اثر محلول پاشی عناصر ریز مغذی بر تنظیم کندنهای اسمزی، عملکرد و اجزای عملکرد دانه

آفتاگرزان رقم آلت در سه مرحله تنش خشکی

مهدی پابانیان، مصطفی حیدری و احمد پیری

(تاریخ دریافت: 86/11/30، پذیرش: 86/12/3)

چکیده

به منظور بررسی اثر محلول پاشی عناصر ریز مغذی آهن، روی و منگنز و حالات ترکیبی آنها در سه مرحله تنش خشکی، کیویهیدرات و پرولین، عملکرد و اجزای عملکرد دانه آفتاگرزان (رسم آلت) بیان شد. آزمایشی به صورت کرت‌های خرد شده و در قالب طراحی پرپلاک کامل تصادفی با 7 تکرار در سال زراعی 1387 در مزرعه تحقیقاتی دانشگاه شهید رجایی انجام گرفت. تمرکز خشکی به صورت قطع آبیاری در سه مرحله ظهور طبق. گل‌دهی و پر شدن دانه با وقوع عامل اصلی و محلول پاشی عناصر ریز مغذی به صورت میزان مصرف آهن، روی، منگنز، آهن + روی، آهن + منگنز، روی + منگنز و آهن + منگنز به عنوان عامل فرعی در نظر گرفته شدند. نتایج نشان داد که اعمال تیمار خشکی در سه مرحله رشد اثر معنی‌داری بر عملکرد و کیفی اجزای عملکرد دانه آفتاگرزان (رسم آلت) داشتند است.

پیشینه مقدماتی این اثر مربوط به مرحله پر با داشت که سبب کاهش عملکرد دانه و عملکرد پیولوژیکی، وزن وزن دانه، قطر طبق و وزن طبق قطعی که از عناصر ریز مغذی آهن، صورت بر اثر تأثیر مثبت بر اجزای عملکرد دانه داشت و افزایش عملکرد دانه گردید. اعمال نشان داشت که اثر معنی‌داری در سه مرحله رشد بر مقدار دو تنظیم کندنهای اسمزی کیویهیدرات و پرولین افزود. در این پیشینه مقدار افزایش مربوط به مرحله گل‌دهی به عناصر ریز مغذی نیز در طی بروز تنش خشکی بر مقدار تنظیم دانه و نتیجه این دو ترکیب در بافت سبز برگ‌ها افزوده.

واژه‌های کلیدی: خشکی، عناصر ریز مغذی، عملکرد دانه، تنظیم کندنهای اسمزی، آفتاگرزان

مقدمه

گیاهان زراعی در طول دوره رشد خود با نشانه‌های بسیار محوطه مواجه می‌شوند. این نشانه‌ها به طور مشابه و در رشد، متابولیسم و عملکرد آنها تاثیر می‌گذارند. در این بین خشکی مهم ترین عامل کاهش دهنده تولید گیاهان زراعی به حضور موجود در مناطق خشک و به همین خشکی به شمار می‌رود (14). این

1. به ترتیب دانشجوی سایر کارشناسی ارشد، استادیار و دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه زابل
2. Haydari2005@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: *
عملکرد گیاهان زراعی با شدت نش خشکی، مرحله‌ریز گیاه و مدت زمان دوم تشنج اربیاطی دارد (13 و 17). مطالعات بیومیکراتیک نشان داده است که تشنج‌های شوری و خشکی تعدادی از انکلای آلی (محصولات سازگار) در گیاهان تجربی می‌باشد. این تحقیقات، توسط کربه‌های شیمیایی گیاه وارد می‌شودند. از این تحقیقات می‌توان به انواعی از کربه‌های نرمال محلول (مانند: ساکارز، رافینس و الگو ساکارید)، و کربه‌های نرمال محلول (مانند: ساکارز، رافینس و الگو ساکارید) استفاده می‌شود. این گونه‌های خشکی کیفیت تمامی جهدهای می‌باشد. تحقیقات سازگار کننده نقش مهمی در بهبود تنظیم‌های داخلی گیاهان تحت نش شرایط مناسب انجام می‌گیرد.

برخود اول (21):

روش‌های استفاده کاردهی / تخاک اقیانوسی (Helianthus annuus) L.

رقیقه اول: آب (22) و فلاقیلا و همکاران (9) مراحل گلدهی و بر پر شدن گل در افزایش، جسم‌های ضخامتی به تنش خشکی نشان می‌دهند. در این مراحل تعداد دانه، وزن صد دانه و کیفیت روح رواجی تحت نش خشکی قرار می‌گیرد. نتابت مطالعات کمک (19) نشان داد که در طی پرورش گیاهان، مرحله میانی خشکی از عملکرد داخلی دانه، وزن دانه، در طیق، وزن صد دانه، قطر طبق گیاه آفتابگردان کاسته می‌شود.

مطالعه‌های کربه‌های مواد کربنیکی در روش‌های مصرف می‌تواند شدت استفاده از گیاهان می‌شود ولی با تکمیل عنصر

مواد و روش‌ها

این بررسی در سال زراعی 87 در مزرعه تحقیقاتی یوزپلنگ کشتاری دانشگاه زابل (جبه‌نیمه) با طول جغرافیایی 31 درجه و 2 دقیقه شمالی و ارتفاع 887 متر از سطح دریا انجام گرفت. متوسط بارندگی سالانه منطقه ۸۳ میلی‌متر و متوسط

در این نوع خا که جلوپی‌های خشکی روش‌های مصرف گیاهان زراعی می‌باشد. در مراحل زنگ خشکی امر منجر به کاهش قابلیت دسترسی به دسترسی این عنصر برای عملکرد کاردهی خشکی. نش خشکی باعث بر گیاهان می‌باشد. در مراحل پرورش گیاهان امر

تعادل تعیین‌های از گیاهان می‌شود ولی با تکمیل عنصر

عکس و فون کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و نهم (الف) / رستمی ۱۳۸۷
حذافل و حذافلک مدام سالیانه آن به ترتیب ۱۶ و ۳۰ درجه سانتی‌گراد می‌شود.

از محلول بازی عناصر معدنی بر تنظیم کندله‌های اسپری، عملکرد و اجرای...
جدول 1. خصوصیات فیزیکی و شیمیایی خاک محل آزمایش در عمق 0-30 سانتی‌متری

<table>
<thead>
<tr>
<th>لومی - شنج</th>
<th>pH</th>
<th>بافت خاک</th>
<th>نیتروژن</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>آهن</th>
<th>روی</th>
<th>مگنزیوم</th>
<th>لای</th>
<th>رس</th>
<th>شن</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td></td>
</tr>
<tr>
<td>1)</td>
<td>7/2</td>
<td>1/8</td>
<td>32</td>
<td>31/3</td>
<td>2/2</td>
<td>2/2</td>
<td>1/2</td>
<td>2/2</td>
<td>185</td>
<td>2/1</td>
<td>1/2</td>
</tr>
</tbody>
</table>

جدول 2. نتایج تجزیه واریانس عامل‌های انجام عملکرد دانه، کروبوهیدرات و پرولین

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نرخ (ارا)</th>
<th>کروبوهیدرات</th>
<th>پروپین</th>
<th>تیمار</th>
<th>وزن مثا (گرم)</th>
<th>وزن مثا (گرم)</th>
<th>فشار (cm)</th>
<th>وزن مثا (گرم)</th>
<th>وزن مثا (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>2</td>
<td>235/2</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
<tr>
<td>2/1</td>
<td>55/1/8</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
<tr>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
<tr>
<td>2/3</td>
</tr>
<tr>
<td>2/4</td>
</tr>
<tr>
<td>2/5</td>
</tr>
<tr>
<td>2/6</td>
</tr>
<tr>
<td>2/7</td>
</tr>
<tr>
<td>2/8</td>
</tr>
<tr>
<td>2/10</td>
</tr>
</tbody>
</table>

آنالیزها و مطالعات نشان داده که ترکیب مولکولی و فرمول انرژی اثرات مثبتی در مرحله پر شدن دارد. از نظر سطحی، افزایش کاهش عملکرد در مه تنها به کاهش طول دوره پر شدن دانه (2/1) و پنجم‌سازی مرحله در این دوره (2/1) و پنجم‌سازی مرحله در این دوره ممکن است باعث بهبود عملکرد در مرحله 155/9 و تیمار 3W3 (عنصر منگنز در تیمار 3W3) با منگنز 6.6/3 گرم در متر مربع به ترتیب بر دایره بیشترین کمترین عملکرد دانه بودید (شکل 1). ویلسون و همکاران (29) مشخص کردند که منگنز در فرآیند نتروژن یافته دارد. آنها بیان کردند که منگنز در اندازه‌های 0.2 به طور سنتز کروبوهیدرات و منابع می‌شود و به‌طور مناسب در بافت‌های نسبت پرندگان بر دایره یای پیش‌بینی نشان خواهد داشت. همچنین منگنز از جمله ضروری برای تکل و پایداری کلرولیستات و سنتز برخی از پروتئینها به شمار می‌رود. در این آزمایش به به سبب تأثیر بالای خشکی در مرحله پر شدن دانه‌ها که معمولاً به پیری زود هنگام بوده. کمترین میزان عملکرد دانه‌های دیده شد. تأثیر بالای خشکی در این مرحله را می‌توان در بالا بودن غلظت پروپین در بافت سبز برگ‌ها نسبت به سایر مراحل دید (اختصار یافته).
جدول 3 مقایسه میانگین‌های اثرات اصلی و فرعی عملکرد، اجزای عملکرد دانه، کربوهیدرات و پروتئین

<table>
<thead>
<tr>
<th>شاخص برزگانی (میکروکرم گل‌کور)</th>
<th>عملکرد عملکرد وزن هزار وزن طبق جفت طبق طبق (گرم) (گرم) (گرم) (گرم) (گرم) ون دانه (سامتی) (درصد) (درصد)</th>
<th>نماینده دانه (بیولوژیکی)</th>
<th>(g.m²)</th>
<th>(g.m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خشکی</td>
<td></td>
<td></td>
<td>0.114</td>
<td>14.7</td>
</tr>
<tr>
<td>ظهور طبق</td>
<td></td>
<td></td>
<td>0.056</td>
<td>5.43</td>
</tr>
<tr>
<td>کل دهی</td>
<td></td>
<td></td>
<td>0.139</td>
<td>13.4</td>
</tr>
<tr>
<td>پر شدن دانه</td>
<td></td>
<td></td>
<td>0.096</td>
<td>9.64</td>
</tr>
<tr>
<td>ریز مغذی</td>
<td></td>
<td></td>
<td>0.114</td>
<td>14.7</td>
</tr>
<tr>
<td>آهن</td>
<td>0.056</td>
<td>0.096</td>
<td>0.139</td>
<td>13.4</td>
</tr>
<tr>
<td>روزی</td>
<td>0.056</td>
<td>0.096</td>
<td>0.139</td>
<td>13.4</td>
</tr>
<tr>
<td>منگنز</td>
<td>0.139</td>
<td>0.139</td>
<td>0.139</td>
<td>13.4</td>
</tr>
<tr>
<td>آهن + روزی</td>
<td>0.139</td>
<td>0.139</td>
<td>0.139</td>
<td>13.4</td>
</tr>
<tr>
<td>منگنز</td>
<td>0.139</td>
<td>0.139</td>
<td>0.139</td>
<td>13.4</td>
</tr>
</tbody>
</table>
| نتایج حروف در هر ستون نشان دهنده اختلاف معنی‌دار می‌باشد.

شکل 1. اثر متقابل خشکی و اجزای عملکرد ریز مغذی بر عملکرد دانه

123
آزمایش اعمال نش خشکی در سه مرحله رشد ظهور طبقه، ظهور گل دره و مرحله برخورداری دانه‌ها تأثیر معنی‌داری بر کیفیت اجزای عملاکرد دانه آفاتیگردن رکم آستر (عملاکرد پیلوژیکی) شاخص بردادن، وزن هزار دانه، وزن و قطر طبقه داشت (جدول 2). مقایسه میانگین صفات در نماهای مختلف خشکی نشان داد که بیشترین و کمترین میزان افت صفات در اثر نش خشکی برای کلیه اجزای عملاکرد دانه به جز شاخص بردادن در مرحله غلظومی به مرحله پر شدن دانه‌ها و ظهور طبقه بود. در مرحله پر شدن دانه‌ها، خشکی سبب کاهش عملاکرد پیلوژیکی به میزان 14/7 درصد نسبت به مرحله ظهور طبقه گردید. این میزان کاهش برای وزن هزار دانه، وزن طبقه و شاخص بردادن (در مرحله غلظومی) به ترتیب 20، 26/4 و 30/4 درصد بودند (جدول 3).

d) اثرات فیزیولوژیک فنگون و همکاران (29) مگنت نش صیادی در افزایش عملاکرد دانه کاهش دارد، چرا که این عنصر در متابولیسم کربوهیدراتها، تشکیل و پایداری کارپلاستها، استر و پروتئینها و احیای نیتروژ دخالت دارد. در تاپیک یک نظر جن (7) اعلام کرد که مکرید به طور معنی‌داری باعث افزایش وزن هزار دانه در کننده و عملاکرد دانه در کننده را افزایش داده است.

یکی از آثار خشکی تغییر در میزان pH جذب عناصر ریزیمی در تسویه گیاهان تا حد زیادی مرتبط با محلول خاک است. در صورت می بودن معامله مناسبی از pH جذب عناصر در محلول خاک که عدم نشان داده تا حدی تغییر کرده، بهبود یافته با توجه به تغییر مکرید به محلول عملاکرد دانه، مشاهده گردید که جذب مکرید به بهبود عملاکرد دانه. این نتیجه در محلول عملاکرد دانه افزایش یافته و با تأثیر مستقیم اجزای عملاکرد دانه، متوجه به افزایش عملاکرد دانه در آفاتیگردن کرید.

ب) نظارت کندنه‌های اسمازی

نتایج تجزیه واریانس در جدول 2 نشان می‌دهد که اعمال نش خشکی در هر یک از مرحله رشد ظهور طبقه، کل، همه و یا گروه دانه‌ها تأثیر معنی‌داری بر مرحله تجربه دهید. نتایج کنندگان اسمازی کربوهیدرات و پروتئین در آفاتیگردن رکم آستر دارد. در این بین میزان تجربی پرولین حذف سود برای کربوهیدرات در هر سه مرحله نش خشکی بود. به طوری که بالاترین میزان کربوهیدرات با میانگین‌های 14 میکروگرم کلموکرک در کرمان وزن و پرولین با میانگین 4 میکروگرم کلموکرک در کرمان وزن و یا گروه دانه‌ها نشان دادند و اثر تنا در موارد وزن و قطر طبقه و شاخص بردادن معنی‌دار بودند (جدول 2). دانه‌ها عناصر معنی‌دار به صورت منفرد و در مرحله ظهور طبقه (wb) دارای بیشترین و در
جدول ۴. ضرایب همبستگی بین عوامل درمانی، اذیت‌آمیز علائم، کربوهیدرات و پروتئین

<table>
<thead>
<tr>
<th></th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۵۹
 (۱) عامل‌کرد دانه</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۲</td>
<td>۰/۲۲
 (۲) عامل‌کرد پیلوژیکی</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۳</td>
<td>۰/۴۲
 (۳) وزن هزار دانه</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۴</td>
<td>۰/۲۴
 (۴) وزن طبق</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۵</td>
<td>۰/۳۹
 (۵) قطر طبق</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۶</td>
<td>۰/۶۴
 (۶) شاخص برداشت</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۷</td>
<td>۰/۱۸
 (۷) پروتئین</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
<tr>
<td>۸</td>
<td>۰/۲۲
 (۸) کربوهیدرات</td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
<td>۰<sup>١</sup></td>
</tr>
</tbody>
</table>

۱ به ترتیب عدم معنی‌داری، معنی‌دار در سطح ۵٪ درصد
در زمان اعمال خشکی در مرحله گلدهی به دست آمد (جدول 3). تناوب تحقیقات ([15]) نشان می‌دهد که تجمع پرولین در اندام‌های گیاهان در طی تنش خشکی بالا می‌روید. با این وجود میزان تجمع آن در برگ‌ها بیش از سایر اندام‌های از رپورت آمده است.

پرولین اسیدامین ذخیره شده در سیتوپلاسم بوده و احتمالاً در حفاظت از ساختار مناکر مولکول های درون‌سول در طی تنش خشکی نقش مؤثری دارد ([15]). گود و زایجتهنسکی ([11]) اعلام کرده‌اند که تجمع لیپیدهای هم‌اندیش پرولین و استایلین آمینه‌های در بافت سیب‌گیاه کلارا تحت تنش خشکی می‌تواند تا حدی شرایط لازم برای ایجاد جذب آب از محیط ریشه را برای گیاه فراهم نماید. ولی اکتاکی گیاهان به این ترکیبات آن برای تنظیم اسپری هشتم بر پوست و گیاه این هزینه‌های از طریق کاهش عملکرد ادا می‌کند. مشابه نتایج گود و زایجتهنسکی ([11]);

تایپ به دست آمده در این آزمایش نیز بیانگر وجود هم‌پسندگی معنی‌دار و منفی بین این ترکیبات آن برای ترکیب کربوهیدرات و پرولین با ممکن داده افتابگیران رقم آن یافته است (جدول 4).

عناصر ریز‌مغذی تأثیر علی‌گردار بر ستور و تجمع در ترکیب کربوهیدرات و پرولین در این رقم از افتابگیران داشت (جدول 3). در این بین تیمارهای کودی D2 (عصار ریز) و B7 (آن‌رو+مغنی) به ترتیب دارای بیش‌ترین تأثیر بر ستور و تجمع پرولین و کربوهیدرات بودند (جدول 3). براساس نظر

مارشتر (20) عناصر آهن، روی و منگنز هر کدام به نوعی در فرآیند فتوسنتز و تولید کربوهیدرات دخالت دارند. در این آزمایش نیز مشخص گردید که ترکیب متعدد به عنصر بیشترین تأثیر بر تولید کربوهیدرات در افتابگیران داشتند.

علاوه بر اثر مصرف هر کدام از تیمارهای خشکی و محلولپاشی عناصر ریز‌مغذی، اثرات متقابل آن دو تأثیر معنی‌داری بر ستور و تجمع این دو ترکیب در آسایشگاه رنگ w2b1 آستر داشت (جدول 2). در این آزمایش پرولین در تیمار خشکی در مرحله گلدهی و تیمار کودی آهمن و کربوهیدرات در مرحله گلدهی و تیمار کودی روی و آهن می‌گردد) دارای بیشترین غلظت در بافت سیب برگ‌های خرد بودند (شکل‌های 5 و 6).

دلانی و همکاران ([8] اعلام کردن عناصر روی و منگنز به‌خصوص در ارکام مقاوم به خشکی در شرایط تنفس آفناشان دهنده در امر تنظیم اسیدی (به واسطه آسیب‌های بیدار) پرولین به طور کلی از در مصرف و به یافته و محلول (ب) دارند. پرولین به طور قابلی از در مناسب و باعث زنده می‌شود، مسیر گلیپات که آنزیم‌های آن در سیتوپلاسم قرار دارند و مسیر آنزیم‌های مشترک های آن در منطقه واقع هستند. مسیر گلیپات در گیاهان علاوه اهمیت بیشتری دارد و به نظر می‌رسد از آن‌رو آنزیم‌های کلیدی این مسیر به

محلولپاشی روی و آهن و اکسید مثبت نشان می‌دهد ([8]).

شکل 4: رابطه خشکی و عناصر ریز‌مغذی بر پر قطط
همان‌النگان، (۱۴۴۶) اعلام کرد عنصر روی نقص سیار مهمی در سنتر پروتون و کربوهیدرات‌ها می‌باشد. شاخص به‌روش‌های آزاد اکسیدزون و پایین‌دهنده مرتبط با امر سازگاری گیاهی به نتیجه‌های آماری‌است. مارشرین (۲۰۲۰) از نتیجه آهد و ممکن وی‌لینسون همکاران (۲۹) از نتیجه‌های توپید کربوهیدرات‌های گرافیک کرده‌اند. در این آزمایش نیز مشخص گردیده‌است که در شرایط سنتر پروتون، ناتاحیزن کربوهیدرات در ناحیه‌های ساکن‌نشین، سنتر پروتون در ناحیه‌های سنتر باشد. به طور کلی از نتایج به دست آمده در این آزمایش مشخص شد که علت کربوهیدرات در ناحیه‌های شهری، سنتر پروتون در ناحیه‌های شهری باشد.
مباحث مورد استفاده

1. آلیاریه، ه. و ف. شکاری. 1379. دانه‌های روغنی، زراعت و فیزیولوژی، انتشارات عمیمی، تبریز.

2. احمدی، م. 1388. گزارش پژوهشی تحقیقات کند. مؤسسه تحقیقات اصلاح و بهبود دنیا و بدر، بخش تحقیقات دانه‌های روغنی و فیزیولوژی ارگان کلا. مجله علمی پژوهشی علوم کشاورزی 3، 166-177.

3. دلخوش، ب. و م. شیرازی راد. و ف. نورمحمدی و ف. درویش. 1384. بررسی اثر میزان خشکی بر عملکرد و برخی صفات رعایای و فیزیولوژی ارگان کلا. مجله علمی پژوهشی علوم کشاورزی 3، 166-177.

4. سعادت، لاجرودی. و. 1391. دانه‌های روغنی، انتشارات دانشگاه تهران.

5. ملکوتی، م. و. و. م. 1377. تعیین حجم نیازهای عناصر غذایی محصولات استراتژیک و توصیه صحیح کود در کشور. انتشارات آموزش کشاورزی، کرخ.

