آلوگوی خاک به وسیله سرب حاصل از وسایل تقیه در محدوده برخی از پژوهش‌های ایران

حمیدرضا حمایتی، محمدرضا رحمانی، و شیار حجار رفیعی

چکیده

سرب حاصل از سوخت وسایل تقیه به عنوان مهم‌ترین و بیشترین منبع آلودگی محیط ذکر گردیده است. تحقیق حاضر به منظور بررسی آلوگوی خاک به وسیله ذرات سرب خارج شده از آگوزات اتمسفری در پژوهش‌های رشته‌ای (منطقه انزلی)، کلاچای - رامسر (منطقه رامسر)، تهران - کرج (منطقه کرج) و تهران - اصفهان (منطقه تهران) صورت گرفت. در هر پژوهش راستای بیش از ۱۰۰ متر عمودی جاده در یک یا دو طرف انتخاب گردید و در فواصل و عمق‌های مشخص از جاده نمونه‌برداری به وسیله جعبه‌های آلوده به آزمایشگاه منتقل شد و به سیستم فیزیک شیمیایی و هم‌چنین قلم شربی که نمونه‌ها بعد از عصاره‌گیری، با استفاده برای نتایج شناسایی و تعیین کرد. پنج پاد از زمینه پیشتر استفاده شده و با فاصله از مدتی در سطح خاک، به ویژه در سطح خاک، در مقابل با فلزات یا زمینه برای تحلیل نتایج شناسایی و تعیین کرد.

نتایج نشان داده که فلزات سرب در حاشیه پژوهش‌ها، به ویژه در سطح خاک، در مقایسه با غلات زمینه برای تحلیل نتایج شناسایی و تعیین کرد.

واژه‌های کلیدی: سرب، آلودگی خاک، حجم ترانکیس، آلدهده، غلات سگنی، صورت‌گیری

مقدمه

خاک به عنوان یکی از اجزای مهم محیط زیست، مهم‌ترین دریافت‌کننده پسماند‌های صنعتی و کشاورزی است. این مورد به محض ورود به خاک جزئی از چرخهای می‌گردد که به صورت‌های گوناگون حیات را تحت تأثیر قرار می‌دهند.

نظرات

1. دانشجوی سابقه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی دانشگاه اصفهان
2. استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه اصفهان

31
شمار می‌رود. از میان آن‌ها، فلزات سنگینی که دهلیل غیر قابل تجزیه بودن و آثار زیان‌بار فیزیولوژیک بر جانداران در غلظت‌های حاصل از اهمیت ویژه‌ای هستند (6). عنصر بیکی از فلزات سنگین است که موجب آلوگری زیر خسته‌سازی و به دلیل ایجاد آثار سامانی در جانداران، می‌شود. و با ایجاد آثار سامانی در جانداران، مصرف این عنصر در صنایع مختلف موجود بالا رفت می‌زیان آلوگری در کواسیم‌های مختلف شده است. به طور مستقیم خاک را آلوگری کرده و به صورت غیر مستقیم باعث مسمومیت مصرف کردنگان فراورده‌های کشاورزی گردیده است (6).2)

آنتاسی به دلیل استفاده‌های زیادی از عنصر سرب، موارد به طور تأخیری‌گاه خود را در معرض آلوگری با این عنصر سامانی قرار می‌دهد (6). اگر چه در گذشته‌های سخت‌سازی‌های حاوی سرب (مثلاً در بسیار روزانه طلا و الکتریکی) که وجود داشته است و در این مورد با پیشگیری‌های دقیق و رعایت اصول بهداشتی از این نوع مسمومیت کمتر دیده می‌شود. در عوضو، موارد بسیاری از مسمومیت‌های مزین، به وسیله دکتیل و مصرف کردنگان در مناطق شهیر و صنعتی مشاهده می‌شود (1 و 3). در اثر ورود و تجمع سرب در بدن انسان، با گذشت زمان مسمومیت مزین عرض گشته و به‌طور هم‌زمان نظر ویران سربی، فلز عصبی، فلز، ورم‌کی، انجای قطع‌های فرم‌های مصرف‌دهنده در دهان، افزایش نارنج و ساید اورین یونس، سرب‌سایر، و نیز سطح جین در انسان و حیوانات مصرف انجایی می‌شود (به تقلیل از 5). همچنین، چنین طبیعت حیوانات بسیاری، طی مصرف سرب در جانداران مختلف به وسیله هیپو‌آنتاسی اهلی بررسی و گزارش شده است (6, 17 و 20). از میان منابع مختلف آلوگری در مصرف مه‌موم و بی‌شیفت مثبت آلوگری کننده‌ها برای شاخه‌گی و آب، در مسیر سرب خروجی از آگوژ و سایر تغییرات زیان‌یافته پنیزیس با بود (2, 15 و 24). پنیزیس با بود و در اکرانی مصرف از این منبع مشاهده می‌شود (2) و (15. مطالعات نشان داده که افزودن سرب به پنیزیس آلانیده

1. Saturnism
2. Colique Saturnine
3. Paralyse
4. Nephrite
5. Environmental Protection Agency
آلوگهی خاک به وسیله سرب حاصل از وسایل تقلیل در محدوده برخی از پژوهش‌های ایران

جاوانده شد و پس از سری هدن، با استفاده از کاغذ صافی وانم 44 عصاره‌گیری، و غلظت سرب کل در عصاره حاصل پس از به حجم رسادن، به وسیله دستگاه جذب اتمی اندازه‌گیری گردید (10). ترسیم نمودارها و تجزیه و تحلیل داده‌ها با استفاده از نرم‌افزارهای کوانتیپیپورتر، تیپ کرو و اس. آ. اس. ۵ انجام شد.

مواد و روش‌ها

به منظور پروری آلوگهی خاک به وسیله عنصر سرب حاصل از سوخت وسایل تقلیل اراضی مجاور جاده‌ها، پژوهش‌های ایران - اصفهان (منطقه دلیجان)، برکت - انزلی (منطقه انتلی)، الیاچای - رامسر (منطقه انتلی) و هرمز - کرگ (منطقه کرگ) انتخاب گردید.

نتایج و بحث

میانگین تناسب تجزیه زئیکو شیمیایی نمونه‌های خاک سطحی (حساب تا پنج سانتی متری) مورد مطالعه در جدول آمده است. میانگین pH مقدار 7/8 تا 6/8 (EC تا 7/5 تا 7/1 و اس تا 0/1 تا 0/5) مصرف کلیف می‌باشد.

درصد کربنات میانگین معادل ۳/۲ تا ۱۸/۳ درصد و رسانه به دلیل فضاهای بارانگی، کربنات کلسیم معادل کم و یافته‌ها در کلیه مناطق سبک تا متوسط است.

مقاومی میانگین‌ها مشابه سبک می‌دارند که مقدار کربنات کلسیم برای کل مناطق از نظر امکان‌داری اختلاف می‌دارند. pH شیک و غرب جاده دلیجان اختلاف معنی داری از نظر pH ماده آلی و درصد رس وجود ندارد. در مناطق انزلی و EC رامسر نیز میانگین‌ها برای هر کدام از خصوصیات ماده آلی و درصد رس اختلاف معنی داری را نشان نمی‌دهند. اما میانگین‌ها در منطقه کرگ برای کلیه خصوصیات شاهد به استثنای EC و در صورت دور از نظر امکان‌داری اختلاف معنی دار است. نتایج این مطالعه به معنی است. یافته‌ها در خصوصیات خاک‌های مناطق رامسر نسبت به مناطق انزلی، خاک‌های شرق جاده دلیجان نسبت به غرب جاده اختلاف زیادی وجود ندارد.

۱. Transect ۲. Walkty & Black ۳. Quattro pro ۴. Table curve ۵. SAS

۳۳
جدول 1. موقعیت مناطق مورد مطالعه و آمار تراکمی روزنگرهای زیرگردها (7)

<table>
<thead>
<tr>
<th>موقعیت و سمت جاده برای نمونه‌برداری</th>
<th>منطقه مورد مطالعه</th>
<th>دانشگاه</th>
<th>پژوهشگر</th>
<th>زیرگردها</th>
</tr>
</thead>
<tbody>
<tr>
<td>رشت-آملی</td>
<td>انزلی</td>
<td>17026</td>
<td>27 کیلومتری جاده رشت-آملی (غرب جاده)</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>رامسر</td>
<td>کلاچای-رامسر</td>
<td>10738</td>
<td>11 کیلومتری جاده کلاچای-رامسر (شمال جاده)</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>قرچ-تهران</td>
<td>دلیجان</td>
<td>22704</td>
<td>19 کیلومتری جاده قرچ-تهران (جنوب جاده)</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>اصفهان-تهران</td>
<td>دلیجان</td>
<td>13410</td>
<td>200 کیلومتری جاده اصفهان-تهران (شرق جاده)</td>
<td>زیرگردها</td>
</tr>
</tbody>
</table>

جدول 2. میانگین برخی از مشخصات فیزیکی و شیمیایی خاک‌های مورد مطالعه در عمق سطحی (سفر تا پنجه سانتی‌متر)

<table>
<thead>
<tr>
<th>منطقه مورد مطالعه</th>
<th>ماده آلی کربنات</th>
<th>EC (dS/m)</th>
<th>pH گل</th>
<th>اشیاء مطالعه</th>
</tr>
</thead>
<tbody>
<tr>
<td>انزلی</td>
<td>3/10 a</td>
<td>1/2 b</td>
<td>6/9 c</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>رامسر</td>
<td>3/5 b</td>
<td>1/2 ab</td>
<td>7/3 c</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>قرچ</td>
<td>2/1 c</td>
<td>1/6 a</td>
<td>7/2 b</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>دلیجان</td>
<td>2/1 a</td>
<td>1/1 c</td>
<td>7/8 a</td>
<td>زیرگردها</td>
</tr>
<tr>
<td>(شمال جاده)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(غرب جاده)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون اعدادهای کدی دارای حروف مشترک می‌باشند. با آزمون دانکن در سطح 5% اختلاف معنی‌دار دارند.

داده‌ها ابتدا وضعیت را تایید کردند که از بین آنها بره‌پرده و ساده‌ترین مدل y=ax\(^b\) انتخاب و نمودار آن ترسیم گردید. زیاد بودن میزان سرب خاک در کنار جاده و کاهش ناگهانی آن با فاصله از کنار جاده را احتمالاً می‌توان در ارتقاء با وزن نسبی زیاد درات سرب و سقوط سریع ایفا دانست. تحقیقاتی که در این زمینه انجام شده توسط ما به داشت نشان می‌دهد درات سرب خارج شده از انواع مختلف با به‌سرعت در کنار جاده تا نشان دهد که از 100 متری زیرگردها، اما درازت ریز سرب وارد هوا شده و نهایتاً توسط باران و یا فر بر سطح خاک فرود می‌آید (5 و 8). زیاد

1. Exponential
شکل 1. تغییرات فلزات سرب با فاصله از جاده در عمق سطحی (صفر تا پنج سانتی‌متر) خاک‌های منطقه اندلی.

شکل 2. تغییرات فلزات سرب با فاصله از جاده در عمق سطحی (صفر تا پنج سانتی‌متر) خاک‌های منطقه رامسر.
شکل ۳. تغییرات غلظت سرب با فاصله از جاده در عمق سطحی (صفر تا پنج سانتی‌متر) خاک‌های منطقه کرج

\[y = ax \]
\[r = 0.927 \quad a = 89.049 \quad b = 0.397 \]

شکل ۴. تغییرات غلظت سرب با فاصله از جاده در عمق سطحی (صفر تا پنج سانتی‌متر) خاک‌های منطقه دلیجان (شرق جاده)

\[y = ax \]
\[r = 0.888 \quad a = 200.613 \quad b = 0.479 \]
آبودگی خاک به وسیله سرب حاصل از وسائل تقلیل در محدوده پرخی از پژوهش‌های ایران

شکل 5. تغییرات غلظت سرب با فاصله از جاده در عمق سطحی (صدر تا پنج سانتی‌متر) خاک‌های منطقه دلیجان (غرب جاده).

شکل 6. میانگین درصد غلظت سرب در عمق، نسبت به جمع غلظت‌های سرب اعماق مختلف خاک‌های مورد مطالعه.
بودن گل‌گیری سرب خاک در کنار جاده و کاوش آن با فاصله‌ای

از جاده در منطقه مورد بررسی، تشخیص داده‌ای واقعیت است

که مشاهده موردی در خاک‌ها، اگر دو دانلیکه است. گزارش‌های

بی‌سیاری (21، 22، 23، 24، 25، 26، 27 و 28) این موضوع را

تأیید می‌کرد. بررسی خاک‌ها و گیاهان منطقه، گل‌گیری

سرب زیادی را در خاک و گیاه‌ها کنار جاده نشان داد (8).

گزارش‌های دیگری از مصر (1978) و تونس (1982) نیز در

دانلیکه (8) و آنالوگی خاک در

کنار جاده در اثر استفاده از بی‌سیار سرب در شرایط کره‌دان

به‌قلم

از (9).

تغییر سرب خاک با فاصله‌ای از جاده به‌صورت نمایی است، و

از مدل $x=ax^b$ تعبیر می‌کند. شکل 2 میانگین دمای گردوی

سرب فیبر خاک را با کل گل‌گیری سرب، احتمالاً خاک‌های مورد

طلابت مالطور در جاده می‌دهند. درک عناصر، با استناد

منطقه ای، گل‌گیری سرب نسبت به جاده کاهش می‌یابد.

است. در خاکی منطقه‌ای اولیه میانگین دمای گردوی

سرب عمق (0-10 سانتی‌متر) به‌صورت خاک‌پی‌دار از عمق اول

آست. که احتمالاً در اثر سیستم خوردویی خاک کنار جاده، یا

فرم‌سازی خاک سطحی به خاطر شیب کنار جاده می‌باشد.

سفر با سیک خاک می‌تواند در حکت سرب به‌عنوان زمین

خاک مؤثر باشد. در 4 تکیه‌گاه، سرب در 11 منوی، با

شست شرایط مورد مطالعه قرار گرفتند. در همه خاک‌ها

پژک خاکی گلویی ای بیان‌سازه شد، و به پایان داده‌ای

ظرفیت تبدیل کاتانیک، به‌صورت مساند (22). همچنین,

مطلابت‌های سیاسی در مورد وضعیت سرب در خاک وجود دارد

که همه بر تبعیض سرب در لایه سطحی اکثر کرانه‌های اما در

گزارش‌های محدودی نیز به حکت سرب در مواردی ثابت، در

اثر عوامل منطقه حکت سرب به‌عنوان خاک، نوع و مندرکان

روی و زیستک‌ها خاک کنار جاده این سرب (28 و 29، 30، 31، 32، 33، 34، 35، 36، 37 و 38) به

بافت سیک خاک در منطقه اولیه را. می‌توان عمومی مؤثر در

حکت سرب از عمق اول به عمق دوم ذکر کرد.

1. Ultisols

38
جدول 4. غلظت سرب در نمونه‌های خاک، در مقایسه با غلظت معمول و بحراَی آن (میکروجرم بر گرم)

<table>
<thead>
<tr>
<th>دامنه غلظت</th>
<th>بحرانی سرب در</th>
<th>معمول سرب در</th>
<th>جریان دلیجان</th>
<th>رامسر</th>
<th>انتلی</th>
<th>دلیجان</th>
<th>دلیجان</th>
</tr>
</thead>
<tbody>
<tr>
<td>مورد مطالعه</td>
<td>خاک</td>
<td>خاک</td>
<td>دلیجان</td>
<td>(شرک تاج)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-100</td>
<td>101-200</td>
<td>201-400</td>
<td>401-600</td>
<td>601-800</td>
<td>801-1000</td>
<td>1001-1200</td>
<td></td>
</tr>
<tr>
<td>غلظت</td>
<td>22-27</td>
<td>27-32</td>
<td>32-37</td>
<td>37-42</td>
<td>42-47</td>
<td>47-52</td>
<td></td>
</tr>
</tbody>
</table>

منطبق است (نیز تقلیل ۴). در گزارش دیگری مقدار سرب سطحی خاک کنار جاده (۵۰۰ میکروجرم بر گرم) و عامل آلودگی خاک موقتی نمایش از جاده و ترافیک آتشفشانی دارد (۸).

نتیجه‌گیری و پیشنهادها

دریت سرب خروجی از اگزوز اتومبیل‌ها با سقوط و نفوذ در خاک‌های اطراف جاده‌ها، خاک و موجودات زنده کنار جاده را آلوده کرده و این عنصر وارد زنجیره غذایی می‌شود. میزان آلودگی به سرب در خاک‌های کنار جاده، در فواصل زنجیره زیاد بوده و با فاصله از جاده به صورت نمایی کاوش می‌یابد که این مدت مشخص نمی‌گردد. غلظت سرب در این جاده‌ها با عمق نیز کاهش نمی‌شود. در این مورد استثنایی وجود دارد که روست خودرویی کنار جاده، شیب کنار جاده و پاپت سیستم خاک مربوط می‌شود. همچنین، میزان آلودگی خاک با ترافیک جاده رابطه مستقیم داشته باشد، بنابراین حجم ترافیک از نظر آماری نیز ترافیک جاده‌ها هم‌سیستمی زیادی با غلظت سرب سرب خاک سطحی (۷۹٪) نشان داد. بنابراین، می‌توان گفت ترافیک جاده عاملی مؤثر بر میزان آلودگی خاک به عنصر سرب است و به افزایش ترافیک بزرگ‌سایز میزان آلودگی خاک افزایش می‌یابد. در مورد تأثیر ترافیک بر آلودگی خاک، ترکیبی است از احداث مراکز علومی و مسئولی در حاشیه بزرگ‌شهرها پرترفیک و خیابان‌های پرتردد خودداری شود. همچنین، برای سرب
سپاسگزاری

از مسئولین دانشگاه‌های کشاورزی و دانشگاه‌های ریاضیاتی اسفهان به خاطر ایجاد محیط‌های مناسب برای بررسی این موضوع تأکید می‌شود.

کار شکر و می‌شود.

منابع مورد استفاده

1. پلوکسال پالاسیو شرکت ملی نفت ایران. ۱۳۷۷. گزارش عملیات مایه‌های بالاپیشگاه‌های کشاورزی.
2. خامن خسروی، م. ج. و. کاملی. ۱۳۶۴. توزیع سرب در دریاچه‌های ورودی شرکت به مرکز تردد خودروها در مناطق مختلف تهران.
3. رحمانیان، ح. ر. و. اصلی. ۱۳۶۴. آزمایش سرب در صنعت صنایع نیکل و سرب ایران. پایان نامه کارشناسی ارشد دانشگاه شهید بهشتی.
4. صادقی‌زاده ترددی. ۱۳۶۷. مباحث بررسی سرب و محدوده ثبات محور از آن. انتشارات دانشگاه تربیت مدرس.
5. علی‌اصغری، ع. و. ج. و. کاملی. ۱۳۶۴. بررسی سرب در گیاه و خاک با شیمی‌های مختلف به خاکیشن نسبت به جاده. انتشارات جهاد دانشگاهی.
6. کریم‌یان، ن. (مترجم). ۱۳۷۱. شیمی‌های خاک. جلد اول: مبانی و برنامه‌های جهادی، وزارت راه و شهری.
7. وزارت راه و شهری. ۱۳۷۱. برنامه‌های جهادی و اقدامات به‌خصوصی در خاکیشن و جهاد دانشگاهی.