اجرای گردیده. نتایج آزمایش نشان داد که پیشرفت در سال معروفی رکود عملکرد دانه رابطه معنی‌داری وجود دارد. شاخص برداشت و عملکرد بیولوژیک به طور معنی‌داری افزایش یافته است. تغییرات سرعت تولیدی زیست در این دوره معنی‌دار نبود. ولی سرعت تعرق و هیدرات نشان داد که در افزایش یافته است. افزایش معنی‌دار شاخص کلروفیل برگ در این دوره حاکی از این است که در ارقام جدید، میزان کلروفیل برگ افزایش یافته است. از میان اجزای عملکرد تعادل دانه در سال مشخصه‌های افزایش یافته این صفات با افزایش عملکرد، تعادل سیلی در م تشخیص افزایش یافته اما این افزایش معنی‌دار نیست. همچنین ارتفاع بلوتو به طور معنی‌داری کاهش یافته است. به طور کلی نتایج حاکی از این است که در این دوره افزایش شاخص برداشت، تعادل دانه در سال، هدایت روزنایی، سرعت تعرق و کاهش ارتفاع بلوتو بیش از نتیجه‌گیری‌ها در افزایش عملکرد دانه گندم در دوره اخیر‌های گذشته بوده است. به نظر مرسد تغییرات بیولوژیکی و تعادل سیلی در واحد سطح (افزایش پنج گز) در افزایش عملکرد تا حدودی کمتر بوده است. به نظر مرسد شاخص برداشت به سطح میزان خود تبدیل شده و لی همچنین امکان افزایش عملکرد از طریق شاخص برداشت وجود دارد.

واژه‌هاي کلیدي: گنمد، پتانسیل عملکرد، بهبود زنتیکی، اجزای عملکرد، شاخص برداشت، عملکرد بیولوژیک

مقدمه

گندم (Triticum aestivum L. (غلات را تشکیل می‌دهد و منبع اصلی کاری برای بیش از ۱/۵ میلیارد انسان است. به طور بیشگاهی نگدنم یک پنج کل کاربری مورد نیاز مردم جهان را تامین می‌کند (۱۱). در برخی از مناطق جهان مانند شمال آفریقا، ترکیه و آسیای مرکزی گنمد نیزی از انرژی روغن‌های مردم را تامین می‌کند. این گیاه ترفیع در سطح

۱. استفاده زراعت، دانشگاه آزاد اسلامی واحد ارسنجان

hmrir@iau.ac.ir: منتشر مکاتبات، پست الکترونیکی*

۴۳
محصول و مدرن تولید بیوماس 16/ درصد دیستر از ارقام اصلاح شده در سال 1979 است. استفاده از هسته‌های آکوپانتا شده به کاهش ارتفاع سطح و در تیپ افزایش بهره دانشمند اصلاح گیاهان زراعی برای آغازی از بهبود عملکرد از طرق مختلف در طی بک‌دوره از معرفی ارقام تغییرات صفات را بررسی کرده و رابطه آنها را با عملکرد مشخص می‌کند (38). بنابراین قسمت ایجاد این (Idiootype) گیاه‌های اندازه‌گیری عملکرد و سپس انجام این بهبود زننکی‌پاتنسل عملکرد دانه در سیستم‌های بررسی جهان از دهه 1960 تصیباً یک کرید در سال بود است. برای مثال می‌توان به نتایج مطالعات دیگر مکروکلاست (24 و 21) اشاره داشت. آگاهی از تغییرات صفات فیزیولوژیک همراه با بهبود زننکی‌پاتنسل عملکرد در برای بهبود شناسایی فاکتورهای محدود کندن عملکرد برای تغییر استراتژی‌های اصلاح نتایج در آینده ضروری است (22).

نقش شاخص برندشت به عنوان مشخص صفت در افزایش عملکرد دانه کننده مطالعات متعدد مورد تأکید قرار گرفته است (24). (26 و 27). به‌طوری که در مطالعات سربای افزایش برگ، افزایش درصد بهداشت روزنه‌ای و کاهش بوده است. (CTD) (49 درصد) در آزمایش‌های گذشته و کاهش مورد توجه با وجود انجام مطالعات متعدد در رابطه نقش صفات فیزیولوژیک در افزایش عملکرد دانه در گندم هنوز کافی از این رابطه اندک است. در رابطه با ارقام گندم اصلاح شده در کشور ما نیز مطالعات محدودی صورت گرفته است. بنابراین برای آگاهی از تغییرات صفات فیزیولوژیک و مورفولوژیک در طی اصلاح گندم در 60 سال گذشته در کشور آزمایش حاضر طراحی و اجرا گردیده است.

مواد و روش‌ها
پژوهش حاضر در دو سال را در سال‌های 1385-86 و 1386-87 مزرعه تحقیقاتی دانشگاه آزاد اسلامی واحد ارسنجان واقع در
شهرستان ارستجان در استان فارس با ارتفاع از سطح دریا و طول جغرافیایی ۳۳ درجه و ۱۹ دقیقه شرقی و عرض جغرافیایی ۲۹ درجه و ۰۵ دقیقه شرق شیراز صورت گرفت. بافت خاک موزه از نوع بافت سنگی رس بی‌بست درصد ماهی آنی، pH ۸/۹ و قابلیت هدایت ۰/۵۹ میلی مس بر سانتی‌متر بود. اطلاعات هواشناسی منطقه آزمایشی در طول مدت آزمایش بر اساس ایستگاه هواشناسی اداره کشاورزی در جدول ۱ آمده است.

زمان مورد کشت در هر دو سال آزمایش در سال قبل به صورت آبش بود. بعد از نیتروژن به میزان ۱۵۰ کیلوگرم در هکتار و فسفات آمونیم به میزان ۲۰۰ کیلوگرم در هکتار به همراه اندازه گیری میزان سیلیکات در نیروی رفت و سفرت به صورت نیتروژن در دو روست در مرحله نیتروژن قبل از کشت و نیتروژن به قارچ گزاری شده. بعد از آماده سازی زمین کشت‌های به طول ۴ متر و عرض ۲/۵ متر انجام شد. به طوری که در هر کرت آزمایشی ۱۵ خط کشت با فاصله بین رنگ ۱۵ سانتی‌متر قرار داشت که خطوط کناری برای اثر حاشیه‌ای و خطوط وسط برای اندازه‌گیری صفات مورد نظر مورد استفاده قرار گرفت. کشت در سال اول در تاریخ ۱۰ آذر و در سال دوم در تاریخ ۹ آذر و با دست انجام گرفت. تراکم نهایی در هر دو سال آزمایش ۲۵۰ بوته در متر مربع در نظر گرفته شد. در طول دوره رشد گیاه عملیات آبیاری و مسازه به علی‌های هرز و سایر آفات‌های حسب انجام شد.

طرح آزمایش به صورت بلوک‌های کامال تصادفی با چهار تکرار و تیمار کیفی شماره ۱۵ رقم از ارقام گند نان بود. ارقام مورد استفاده در آزمایش از بین حدود ۱۰۰ رقمی اصلاح شده در بین سال‌های ۱۳۵۰ تا ۱۳۵۸ در چهار به عصر دوازده ماهه اندازه‌گیری شدند. این تعداد از ارقام چهار به‌کار گرفته شدند. به عبارتی در این شرایط که اختلافات با یکدیگر اختیاری بوده یعنی آنها ارقام پیشین خود را در یک صفت خاص اختصاص داده شدند. انتخاب نشدنیات. اساس ارقام مورد استفاده به همراه سال معرفی

۴۵
جدول 1. داده‌ها هواشناسی منطقه آزمایش در طول دوره کشت گیاه زراعی

<table>
<thead>
<tr>
<th>سال</th>
<th>رطوبت نسبی (٪)</th>
<th>میانگین دما (℃)</th>
<th>حداقل دما (℃)</th>
<th>ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>21/7</td>
<td>19/9</td>
<td>13/5</td>
<td>مهر</td>
</tr>
<tr>
<td>85</td>
<td>39/0</td>
<td>18/3</td>
<td>7/6</td>
<td>آبان</td>
</tr>
<tr>
<td>85</td>
<td>64/0</td>
<td>5/8</td>
<td>1/5</td>
<td>آذر</td>
</tr>
<tr>
<td>85</td>
<td>54/7</td>
<td>5/6</td>
<td>11/4</td>
<td>دی</td>
</tr>
<tr>
<td>85</td>
<td>48/7</td>
<td>7/3</td>
<td>1/4</td>
<td>بهمن</td>
</tr>
<tr>
<td>86</td>
<td>41/3</td>
<td>13/1</td>
<td>6/2</td>
<td>فروردین</td>
</tr>
<tr>
<td>86</td>
<td>26/3</td>
<td>18/5</td>
<td>11/4</td>
<td>اردیبهشت</td>
</tr>
<tr>
<td>86</td>
<td>22/0</td>
<td>21/5</td>
<td>14/3</td>
<td>خرداد</td>
</tr>
<tr>
<td>86</td>
<td>16/0</td>
<td>27/5</td>
<td>19/8</td>
<td>تیر</td>
</tr>
</tbody>
</table>

بررسی رابطه رگرسیون بین عملکرد دانه و سال معرفی رقم نشان داد که در طی 60 سال گذشته عملکرد دانه به صورت خطی (r=0/1, P=0/012) افزایش یافته است (شکل 1).
جدول ۴. میانگین عملکرد دانه، عملکرد بیولوژیک و شاخص برداشت ارقام گندم

<table>
<thead>
<tr>
<th>شاخص برداشت (%)</th>
<th>عملکرد بیولوژیک (g/m²)</th>
<th>عملکرد دانه (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1385-85</td>
<td>1384-85</td>
<td>1385-85</td>
</tr>
<tr>
<td>شاه پسند</td>
<td>28/3</td>
<td>25/1</td>
</tr>
<tr>
<td>طبیس</td>
<td>24/5</td>
<td>30/7</td>
</tr>
<tr>
<td>شعله</td>
<td>32/6</td>
<td>29/2</td>
</tr>
<tr>
<td>کمربنده</td>
<td>37/6</td>
<td>34/2</td>
</tr>
<tr>
<td>گلابی</td>
<td>30/4</td>
<td>33/9</td>
</tr>
<tr>
<td>بئر کابل</td>
<td>40/1</td>
<td>32/5</td>
</tr>
<tr>
<td>پیکتاز</td>
<td>44/8</td>
<td>39/0</td>
</tr>
<tr>
<td>کرج</td>
<td>36/9</td>
<td>38/0</td>
</tr>
<tr>
<td>کرج</td>
<td>41/2</td>
<td>46/2</td>
</tr>
<tr>
<td>کرج</td>
<td>51/6</td>
<td>47/5</td>
</tr>
<tr>
<td>فلات</td>
<td>47/7</td>
<td>49/9</td>
</tr>
<tr>
<td>قفس</td>
<td>48/7</td>
<td>48/7</td>
</tr>
<tr>
<td>نیک نازاد</td>
<td>49/3</td>
<td>47/6</td>
</tr>
<tr>
<td>باواروس</td>
<td>46/3</td>
<td>49/0</td>
</tr>
<tr>
<td>مرودشت</td>
<td>48/4</td>
<td>52/9</td>
</tr>
</tbody>
</table>

جدول ۳. ارقام مورد استفاده در آزمایش به همراه سال مصرفی و میادا آنها

<table>
<thead>
<tr>
<th>نام رقم</th>
<th>سال مصرفی</th>
<th>میادا (با حل مصرفی)</th>
<th>متوسط عملکرد (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۳۱</td>
<td>۱۳۸۵-۸۵</td>
<td>۱۳۸۴-۸۵</td>
<td>۱۳۸۵-۸۵</td>
</tr>
<tr>
<td>شاه پسند</td>
<td></td>
<td></td>
<td>۳/۷۵</td>
</tr>
<tr>
<td>طبیس</td>
<td></td>
<td></td>
<td>۳/۵</td>
</tr>
<tr>
<td>شعله</td>
<td></td>
<td></td>
<td>۳/۰</td>
</tr>
<tr>
<td>کمربنده</td>
<td></td>
<td></td>
<td>۳/۰</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۴/۵</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۴/۰</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۴/۲</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۴/۷</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۴/۳</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۵/۵</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۵/۲</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۶/۵</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۶/۷</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۶/۴</td>
</tr>
<tr>
<td>کرج</td>
<td></td>
<td></td>
<td>۷/۰</td>
</tr>
</tbody>
</table>

LSD0.05
براساس رابطه رگرسیون در طی این ۶۰ سال عملکرد دانه با میزان ۷/۵ کیلوگرم در هکتار در سال ۱۳۶۰، درصد در سال افزایش یافت است.

در بررسی دوره ۶۰ سال اصلاح گندم در کشور پیشین افزایش در سال‌های دهه ۱۳۵۰، یعنی از زمان معرفی رقم کرج ۱، مشاهده شده است (جدول ۳). این امر احتمالاً به دلیل

شکل ۱ رابطه بین سال معرفی رقم و عملکرد بیولوژیک

\[y = 5.7799x + 211.81 \]

\[r = 0.912^{**} \]

شکل ۲ رابطه بین سال معرفی رقم و عملکرد دانه

\[y = 1.6314x + 1304 \]

\[r = 0.642^{**} \]
تغییرات عملکرد دانه و پیزی‌های فیزیولوژیکی مرتبط با آن در ارقام گندم

واد و شدن زده‌های پاکوتانی در اصلاح ارقام مصادف با استفاده از آنها در دهه 1960 و 1970 میلادی در جهان بوده است. در همین راستا زده و همکاران (47) مشاهده کرده‌اند که در طی 40 سال اصلاح گندم در خشک (از 1930 تا 1980) بهبود عملکرد میوه نرم‌نای در نه ساله‌ای پس از بورده و مشاهیر افزایش در دهه 1980 مشاهده شده است، که به عقیده ایشان مربوط به افزایش مصرف مداد است، البته در اطرفی از اراضی مشاهده شده که افزایش عملکرد دانه در گندم در سالهای گذشته با افزایش ماده خشک تولیدی همراه بوده است (21). برای مثال وادیگونک و همکاران (21) مشاهده کرده‌اند که در ارقام پر محصول و مصدرون تولید بیوماس 16 درصد بیشتر از ارقام اصلی شده در سال 1970 است. همچنین در طول این سال‌ها نشان داده نمی‌شود (نحوه زده و غیر زده) بوده است که کبد افزایش عملکرد به علت گزینه ممکن است تاثیرهای اضافی در جهت بهبود مقدار به عواضی ناسازگار بوده و اختلاف بین ارقام سالهای آخر استخراج بالای میانگین افزایش عملکرد بیلوزیک

نتایج حاصل از تجربه رگرسیون نشان داد که عملکرد بیلوزیک در طی دوره 60 ساله یافته است (شکل 2). با توجه به جدول 3 نیز مشاهده می‌شود که بین برخی از ارقام از نظر کل ماده خشک تولیدی اختلاف آماری معنی‌داری در مساحت 5 درصد وجود دارد. به ویژه ارقام قدمی گاندی طبیعی و شاهد پدید در مقایسه با ارقام گندم ماده خشک کمتری تولید کرده‌اند. بطوری که اختلاف بین بیشترین و کمترین عملکرد بیلوزیک در ارقام مختلف در سال اول آزمایش حدود ۲/۶ درصد همکار

و در سال دوم آزمایش ۱/۹ تا نت در همکار بود.

در برخی از مطالعات گزارش شده است که در اطلاعات

گندم عملکرد بیلوزیک نسبت ماده و ارقام جدید از نظر تولید

ماده خشک میله بررسی نسبت به ارقام قدیمی تدارید. برای مثال

سبیا و همکاران (37) مشاهده کرده‌اند که ارقام پاکوتانی و جدید

گندم در مقایسه با ارقام قدیمی ماده خشک بیشتری تولید

شاخص برداشت

بین ارقام مختلف از نظر شاخص برداشت اختلاف آماری

میان‌داری مشاهده شد (جدول 3). ارقام جدید در مقایسه با

شکل گناه است.
سقوط فتوستن برگ
رابطه رگرسیون معنی‌داری بین سال عرفا و رقم و سرعت فتوستن برگ در مرحله گله دهی از ارقام گندم دیده‌شد (شکل 4). به‌طور دلیل در طی این دوره سرعت فتوستن افزایش یافته بود. در حقیقت بین ارقام مختلف ارتفاع برداشت و سرعت فتوستن در ارقام شامل بود و شعله (به ترتیب با 8/1 و 9/1 میکرومول بر متر مربع بر ثانیه) که از ارقام قدمی هستند، مشاهده شد. بیشترین سرعت فتوستن مرتبه را در مقدار 17/6 میکرومول بر متر مربع بر ثانیه (به طور کلی) از نظر سرعت فتوستن روند مشخصی بین ارقام قدمی و جدید نمی‌توان مشخص کرد.

رایانه بین میزان فتوستن و عملکرد گیاه زراعی پیچیده است. برای مثال ایوانس و فاستنر (17) هم‌بسیگین متغیف بین میزان فتوستن و عملکرد دانه در گندم گزارش کرده‌اند. همچنین در مورد بیشتر گیاهان زراعی از جمله گندم (17) و 21، درخت (23) (25)، ساپا (22)، کلنیا (22) (22) و گیاهان دیگری مانند چربی، آفت‌بگردن، سیب، زمینی، لوبیا، علوم و فنون کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و ششم (تیر) / 1387

ارقام قدمی دارای شاخص برداشت بیشتری بودند. به طوری که شاخص برداشت در ارقام قدمی مناسب طبیعی و شاخص یکسان از حدود 33 درصد به حدود 70 درصد از ارقام جدید و پر محصول (از جمله شاخص افزایش یافته است (جدول 3).

نتایج نزدیک رگرسیون نیز حاکی از افزایش خطي و معنی‌دار شاخص برداشت در طی 50 سال گذشته بود (شکل 3). به‌طوری که بر اساس نتایج رگرسیون شاخص برداشت با نسبت 44/0 درصد در سال افزایش یافته است (10).

همکاران افزایش عملکرد، به‌طوری که در افزایش شاخص برداشت در طی 130 سال مشاهده می‌شود که این بدلیل استفاده و به کارگیری زنده‌ی باکتریایی در این سال‌ها در اصلاح گندم است. در مطالعات متعدد گزارش شده است که افزایش عملکرد دانه در گندم هم‌بسیگین معنی‌داری با شاخص برداشت داشته است. آسیبی و همکاران (8) گزارش کرده‌اند که شاخص برداشت از کنار 23 درصد در ارقام قدمی تا 53 درصد در ارقام جدید افزایش یافته است. ساری‌بی و همکاران (44) نیز هم‌بسیگین معنی‌دار عملکرد دانه ارقام مدیائی با شاخص برداشت را گزارش کرده‌اند. دویوگ و همکاران (33) نشان داده که شاخص برداشت در ارقام ایالتی و اسپانیایی مورد آزمایش به ترتیب با نسبت 44/0 و 33/5 درصد در سال افزایش یافته است. رو و همکاران (24) نیز مشاهده کرده که افزایش عملکرد دانه در گندم می‌تواند مقدارت با شاخص برداشت باشد. در برداشت دارد. همچنین در مطالعات در ایالات متحده مشاهده شد که شاخص برداشت ارقام گندم هم‌بسیگین معنی‌داری با افزایش عملکرد دانه دارد (25). مطالعات دیگر از جمله سیستمی (26) و همکاران (34) و اکتیو و همکاران (32) کریمی و سیدی (51) و زند و همکاران (2) نیز در مطالعات خود گزارش کرده که هم‌بسیگین معنی‌داری که این نتایج مشاهده شده در این منابع مشاهده شده است. در برداشت گیاهان در منابع مشاهده شده است. برای مثال ایوانس و فاستنر (17) هم‌بسیگین متغیف بین میزان فتوستن و عملکرد دانه در گندم گزارش کرده‌اند. همچنین در مورد بیشتر گیاهان زراعی از جمله گندم (17) و 21 درخت (23) (25) ساپا (22) کلنیا (22) (22) و گیاهان دیگری مانند چربی، آفت‌بگردن، سیب، زمینی، لوبیا،
شکل ۳. رابطه بین سال معرفی رقم و شاخص برداشت

\[y = 0.4472x + 15.619 \]
\[r = 0.931^{**} \]

شکل ۴. رابطه بین سال معرفی و سرعت فتوستز

\[y = 0.0469x + 11.412 \]
\[r = 0.448 \]

علت این عدم همبستگی ممکن است به شیوه اندازه‌گیری فتوستز (که معمولاً در کوتاه مدت و روی یک‌پای یک‌برگ یک‌پک واحد آزمایش اندازه‌گیری می‌شود) (۱۲ و ۴۴) و اثرات سورگوم و چو (به نقل از منبع ۱۶) گزارش شده است که تتنوع زیادی از نظر سرعت فتوستز بین ارقام مختلف وجود دارد. اما این اختلاف همبسته با عملکرد دانه همبستگی نداشته است.
جدول ۲: میانگین سرعت فتوسنتز، هدایت روزنایی و شاخص کلروفیل ارقام گندم

<table>
<thead>
<tr>
<th>شاخص کلروفیل</th>
<th>هدایت روزنایی (mmol/m2/s)</th>
<th>سرعت تعرق (μmol/m2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۵-۸۴</td>
<td>۸۴-۸۳</td>
<td>۸۱-۸۰</td>
</tr>
<tr>
<td>شاه پسن</td>
<td>۱۵/۸</td>
<td>۱۴/۵</td>
</tr>
<tr>
<td>طبیعی</td>
<td>۱۲/۴</td>
<td>۱۰/۸</td>
</tr>
<tr>
<td>شعله</td>
<td>۱۱/۵</td>
<td>۹/۳</td>
</tr>
<tr>
<td>عدل ۱</td>
<td>۹/۵</td>
<td>۸/۲</td>
</tr>
<tr>
<td>شاهی</td>
<td>۶/۲</td>
<td>۵/۵</td>
</tr>
<tr>
<td>بیوستایا</td>
<td>۳/۲</td>
<td>۲/۴</td>
</tr>
<tr>
<td>نیک نازد</td>
<td>۲/۹</td>
<td>۱/۷</td>
</tr>
<tr>
<td>باوروس</td>
<td>۱/۹</td>
<td>۰/۸</td>
</tr>
<tr>
<td>کاوه</td>
<td>۱/۶</td>
<td>۰/۴</td>
</tr>
<tr>
<td>۱۳۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فلات</td>
<td></td>
<td></td>
</tr>
<tr>
<td>قدس</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیک نازد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>باوروس</td>
<td></td>
<td></td>
</tr>
<tr>
<td>موردت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شیراز</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

پلیوتروپیک (Pleiotropic) این صفت و عملکرد دانه مربوط باشد (۳۱). در مطالعه‌ای روی گندم‌هایی که بین سال‌های ۱۹۶۴ تا ۱۹۹۰ در آرژانتین اصلاح شده بودند، مشاهده شد که طی این دوره اندازه‌گیری سرعت تعرق و عملکرد دانه، مقایسه فتوسنتز منجر به قابلیت و تراپوتند اجداد و حشی گندم های امروزی موجب ارائه این نظریه شد که حداکثر سرعت فتوسنتز برگ در اجادات و حشی گندم بیشتر از ارقام پشتیبانی امروزی است (۱۷ و ۲۱). در مطالعاتی روی گندم‌هایی که بین سال‌های ۱۹۶۲ تا ۱۹۸۸ در CIMMYT مرکز اصلاح و معرفی شده بودند، مشاهده شد که همبستگی معنی‌داری بین عملکرد دانه و فتوسنتز برگ وجود دارد. به طوری که ۲۹ درصد عملکرد دانه (سال‌های ۱۹۶۲ تا ۱۹۸۸) با ۲۳ درصد افزایش سرعت فتوسنتز همراه بود. اما در عین حال در این مطالعه بین سرعت تعرق
تغییرات عملکرد دانه و وزنه‌های فیزیولوژیک مرتبط با آن در ارقام گندم

نشان داده شده است. بین ارقام مختلف از نظر ایسین و وزنگی اختلاف معنی‌داری مشاهده شد. بیشترین کمترین هماید هر دوی ارقام مورد است. نتایج به ترتیب در ارقام مردود و طبیعی مشاهده شد (به ترتیب ۷/۲۷ در ۱۴/۰ در سال اول و ۶/۲ میلی‌مول بر متریم بر ثانیه (در سال دوم) بیشترین و کمترین سرعت تعرق را دارا بودند. بین ارقام مردود، خسر، نیک تازگ، فلات، کاوه و شیراز از نظر سرعت تعرق اختلاف معنی‌داری وجود نداشتند. ولی در مقایسه با ارقام قدیمی مانند طبیعی، شاه پسند و شعله به‌طور معنی‌دار تعرق بیشتری داشتند. رابطه رگرسیونی بین سال معترف و سرعت تعرق برخ پرچم‌افزایی و معنی‌دار بود (شکل ۵). به عبارتی در طی این دوره ۶۰ ساعت سرعت تعرق برخ طی افزایش یافته است. این امر نشان می‌دهد که بیشتر ارقام جدید در چبدی و مصرف آب کاه و در نتیجه تعرق در آنها است. همچنین افزایش تعرق در ارقام جدید ممکن است با در افزایش هدایت روزنها در این ارقام باشد (شکل ۶).

در مطالعات قبلی گفته شد که با توجه به مشاهده شده است که بین ارقام مختلف از نظر سرعت تعرق اختلاف معنی‌داری وجود دارد. همچنین هم‌سنجی منطقی و معنی‌داری بین سرعت تعرق برخ در مرحله گلد هدی و عملکرد دانه وجود دارد (۲۸).

تا ۶۹% به‌صورت افزایش عملکرد دانه فاقد و به‌طور کل در طی پنجمین دوره ۳۰–۵۰ ساله، هدایت روزنها به میزان ۱/۴ درصد در سال افزایش یافته بود.

مزایا کارلو فیل برگ

شاخه کارلو فیل برگ پرچم در ارقام مختلف از نظر آماری اختلاف معنی‌داری داشت و در ارقام جدید بیش از ارقام قدیمی بود (جدول ۴). رقم پاراکیورس در هر ۱۰ سال و دوم (به ترتیب بی‌مقدار ۶/۳۵ و ۶/۱۳۷ بیشترین میزان کارلو فیل برگ را داشت. کمترین میزان کارلو فیل برگ در سال اول و دوم به ترتیب در ارقام طبیعی و عدل (۱/۴ بی‌مقدار ۶/۳۵ و ۶/۳۵۰ میزان مشاهده شد (جدول ۴). به‌طورکل بر اساس رابطه رگرسیونی بین سال معترف و کارلو فیل برگ (شکل ۷) مشاهده کرد که کارلو فیل برگ پرچم در طی ۶۰ سال گذشته به صورت خصی

ارقام شاه پسند و مردودشته به ترتیب با تعرق ۳/۰ و ۷/۰۵ (در سال اول) و ۳/۰۶ میلی‌مول بر متریم بر ثانیه (در سال دوم) بیشترین و کمترین سرعت تعرق را دارا بودند. بین ارقام مردود، خسر، نیک تازگ، فلات، کاوه و شیراز از نظر سرعت تعرق اختلاف معنی‌داری وجود نداشتند. ولی در مقایسه با ارقام قدیمی مانند طبیعی، شاه پسند و شعله به‌طور معنی‌دار تعرق بیشتری داشتند. رابطه رگرسیونی بین سال معترف و سرعت تعرق برخ پرچم‌افزایی و معنی‌دار بود (شکل ۵). به عبارتی در طی این دوره ۶۰ ساعت سرعت تعرق برخ طی افزایش یافته است. این امر نشان می‌دهد که بیشتر ارقام جدید در چبدی و مصرف آب کاه و در نتیجه تعرق در آنها است. همچنین افزایش تعرق در ارقام جدید ممکن است با در افزایش هدایت روزنها در این ارقام باشد (شکل ۶).

مزایا کارلو فیل برگ

شاخه کارلو فیل برگ پرچم در ارقام مختلف از نظر آماری اختلاف معنی‌داری داشت و در ارقام جدید بیش از ارقام قدیمی بود (جدول ۴). رقم پاراکیورس در هر ۱۰ سال و دوم (به ترتیب بی‌مقدار ۶/۳۵ و ۶/۱۳۷ بیشترین میزان کارلو فیل برگ را داشت. کمترین میزان کارلو فیل برگ در سال اول و دوم به ترتیب در ارقام طبیعی و عدل (۱/۴ بی‌مقدار ۶/۳۵ و ۶/۳۵۰ میزان مشاهده شد (جدول ۴). به‌طورکل بر اساس رابطه رگرسیونی بین سال معترف و کارلو فیل برگ (شکل ۷) مشاهده کرد که کارلو فیل برگ پرچم در طی ۶۰ سال گذشته به صورت خصی

ارقام شاه پسند و مردودشته به ترتیب با تعرق ۳/۰ و ۷/۰۵ (در سال اول) و ۳/۰۶ میلی‌مول بر متریم بر ثانیه (در سال دوم) بیشترین و کمترین سرعت تعرق را دارا بودند. بین ارقام مردود، خسر، نیک تازگ، فلات، کاوه و شیراز از نظر سرعت تعرق اختلاف معنی‌داری وجود نداشتند. ولی در مقایسه با ارقام قدیمی مانند طبیعی، شاه پسند و شعله به‌طور معنی‌دار تعرق بیشتری داشتند. رابطه رگرسیونی بین سال معترف و سرعت تعرق برخ پرچم‌افزایی و معنی‌دار بود (شکل ۵). به عبارتی در طی این دوره ۶۰ ساعت سرعت تعرق برخ طی افزایش یافته است. این امر نشان می‌دهد که بیشتر ارقام جدید در چبدی و مصرف آب کاه و در نتیجه تعرق در آنها است. همچنین افزایش تعرق در ارقام جدید ممکن است با در افزایش هدایت روزنها در این ارقام باشد (شکل ۶).

مزایا کارلو فیل برگ

شاخه کارلو فیل برگ پرچم در ارقام مختلف از نظر آماری اختلاف معنی‌داری داشت و در ارقام جدید بیش از ارقام قدیمی بود (جدول ۴). رقم پاراکیورس در هر ۱۰ سال و دوم (به ترتیب بی‌مقدار ۶/۳۵ و ۶/۱۳۷ بیشترین میزان کارلو فیل برگ را داشت. کمترین میزان کارلو فیل برگ در سال اول و دوم به ترتیب در ارقام طبیعی و عدل (۱/۴ بی‌مقدار ۶/۳۵ و ۶/۳۵۰ میزان مشاهده شد (جدول ۴). به‌طورکل بر اساس رابطه رگرسیونی بین سال معترف و کارلو فیل برگ (شکل ۷) مشاهده کرد که کارلو فیل برگ پرچم در طی ۶۰ سال گذشته به صورت خصی
شایستگی مصرفی کیاه (به ویژه آبیاری و وضعیت تغذیهای) در زمان اندازه‌گیری است. ممکن است این رابطه دقیقی بین میزان کاروتئن برگ و عملکرد دیده نشود. برای مثال در گندم سیاه و همکاران (37) مشاهده کردند که بین ارقام قدیمی و ارقام افزایش بافتی است.

از آنجایی که کاروتئن رنگ‌دانه اصلی فتوسنتز در گیاه است میزان کاروتئن برگ می‌تواند میزان و همچنین برگ باشد. ولی با توجه به میزان کاروتئن برگ بود تا تأثیر

شکل ۵: رابطه بین میزان معرفي رقم و سرعت تعرق

شکل ۶: رابطه بین میزان معرفي رقم و هدایت روزنهایی

$y = 0.0258x + 4.3983$

$r = 0.745**$

$y = 0.0014x + 0.1186$

$r = 0.659**$
تجهیزات عملکرد دانه و ویژگی‌های فیزیولوژیک مرتبط با آن در ارقام گندم ...

جدول 5. ارقام جدید در مقایسه با ارقام قدیمی تعداد سبیل بهتری تولید کردن. با وجود تأثیر همبستگی ندارند، اگرچه بین سرعت افزایش نابودی ماده بهبود می‌یابد. همچنین نتایج نشان می‌دهند که ارقام جدید در مقایسه با ارقام قدیمی (50 درصد) میزان بیشتری بهبود نشان داده کرده‌اند. همچنین در ارقام جدید تعداد سبیل بهبود بیشتری نشان داده کرده که این بهبود به‌طور کلی در ارقام جدید تعداد سبیل بهتری از ارقام قدیمی بود. آپت و همکاران (20) نیز همبستگی معنی‌داری بین تعداد سبیل و عامل‌های دانه مشاهده کرده‌اند.

روپ و همکاران (13) گزارش کرده‌اند که تعداد دانه در متر مربع در ارقام قدیمی تعداد سبیل بهبود می‌یابد. آماری معنی‌داری بین تعداد سبیل در ارقام مختلف وجود ندارد (جدول 5). کمترین تعداد سبیل مربوط به رکم شاپ یی پن سال 2002 در سال 20 و 254 در سال دوم بود و بیشترین تعداد سبیل در سال اوپ در رکم مورودش (553) و در سال دوم در رکم قدس (540) دیده شد.

！！ اجزاء عملکرد دانه

توجه سبیل در متر مربع - از نظر تعداد سبیل در متر مربع اختلاف آماری معنی‌داری بین ارقام مختلف وجود ندارد (جدول 5). کمترین تعداد سبیل مربوط به رکم شاپ یی پن سال 2002 در سال 20 و 254 در سال دوم بود و بیشترین تعداد سبیل در سال اوپ در رکم مورودش (553) و در سال دوم در رکم قدس (540) دیده شد.

اجزاء عملکرد دانه

توجه سبیل در متر مربع - از نظر تعداد سبیل در متر مربع اختلاف آماری معنی‌داری بین ارقام مختلف وجود ندارد (جدول 5). کمترین تعداد سبیل مربوط به رکم شاپ یی پن سال 2002 در سال 20 و 254 در سال دوم بود و بیشترین تعداد سبیل در سال اوپ در رکم مورودش (553) و در سال دوم در رکم قدس (540) دیده شد.
جدول 5. میانگین اجزای عملکرد دانه و ارتفاع ارقام گندم

<table>
<thead>
<tr>
<th>ارتفاع بونه (cm)</th>
<th>وزن هزار دانه (g)</th>
<th>تعداد دانه در سری</th>
<th>تعداد دانه در سری در میزان</th>
<th>شاه پسند</th>
<th>طبیعی</th>
<th>شعله</th>
<th>عدل</th>
<th>شاهی</th>
<th>پروستا</th>
<th>کرج</th>
<th>کرج</th>
<th>کارد</th>
<th>فلات</th>
<th>قدس</th>
<th>نیک نژاد</th>
<th>پاواروس</th>
<th>مرودشت</th>
<th>شیراز</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-86</td>
<td>84-85</td>
<td>83-84</td>
<td>82-83</td>
<td>81-80</td>
<td>80-79</td>
<td>79-78</td>
<td>78-77</td>
<td>77-76</td>
<td>76-75</td>
<td>75-74</td>
<td>74-73</td>
<td>73-72</td>
<td>72-71</td>
<td>71-70</td>
<td>70-69</td>
<td>69-68</td>
<td>68-67</td>
<td></td>
</tr>
<tr>
<td>128/8</td>
<td>118/9</td>
<td>109/3</td>
<td>102/8</td>
<td>101/5</td>
<td>99</td>
<td>98</td>
<td>97</td>
<td>96</td>
<td>95</td>
<td>94</td>
<td>93</td>
<td>92</td>
<td>91</td>
<td>90</td>
<td>89</td>
<td>88</td>
<td>87</td>
<td>86</td>
</tr>
<tr>
<td>111/2</td>
<td>102/8</td>
<td>92/9</td>
<td>88/3</td>
<td>83/5</td>
<td>80/5</td>
<td>79/5</td>
<td>79/4</td>
<td>78/3</td>
<td>77/5</td>
<td>77/4</td>
<td>76/5</td>
<td>76/4</td>
<td>75/3</td>
<td>75/2</td>
<td>74/3</td>
<td>73/2</td>
<td>72/5</td>
<td>72/4</td>
</tr>
<tr>
<td>98/9</td>
<td>90/1</td>
<td>90/1</td>
<td>88/2</td>
</tr>
<tr>
<td>89</td>
</tr>
</tbody>
</table>

LSD0.05

![Diagram](image-url)
نگرانی‌های عمیکرده دانه و پزشگان های فیزیولوژیک مرتب با آن در ارقام گذشته

دانه در گنبد همبستگی معنی‌داری مشاهده کردن. وادیگیتوک و همکاران (21) بخش از افزایش عمیکرده دانه
در ارقام جدید گذشته را به افزایش تعداد سبله نسبت
دادند. بوطری که در ارقام جدید در مقایسه با ارقام مربوط به
قبل از سال 1972 تعداد دانه در مترمیتر 32 درصد افزایش یافته
است.

تعداد دانه در سبله
نتایج مربوط به تعداد دانه در سبله در ارقام 5 نشان داده
شد است. بیشترین ارقام مختلف از نظر تعداد دانه در سبله احتیاج
آمری معنی داری وجود داشته. رقم شعاع با 267/3 دانه
در هم سبله به ترتیب در سال و دوم کمترین تعداد دانه در
سبله را داشت. بیشترین تعداد دانه در سبله اول در
رقم فلات (ب) 48/6 دانه در سبله) مشاهده شد. تجربه رگرسیون نشان داد
که تعداد دانه در سبله از نظر میزان گند به طور معنی دار و
به صورت خطی افزایش یافته است (شکل 9). بوطری که
افزایش سلاله تعداد دانه در سبله 20/2 دانه در سبله در هر
سال بود.

وادیگیتوک و همکاران (21) همبستگی معنی‌داری بین تعداد
دانه در سبله و افزایش عمیکرده دانه در گنبد مشاهده کردن. به
عقیده بر و همکاران (20) افزایش عمیکرده دانه در گنبد اصلاح
شده در بیشتر افزایش تعداد دانه در هر سبله است
بوطری که تعداد دانه در سبله با نسبت 28/7 درصد در سال
افزایش یافته است. همچنین ریوی و همکاران (33) نشان دادند
که افزایش تعداد دانه در سبله مسنول 59 درصد از افزایش
عمیکرده دانه در طی اصلاح گند است.

شریمن و همکاران (23) نشان دادند که تعداد دانه در
مترمیتر در طی دهه 1970 تا 1995 با نسبت 217 دانه در
مترمیتر در سال افزایش یافته است. به عقیده آنها این افزایش
حالم افزایش تعداد دانه در مترمیتر و تعداد دانه در سبله
است. همچنین آستین و همکاران (8) نشان دادند ارقام جدید

57
شکل ۱۰. رابطه بین سال معرفی پرتو و وزن هزار دانه

شکل ۹. رابطه بین سال معرفی پرتو و تعداد دانه در سلبه

ارتفاع ساقه

ارتفاع ساقه ارتفاع مختلف بین ۷۸ تا ۱۲۸ سانتی‌متر در سال اول و ۷۳ تا ۱۱۲ سانتی‌متر در سال دوم متغیر بود (جدول ۵). در سال اول ارتفاع شاه پسن و کرچ ۳ به ترتیب بیشترین و کمترین ارتفاع ساقه را داشتند. در سال دوم نیز بیشترین و کمترین ارتفاع ساقه به ترتیب در ارتفاع طبیب و پاواروس مشاهده شد. رابطه رگرسیون بین سال معرفی پرتو و ارتفاع ساقه نشان داد که ارتفاع ساقه در طی دوره ۵۰ ساله به صورت خطی کاهش یافت است (شکل ۱۱). که این کاهش به معنی درست (۱/۰۸۸۸) براساس رابطه رگرسیونی ارتفاع ساقه در این دوره بیان نمی‌شود. نسبت ۶/۹۹ سانتی‌متر در هر دوره در سال کاهش یافت است.

همپستگی بین صفات

ضرایب همبستگی بین صفات مورد بررسی در سال آزمایش در جدول ۷ نشان داده شده است. صفات خاص برداشت در سال سی زیر تعریف شده‌بود: میزان دانه، تعداد دانه از سبیله، وزن هزارداهنده. ارتفاع بیشترین صفات میانی و بیشتر معنی‌داری با عملکرد دانه داشتند. تعداد سبیله و وزن هزارداهنده با عملکرد دانه و تعداد دانه داشتند. این نتایج نشان دادند که سطح دقت و وزن هزارداهنده با عملکرد همبستگی معنی‌داری دیده شد.
جدول 6- ضرایب همبستگی بین صفات (میانگین در سال آزمایش)

<table>
<thead>
<tr>
<th>سال</th>
<th>ضرایب همبستگی</th>
<th>ضرایب همبستگی</th>
<th>ضرایب همبستگی</th>
<th>ضرایب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0515</td>
<td>0.0134</td>
<td>0.0431</td>
<td>0.0278</td>
</tr>
<tr>
<td>2</td>
<td>0.098</td>
<td>0.072</td>
<td>0.067</td>
<td>0.053</td>
</tr>
<tr>
<td>3</td>
<td>0.047</td>
<td>0.032</td>
<td>0.026</td>
<td>0.019</td>
</tr>
<tr>
<td>4</td>
<td>0.032</td>
<td>0.020</td>
<td>0.020</td>
<td>0.012</td>
</tr>
<tr>
<td>5</td>
<td>0.022</td>
<td>0.015</td>
<td>0.009</td>
<td>0.007</td>
</tr>
<tr>
<td>6</td>
<td>0.019</td>
<td>0.012</td>
<td>0.012</td>
<td>0.007</td>
</tr>
<tr>
<td>7</td>
<td>0.015</td>
<td>0.010</td>
<td>0.010</td>
<td>0.007</td>
</tr>
<tr>
<td>8</td>
<td>0.012</td>
<td>0.007</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>9</td>
<td>0.011</td>
<td>0.009</td>
<td>0.009</td>
<td>0.007</td>
</tr>
<tr>
<td>10</td>
<td>0.006</td>
<td>0.007</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>11</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.005</td>
</tr>
</tbody>
</table>

ضرایب همبستگی حاکی از آن است که در بین صفات بررسی شده، شاخص برداشت و تعداد دانه در ساله بیشترین تلاقی را در افزایش عملکرد دانه گندم‌های اصلاح شده در این دوره داشته‌اند. تعداد ساله در مترمیت با حذفی نقش کمتری در این افزایش عملکرد داشته است. همچنین در طی این دوره وزن دانه‌ها تا حدودی کاهش یافته است. هرچند این کاهش از نظر آماری معنی‌دار نبود. علت کاهش میانگین وزن دانه به رابطه جبران کننده بین اجرای عملکرد مرتبط می‌شود. به طوری که با افزایش تعداد دانه در هر کیلو، با توجه به تاثیر بودن میزان فوستانت بونه، میزان مواد پیشگیر کمتری در اختیار این جزء

ارتفاع سال

![نمودار]

\[y = -0.6943x + 127.76 \]
\[r = 0.8866^{**} \]
انرتفع بوته بیشترین همستگی (به صورت منفی) را با عملکردها دانه دارا بود. همچنین نتایج نشان می‌دهد که میزان کارفولیک با سبزی برگ در طی این دوره تنها حدودی افزایش یافته است.

به طور کلی تأثیر انرتفع بوته در این دوره بیشتری به انجمداد بالاتری افزایش شاخص برداشت و افزایش اعمالی داشته است. با طراحی نظریه پیشینی استمته و همکاران (۶) در مورد اینکه حداکثر شاخص برداشت قبل حصول در ارقام گذشته می‌تواند حدود ۳۰ درصد باشد، شاخص برداشت ارقام گذشته در کشور هنوز به سقف مقدار خودرسیده است و امکان افزایش بیشتر عملکرد دانه با ایجاد افزایش شاخص برداشت هنوز وجود دارد. همچنین می‌توان گفت که عملکرد دانه ارقام گذشته در کشور با تولید هم‌خیپ فعال و با افزایش شاخص برداشت ۱۰۰ درصد افزایش می‌یابد. اما همچنین باید توجه داشت که برای افزایش بیشتر عملکرد دانه باید بوته دائر باشد همچنین می‌تواند با افزایش میزان چربی که در این دوره داشت گردید. چرا که شاخص برداشت تقسیم‌بندی به سقف مقدار خود وجود ندارد.

نوعی زبدایی با طرح‌های داشته شده با انرتفع بوته عملکرد دانه با افزایش بافتارها به آرامش ماده خشک کل معلول گردید. چرا که شاخص برداشت تقسیم‌بندی به سقف مقدار خود تردید شده و افزایش عملکرد دانه با افزایش به شاخص برداشت زیادی معنی دارد نهایت بوته. از طرفی نتایج این آزمایش حاکی از این است که ماده خشک تولیدات در ارقام جدید تا حدودی بیشتر از ارقام قدیمی است که این روند می‌باشد.

منابع مورد استناد: