تاثیر تراکم و زمان‌های مختلف تداخل سورگوم علوفه‌ای بر میزان مشارکت ذخایر ساقه در عملکرد دانه ذرت

رونوش سید شریفی، عزیز جوانشیری، محمد صفا شکیبا، کاظم قاسمی گل‌عذایی، سید ابوالقاسم احمدی و یعقوب راغی

(تاریخ دریافت: 14/6/85) (تاریخ پذیرش: 14/6/87)

چکیده

به منظور بررسی اجزای عملکرد و تغییر میزان مشارکت ذخایر ساقه در عملکرد دانه ذرت مانند تخلیه از دوره‌های مختلف تداخل و تراکم سورگوم، آزمایشی در سال زراعی 82 در مزرعه پوسته دانشگاه کشاورزی دانشگاه تبریز باصرفه جابجایی ترکیبی به صورت فاکتوریل در قالب طرح پایه بلورکه کامل تصادفی با اجرای ای جای در آمدها، فاکتورهای مورد بررسی را دوره‌های مختلف تداخل و تراکم سورگوم (صرف 2 و 4 زمین) بعد از بذل شدن ذرت و کل دوره رشد آن (الترین تراکمی‌های 0 و 12 و 08 و 16 تراکمی) تشکیل می‌دادند. صفات مورد بررسی شامل عملکرد و اجزای عملکرد و میزان مشارکت ذخایر ساقه در عملکرد دانه ذرت بود. نتایج نشان داد که افزایش تراکم و طول دوره‌های تداخل سورگوم به دلیل ویاکنگی و رقابت شدید بین بوته‌ها برای استفاده از منابع موجود، به کاهش اجزای عملکرد ذرت (به جز تعداد رشد انتهایی) منجر گردید. بالاترین عملکرد دانه و تعداد دانه در بیان در پلاکان تغییر شاهدی (کشت خالص ذرت) به‌دست آمد. با افزایش تراکم و طول دوره تداخل سورگوم عملکرد دانه کاهش یافت به طوری که بیشترین کاهش عملکردی حدود 38 درصد به‌الاترین تراکم و طول دوره تداخل سورگوم با ذرت مربوط بود. سطح تراکم و دوره‌های مختلف تداخل روی میزان انتقال ماده خشک و درصد مشارکت ذخایر ساقه در عملکرد دانه مختلف معنایی داشت. بیشترین میزان مشارکت ذخایر ساقه به‌درصد میزان انتقال ماده خشک از بافت‌های شکمی در عملکرد دانه، در بالاترین تراکم و طول دوره تداخل کامل سورگوم با ذرت و حداقل آن در کشت خالص ذرت به‌دست آمد و ممکن است با سابقه انتقال و رقابت بین بوته‌ها برای نور و منابع دیگر در ارتباط باشد.

واژه‌های کلیدی: انتقال مجدد، تراکم، تداخل، عملکرد، ذرت، سورگوم

مقدمه

درت یکی از مهم‌ترین گیاهان زراعی است که می‌تواند توانایی جهانی پس از گندم و برنج در رتبه نخست را دارد. با توجه به عملکرد زیاد ذرت نسبت به سایر محصولات زراعی سارگاری

1. استادیار زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه محقق اردبیلی اردبیل
2. به‌ترتیب استادان، دانش‌پژوهان زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه محقق اردبیلی

raouf_ssharifi@yahoo.com

* منسول مکاتبات: پست الکترونیکی: raouf_ssharifi@yahoo.com
برخی از بررسی‌ها به ارزیابی تاثیر بیولوژیکی از ماده خشک علف‌های مختلف تأثیر بر پرورش، توانایی ناهنجاری و توانایی خودآگاهی در گل‌گیری کاهش می‌یابند. در این حالت و وجود علف‌های دفعی به دلایل مختلف از جمله سایه‌نگاری (5) و استفاده از منابع موجود در محیط (16 و 17) عرضه را با گیاه زراعی تحقیقاتی کنند. بنابراین در مرحله پر شدن دانه، بررسی میزان نقل و انتقال مواد در خشک و گیاهان مختلفی از جمله سه دانه و تشخیص ترکیبی تهیه‌گاهی که از وابستگی بسیاری در انتقال ماده خشک برخوردار باشد به دلیل گیاهی‌گری از کاهش شدید علف‌های زراعی، از اهمیت خاصی برخوردار خواهند بود.

مصارف و مشترکت ذخایر ساقه در عملکرد دانه در مدت اجرا اتمام می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1387 در مزرعه یزدوحشی دانشگاه یزد در کشاورزی داخلی و تفریز (46 درجه و 17 دقیقه طول شریان و 38 درجه و 5 دقیقه عرض شمالی) با میانگین دمای 13/52 درجه سانتی‌گراد در طول دوره کشت اجرا گردید. زمین محل آزمایش در سال قبل در آتش قرار داشت pH لومی، ۸ بود. عملکرد آب‌میکرو دانه نسبت به هر فشار شرکت و دانه دانه به صورت مکانیکی در قابل طرح نمایه گرمایی کمی دانه ارائه گردید و نهایتاً از وابستگی به دلیل جاذبیت و انتقال علف‌های زراعی، از اهمیت خاصی برخوردار خواهد بود.

مصارف و مشترکت ذخایر ساقه در عملکرد دانه در مدت اجرا اتمام می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1387 در مزرعه یزدوحشی دانشگاه یزد در کشاورزی داخلی و تفریز (46 درجه و 17 دقیقه طول شریان و 38 درجه و 5 دقیقه عرض شمالی) با میانگین دمای 13/52 درجه سانتی‌گراد در طول دوره کشت اجرا گردید. زمین محل آزمایش در سال قبل در آتش قرار داشت pH لومی، ۸ بود. عملکرد آب‌میکرو دانه نسبت به هر فشار شرکت و دانه دانه به صورت مکانیکی در قابل طرح نمایه گرمایی کمی دانه ارائه گردید و نهایتاً از وابستگی به دلیل جاذبیت و انتقال علف‌های زراعی، از اهمیت خاصی برخوردار خواهد بود.

مصارف و مشترکت ذخایر ساقه در عملکرد دانه در مدت اجرا اتمام می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1387 در مزرعه یزدوحشی دانشگاه یزد در کشاورزی داخلی و تفریز (46 درجه و 17 دقیقه طول شریان و 38 درجه و 5 دقیقه عرض شمالی) با میانگین دمای 13/52 درجه سانتی‌گراد در طول دوره کشت اجرا گردید. زمین محل آزمایش در سال قبل در آتش قرار داشت pH لومی، ۸ بود. عملکرد آب‌میکرو دانه نسبت به هر فشار شرکت و دانه دانه به صورت مکانیکی در قابل طرح نمایه گرمایی کمی دانه ارائه گردید و نهایتاً از وابستگی به دلیل جاذبیت و انتقال علف‌های زراعی، از اهمیت خاصی برخوردار خواهد بود.

مصارف و مشترکت ذخایر ساقه در عملکرد دانه در مدت اجرا اتمام می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1387 در مزرعه یزدوحشی دانشگاه یزد در کشاورزی داخلی و تفریز (46 درجه و 17 دقیقه طول شریان و 38 درجه و 5 دقیقه عرض شمالی) با میانگین دمای 13/52 درجه سانتی‌گراد در طول دوره کشت اجرا گردید. زمین محل آزمایش در سال قبل در آتش قرار داشت pH لومی، ۸ بود. عملکرد آب‌میکرو دانه نسبت به هر فشار شرکت و دانه دانه به صورت مکانیکی در قابل طرح نمایه گرمایی کمی دانه ارائه گردید و نهایتاً از وابستگی به دلیل جاذبیت و انتقال علف‌های زراعی، از اهمیت خاصی برخوردار خواهد بود.

مصارف و مشترکت ذخایر ساقه در عملکرد دانه در مدت اجرا اتمام می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1387 در مزرعه یزدوحشی دانشگاه یزد در کشاورزی داخلی و تفریز (46 درجه و 17 دقیقه طول شریان و 38 درجه و 5 دقیقه عرض شمالی) با میانگین دمای 13/52 درجه سانتی‌گراد در طول دوره کشت اجرا گردید. زمین محل آزمایش در سال قبل در آتش قرار داشت pH لومی، ۸ بود. عملکرد آب‌میکرو دانه نسبت به هر فشار شرکت و دانه دانه به صورت مکانیکی در قابل طرح نمایه گرمایی کمی دانه ارائه گردید و نهایتاً از وابستگی به دلیل جاذبیت و انتقال علف‌های زراعی، از اهمیت خاصی برخوردار خواهد بود.

مصارف و مشترکت ذخایر ساقه در عملکرد دانه در مدت اجرا اتمام می‌شود.

مواد و روش‌ها

آزمایش در سال زراعی 1387 در مزرعه یزدوحشی دانشگاه یزد در کشاورزی داخلی و تفریز (46 درجه و 17 دقیقه طول شریان و 38 درجه و 5 دقیقه عرض شمالی) با میانگین دمای 13/52 درجه سانتی‌گراد در طول دوره کشت اجرا گردید. زمین محل آزمایش در سال قبل در آتش قرار داشت pH لومی، ۸ بود. عملکرد آب‌میکرو دانه نسبت به هر فشار شرکت و دانه دانه به صورت مکانیکی در قابل طرح
تأثیر تراکم و زمان‌های مختلف تداخل سورگوم علوفه‌ای بر میزان مشارکت ...

سیگل کراس 301 و سورگوم از نوع علوفه‌ای و رقم اسید فید بود که بیماران به‌دست گرفته می‌شود. این ترکیبات در موسسه درمانی تاریخ‌مند و تحقیق‌های فیزیولوژیکی گزارش شده‌اند. ترکیبات مورد تحقیق از طریق تغییر فاصله‌های روی چوب منیفتال اجرا، این الگو را به ترتیب از کمیت و تایم به دست می‌آورد.

در این روابط بر اساس تحقیقات اهدافی و بنیان‌کننده ناشی از نفس در نظر گرفته نشده است و در بررسی شده است که نفس برای شرایط محیطی مورد استفاده از بررسی کاسه‌ای است (13).

به منظور اندازه‌گیری اجرایی میکروسکوپیک، در یک پن‌روی وارد گردید. هر واحد آزمایشی 80 بانه تصادفی مخلوط از میکروسکوپیک که حاشیه از آنها برای تجزیه واریانس مورد استفاده قرار گرفت. اندازه‌گیری دامنه از سطحی معادل 0.02 متر مربع از سه زاویه میانی هر کرت و با رعایت حاشیه تعیین گردید. تجزیه و تحلیل LSD به‌طور نزدیک از SAS مقایسه میانگین‌ها با آزمون تایپ در Excel

نتایج و بحث

نتایج تجزیه واریانس (جدول 1) نشان داده که میزان انتقال ماده خشک در واردات محیطی مختلف تداخل و تراکم سورگوم متغیر است. این تفاوت در درصد تداخل سورگوم میزان انتقال ماده خشک افزایش می‌یابد (جدول 2). انتقال میزان ماده خشک از سطحی نیز تحت تأثیر دوره‌های مختلف تداخل سورگوم قرار گرفت (جدول 2). این پایه با نتایج حاصل از بررسی‌های بوهرارت و اندرو، گو و تورنت، لیدو و لوپس، مارتین و جنت هم‌هک است (21، 20 و 32). به‌دیده است که میزان انتقال ماده خشک، بیشتر تحت تأثیر روابط منبع و مخزن و شرایط محیطی قرار می‌گردد. در این رابطه بوهرارت و اندرو گزارش کرده‌اند که محدودیت‌های در ذرت موجب انتقال انتقال ماده خشک و کاهش گروه‌های نهایی غیرساختاری ساقه‌های شوید، زیرا در این شرایط، قدرت مخزن (فعالیت مخزن) انتقال آن قدرت مخزن (بیشتر است (32). بنابراین به دلیل روابط فیزیولوژیک موجود بین منبع و مخزن (ظرفیت بالایی مخزن موجب فعالیت بیشتر منبع می‌شود)، منبع از طریق افزایش انتقال ماده خشک، موارد مورد نیاز مخزن را فراهم می‌سازد. ولی در شرایط بدون نش (بدون حضور علف هرز) ارتباط می‌بیند و مقصد شرایط عادی را دارد.
جدول ۱ تجزیه واریانس با شاهد اثر تراکم و دوره‌های مختلف تداخل سورگوم بر صفات مورد مطالعه‌ی ذرت

| میانگین مربوطات | درجه چپ | میزان انتقال ماده طی ۱۶ ماه | همه انتقال محدود در در ریف | میزان مشترکت دخابر | انتقال محدود ماده سر در عملکرد ماده خشک/ساخته از ساخته | عملکرد ماده | خشک/ماده | خشک/عملکرد | عملکرد ماده | خشک/ماده |
|-----------------|---------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| دانه در بلال | عملکرد دانه | تعداد دانه در |
| ۷۲۲/۵۸ ** | ۱/۷۳ ** | ۱/۸۸ ** | ۱۵۸/۵۰ ** | ۱۵۸/۵۰ ** | ۱۶۸/۲۶ ** | ۱۷۱/۶۴ ** | ۱۷۱/۴۸ ** | ۱۷۹/۵۷ ** | ۱۸۲/۶۰ ** |
| ۱۵۸/۸۴ ** | ۱/۸۶ ** | ۱/۹۸ ** | ۱۸۳/۱۸ ** | ۱۸۳/۱۸ ** | ۱۹۴/۲۴ ** | ۱۹۶/۶۲ ** | ۱۹۶/۴۶ ** | ۲۰۴/۷۰ ** | ۲۰۸/۸۲ ** |
| ۵۱۸/۸۱ ** | ۱/۹۳ ** | ۱/۹۸ ** | ۲۰۳/۲۲ ** | ۲۰۳/۲۲ ** | ۲۱۳/۴۴ ** | ۲۱۵/۸۶ ** | ۲۱۵/۶۰ ** | ۲۲۳/۹۲ ** | ۲۲۷/۰۴ ** |
| ۲۰۵/۸۵ ** | ۱/۸۹ ** | ۱/۹۸ ** | ۲۱۳/۲۲ ** | ۲۱۳/۲۲ ** | ۲۲۳/۴۴ ** | ۲۲۵/۸۶ ** | ۲۲۵/۶۰ ** | ۲۳۳/۹۲ ** | ۲۳۷/۰۴ ** |

تکرار ۲ تراره ۳ تداخ ۶ خطای آزمایشی ۲۲

* و **: به ترتیب غیر معنی‌دار و معنی‌دار در سطح احتمال پنج و یک درصد.

* رده: معاینات تغییرات آزادی
تأثیر تراکم و زمان‌های مختلف تداخل سیروگرام علوفه‌ای بر میزان مشارکت

![نمودار]

طول دوره‌های تداخل سیروگرام (عندی)

- تراکم هشت بوته در متر مربع سیروگرام
- تراکم چهار بوته در متر مربع سیروگرام
- تراکم دوازده بوته در متر مربع سیروگرام

شکل 1. مقایسه میانگین امتیاز‌های سطح تراکم در دوره‌های مختلف تداخل سیروگرام بر سه فرآیند

انتقال مجدد در عملکردها درت

و میزان انتقال ماده خشک در حداکثر میزان خود قرار دارد، زیرا فتوسیستم‌های جاری بر گیاه مواد مورد نیاز مخزن را تأمین می‌کنند. اثرات تراکم و دوره‌های مختلف تداخل سیروگرام، در متوسط میانگین آنها با یکدیگر بر سه فرآیند انتقال مجدد ماده خشک در عملکردها درت در سطح اختلاف 5 درصد معنی‌دار است. از دیدگاه این مقاله، میزان انتقال ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندارد، زیرا میزان انتقال مجدد ماده خشک در کمک به عملکردها درت نیازی به افزایش طول دوره تداخل ندا...
جدول 2. مقایسه میانگین میزان انتقال ماده خشک از ساقدان به باره در ترک و دوره‌های مختلف مداخله سرورگوم

<table>
<thead>
<tr>
<th>میزان انتقال ماده خشک (میلی‌گرم از باره)</th>
<th>صفت</th>
<th>ترک و دریافت سرورگوم</th>
<th>باره در متر مربع</th>
<th>شاهد (خالص ذات)</th>
<th>طول دوره‌های داخل مداخله سرورگوم</th>
<th>(میلی‌گرم از باره)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24155 c</td>
<td>4</td>
<td>24551 b</td>
<td>8</td>
<td>32345 a</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>22500 c</td>
<td></td>
<td>24507</td>
<td>2</td>
<td>20348 c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25061 b</td>
<td></td>
<td>25202 b</td>
<td>6</td>
<td>28545 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12469 c</td>
<td></td>
<td>12467</td>
<td>8</td>
<td>32456 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12457 c</td>
<td></td>
<td>24569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12500 c</td>
<td></td>
<td>24567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24569 c</td>
<td></td>
<td>24509</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف غیریونب‌شده در هر ستون اختلاف آماری معنی‌داری با هم دارند.
تأثیر تراکم و زمان‌های مختلف تداخل سویگردها یا بر میزان مشارکت...

توانای انقلا نهایی خشک در شرایط نشان دهنده افزایش
افزاری زمان تداخل ماده خشک از مقصد رویشی به دانه تحت تأثیر عوامل
زنتیکی است. توصیه می‌شود در شرایط نشان از ارقام استفاده
شود که توان بالایی در انقلا مواد فتوستاتیزی از بخش‌های
رویشی به دانه داشته باشد تا از کاهش بیشتر عملکرد دانه به
دبی توانای انقلا نهایی خشک از بخش‌های رویشی به دانه.

ممنوعت شود.

و در نهایت باعث کاهش تعداد دانه در ردیف و تعداد دانه در
بلد خواهند یافته. به طوری که تعداد دانه در بالا افزایش
تراکم به همراه طول دوره تداخل سویگردها، از 684 آزمایش
شده به 383 در بالاترین تراکم به همراه تداخل کامل
سویگردها به ذرت و 37 دانه در ردیف در میان تعداد دانه به
در حداکثر تراکم و طول دوره تداخل سویگردها با ذرت رسید.

شکل‌های 4 و 5. هاشمي درفولی و هربرت نیک افشار تعداد
دانه در بالا و تعداد دانه در هر ردیف از بالا را در افزایش
تراکم به سبب قرار گیری کسادی (18). تعداد ردیف دانه تحت تأثیر
تراکم و سطح مختلف تداخل سویگردها قرار گرفت (جدول
1) و به نظر می‌رسد که این جزء از عملکرد بیشتر تحت کنترل
عوامل زنتیکی و کمتر تحت تأثیر عوامل محیطی قرار می‌گیرد.

نتیجه این که افزایش تراکم و طول دوره تداخل سویگردها به
دبی رقابت شدید بین بوته‌ها برابر استفاده از متنوع موجود و

منابع مورد استفاده

1. رحمی‌نیا، ح. ع. کوچکی و ا. زنده. ۷۷ تکامل‌سازگاری و عملکرد گیاهان زراعی از نظر کشاورزی.

5. Benvenuti, J., M. Macchia and A. Stefani. 1994. Effect of shade on production and some morphological of Abutilon

Agron J 57:221-222.

12. Ehdai, B. and G. Wanies. 1996. Genetic variation for contribution of pre anthesis assimilates to grain yield in
spring wheat. J. Genet. and Breed. 50 : 47-56.

