بررسی فاکتورهای کیفی در تبدیل رطبه واریته کیکاب به خرما با استفاده از خنک کن لایه نازک

عکس فرمانکن 98، غلامرضا مصباحی و حامد عسکری

(تاریخ دریافت: ۱۳۹۸/۸/۳۰، تاریخ پذیرش: ۱۳۹۸/۳/۸)

چکیده

خمرا محصولی پیاز ارزشمند و مفید است که در صورت فرآوری مناسب می‌تواند جزو اصلی ترین اقلام صادراتی ایران قرار گیرد. در این پژوهش با هدف بهبود و تسریع فرآیند تبدیل رطبه به خرما از یک خنک کن لایه ثابت برای خنک کردن رطبه واریته کیکاب استفاده شد. نمونه‌های رطبه تحت تأثیر گرمای گرم در 5 مطابق دما (۶۴، ۶۶، ۶۸، ۷۰ و ۷۲ درجه سانتی‌گراد) و r.t. رنگ، باتری و چگالی محصول مورد بررسی و ارزیابی قرار گرفت. نتایج نشان داد که در محدوده دماهای پایین (۵۵ و ۶۰ درجه سانتی‌گراد) سرعت خنک کردن پایین و زمان خنک کردن طولانی و غیر اقتصادی است و در محدوده دماهای بالا (۶۵ و ۷۰ درجه سانتی‌گراد) سرعت خنک کردن بالاست. اما فاکتورهای کیفی محصول به ویژه رنگ و باتری نامناسب‌تر است. لذا دماهای (۶۴ و ۶۶ درجه سانتی‌گراد) برای خنک کردن رطبه قابل توصیه می‌باشند. بررسی روند خنک کردن در دماهای مورد بررسی نشان داد که محدوده رطیبیت ۲۰-۲۴ درصد (بیراپی از خنک کن) را می‌توان به عنوان رطیبیت مناسب خنک کردن این نوع رطبه به حساب آورد. از طرف دیگر با بررسی نمونه‌ها، خنک کردن این نتیجه‌گیری حاصل شد که در رطیبیت بالای ۳۰/۳ (پایه خنک)، باتری محصول پایینتری در نتیجه نشان دهنده تأثیر تغییرات رطیبیت نسبی در حالی که در رطیبیت بالا کمتر از حد مذکور حتی کاهش اندک در میزان رطیبیت سی سالانه نماید. نتایج آزمایش تا محتوای مربی مورد نیاز را وارد می‌کند.

واژه‌های کلیدی: رطبه، واریته کیکاب، خنک کن کلیپ، سرعت خنک کردن، رطیبیت بحیطی، باتری

مقدمه

میوه خرما (Phoenix dactylifera L.) یک نوع لیاهی از خانواده پالم می‌باشد که از یک بذر با آندورک می‌شود (شبه شهره با پست و موکورب پوستی و پوسته میوه) یکی از شکل‌های زیبایی در جهان محسوب می‌شود. میوه خرما غذای مهم است که به مقدار زیاد به ویژه در کشورهای آسیای مرکزی مصرف قرار می‌یابد. میزان تولید خرما در ایران سالانه بیش از ۸۸ هزار تن (۱۳۹۸) بوده که این کشور در جهان می‌باشد. ۱. به طریق استادیار، مربی و دانشجوی سایر کارشناسی ارشد علوم و صنایع غذایی، دانشکده شیمی و داشته‌ای کشاورزی، دانشگاه شیراز

farahnak@shirazu.ac.ir

* مسئول مکاتبات، پست الکترونیکی:

۲۰۵
خربهام به سه واژه آنها در زمان‌های مشخصی برداشت شده و بستندگی می‌شوند. موشهای خربما براساس نوع واریته و شرایط رشدشان از نظر شکل اندازه و وزن متغیر هستند. معمولاً خربما درک شکل، دراز و کشیده هستند. ولی با این حال ارقام خاصی نیز وجود دارد که در هر ابر و گری شکل باشد. طول و عرض موشه خربما می‌تواند به ترتیب از 32 تا 64 و 8 تا 18 میلی‌متر متغیر باشد. وزن به عدد موشه خربما تقریباً در حدود 7-17 گرم می‌باشد که بسته به ارتفاع مرحله این میزانی می‌تواند بیشتر یا کمتر باشد(19).

در مرحله مادرام، نازدیک با خردسالان در مرحله گذشته نیستند. این مرحله رشد کرده اند و بسیار قوی هستند. گزارش سرطان در این مرحله ثبت نمی‌شود. در مرحله کوچک (Kimbri) موشه در این مرحله خربما به مقدار کمی رشد کرده است و مصرف آن صاف و به رنگ سبز می‌باشد. ریشه در سال 1946 آزمایش‌هایی روز خربما در این مرحله انجام داده و اعلام داشت که رشد خربما در این مرحله به دو قسمی می‌شود. مشخصه فاز آن افراز بسیار در وزن و حجم است. این رشد می‌تواند با افرازهای همیشه در محتمال قید اما کندنی می‌باشد. دونه فاز به طور معمول همسار با کاهش قند، اسیدنت و محتمال همراه خربما(20). در مرحله رشدی خربما(21) نامیده شده که در این مرحله رنگ بیوس (Khalal) خربما از سبز به زرد یا کرمی تغییر کرده و کاهش مادم در سرعت افراز وزن، قندن افرازهای احیای کندنی است. این رشد موشه می‌تواند با افرازهای مشخصاتی این مرحله رشد (Merphaze سیمون) باشد. تغییرات در مرحله رشد (Merphaze سیمون) باشد. تغییر رنگ از سبز به فوه‌های همه این خربما شروع رشد و نرم شدن می‌کند که از این مرحله رشد خربما آغاز می‌شود. در مرحله آخر (تامار) (خربما نرم و نرم شده) و به این افراز کافی از دست می‌دهد و نسبت به آب افرازهای بانده و این امر با مشابه می‌شود که شرایط برای افراز کنده تخم‌داری خربما را از مرحله تخم در صورتی که پرس
بررسی فاکتورهای کیفی در تبدیل رطوبت واریته کیکبک به خرما با استفاده از...

حملات میکروبی و تبیر شدن در عامل هسته که سپر کاهش کیفیت می شوند و میزان کاهش کیفیت تحت تأییر رطوبت، زمان و هم کار می گیرد. کاهش رطوبت به خشکی کردن می تواند حملات میکروبی را متوقف کرده و باعث شود که تبره شدن به شدت کمتر رخ دهد. تأثیر منفی خشک کردن می تواند مربوط به دست رفت بافت نرم رطوبت باشد، لذا این امر تبیر در نظر گرفته شود. تیمار گرما به عبور فعالیت آنزیم ها و میکروب ها نیز تأثیر داشت است. در هر حال برای این بردن میکروباتیزم به برقراری ترکیب مناسبی از دما و زمان نیاز است. مراک در سال 1952 بیشتر کرده است که پاستوریزاسیون به مدت 20 دقیقه در دمای 80.5 درجه سانتی‌گراد در 34 درجه سانتی‌گرد از طبیعت فرآیندهای خروما که می تواند در مرحله رطوبت به مدت 75٪ از خرماها که معادل با مقدار رطوبت نسبی 90٪ در ان دانه می‌باشد. رطوبت مناسب برای پایداری محصول خرما می‌باشد. خرماهای دارای رطوبت بشی از 24٪ در شرایط گرم و مرطوب در معرض حملات میکروبی به ویژه مخمرها و کیک‌ها قرار می‌گیرد. مهم‌ترین و متداول‌ترین تغییرهایی که در خرما صورت می‌گیرد، فرانکیمی تخم‌میری (تولید اکل) و ترشح شدن (تولید، اسیدهای لکتوکسیک و استیکی) و رشد سطحی کیسه‌های (7). میوه خرما در مرحله رطوبتی بسیار از 35٪ می‌باشد که برای تغذیه آن به دقت لازم به عمل آید زیرا رطوبت میوه فساد بذیر است. به‌طور موردی بازیابی و فروش رطوبت مانند خالی‌بازند نشان می‌دهد. نشان این است که خرما یک مرحله دیرگذار را رخ داده و بلوغ خود را روی نخل گذارند و دیگر این که از نظر فیزیولوژیکی خرما فاقدی معناداری نزولی از شروع می‌کند. هنگامی که نجد و داره کرد در نقطه به خوبی رسیده باشد و با دقت تغذیه‌ای و حمل شود، بکه از مناسب‌ترین شکل‌ها در خرما است. که مورد استفاده قرار می‌گیرد و می‌تواند بیش‌ترین درآمد را برای نخل کاران داشته باشد. مشکل جدی رطوبت این است که محصول در این مرحله نرم و فساد بذیر است و این امر مخازی از حمل و نقل آن در مشکل بزرگی مانند در هنگام رسیدن رطوبت بازارهای محلي و ارائه شاخص. به‌طور مشابه می‌شود و ابزارهای دورتر به دلیل هزینه حمل و نقل و تیمارهای خاص، از فرآیند محصول در آنها کامتد. می‌شود و امکان فروش آن به اعلان برخوردار خالی با در محل نیز وجود ندارد. کسترین‌ها لیپوسیک اپاتوره و حمل و نقل در طی دهه‌های کنونی کار بازارهای و فروش را در بازارهای خارجی آسان کرده و امروزه در بازارهای اروپایی، رطوبت را می‌توان به راحتی به عنوان یک میوه مرغوب در قفسه‌های سوپر مارک‌ها و فروشگاه‌های مختلف بپذیرد. اگر شرایط ایجابی اجراه دهد و در محل خرما کاری مشکلی ایجاد نشود، رطوبت را نخل به تما مصرف می‌کند. البته رطوبت با دقت خرما صورت مصرف می‌شود (7). در رطوبت با فرد اینک مشکل حشرات قبل تکمیل باشد.
بردشت، توسط مکانیزم‌های تحت‌مدتی شام که توانایی شدن
انزیمی اکسیدازیوی (الی فنل اکسیداز) قوه‌های شدن غیر
anزیمی اکسیدازیوی به دلیل وجود ثانه‌های پیچیده و قوه‌های
شدن غیر انزیمی که تكوین و به ویژه انسجام شده تا
دارند، صورت فرگر. ارتباط مثبت بین درجه تعریف شدن و
افزایش مقدار رطوبت، دمای انبار و زمان وجود دارد که در
تحقیقات انجام شده مشخص گردیده است (22). آن‌زیمی گه و
یکی دارای دامنه‌ای بهینه فعالیت مخصوص به خود بوده و در
دارای یک دمای حداکثر است که در بازیابی از انفعالش
موفقیت می‌شود. معمولاً دامنه‌ای مخصوصاً بین
-35-38°C قرار دارد و در دمای بالاتر از 50°C باعث کاهش آن‌زیمی
می‌شود. بیشتر آن‌زیمی در دمای 60°C غیر قوه‌زایی می‌شوند.
امعا انجام داده روح نیرو باز و قوه‌های قه‌های شدن خواهد
شک آت اس و روی نگر محسوس می‌دارد. بنابراین اعمال
حرارت و کاهش رطوبت نیاز به اثر بهبود صورت گیرد که
موجب تبره شدن محسوس می‌گردد. با این حال افرادی بیا
نگر پر طبیعی در صورتی که در خشک‌کن های با دمای بالا
رشد نشان می‌دهد، نسبت به شک دند در برای روز خورشیدی، از
محور افزایش شدن رنگ صورتک می‌یابد (24). هواکاران
همگانی در سال 1951 گزارش کردند که واکنش‌های
فوهای شدن، موجب آن‌ستی شدن کاهش خواهد
pH (15). اثر pH با واکنش‌های قوه‌های شدن به شدید
به معنی رطوبت خمارا دارد. اکثر معادلات رطوبت خمارا بالا
باید. در طی خشک‌کردن در خشک‌کردن در خشک‌کردن در خشک‌کردن در خشک‌کردن در خشک‌کردن در خشک‌کردن دارند
می‌شود. لی‌های محدودی به حمایتی که باعث تعریف این
در صورتی که
محدودی آب خشک‌ها و باعث شدن رنگ می‌یابد. و pH
ارزش بیا لایه باشد. از آن باشد موجب می‌شود که واکنش‌های میلاد در خشک‌کردن
روی دهه (24). تعدادی از اسیدهای آلی مانند اسید سیستزیک،
مالئک و از اکسیداتوز و گوتخ خشک خراست از دیدار که این اسیدها

بر عطر و طعم خمیر تأثیر می‌گذارند؛ از این رو موقعیت رشد
محصول مقدار اصل آن کم می‌شود. ارتباط قطعی بین
افزایش کیفیت تجارتی و قوه‌های pH و کم شدن اسیدیته در
مورد رقم دیگر نیز در این دسته رسمیه است. می‌تواند گفته
برای خمیر بین 0/3 تا 0/2 می‌باشد (21). فالوآی و کلوک،
رطوب متفاوت را در دمای 50 °C و 5 را در دمای 30 سانتیمتر و
رطوبت 22% خشک کردن و تیمیه گرفتند که با هما دما و
با افزایش زمان خشک کردن میزان اسیدیته یافته از
کفیت خواص اکسیدازیوی محصول کاسته می‌شود (1)

* مقدار رطوبت خمرا به طور مستقیم (می‌توان کاهش
* خشک کردن خشک‌کردن تا زه و اثر بهبود از زیر خشک‌کردن خشک‌کردن (تیبیه از 30 /رطوبت بر پایه متر)
* می‌باشد. این به کاهش عمل منجر می‌گردد محصول می‌شود. به
* میوه‌های خشکی سبزه ایجاد شده می‌شود که به طور جزئی
* قبل از برداشت بر روی درخت خشک شوند و مجدد برای خشک کردن گیاه‌های و استفاده در عمارت
* خشکی خشکی می‌کنند. با این حال مشکلات در ارتباط با
* خشک کردن آتفا بی‌خرم خشکی می‌باشد.
* آلوگن خمرا به فضوله‌های نباتی، پرندگان، حشرات، فارمگی،
* خشک و شنی و طولانی بودن زمان خشک کردن، عدم
* کشتین مناسب در حال فرآیند خشک شدن خشک آفای زیر سوال
* می‌رود. خشک کردن کابینی روستی است که در کشورهای
* پیشرفته، جایگزین روست آفایی برای آسم مواد غذایی شده
* است. کاهش رطوبت در خشک‌کردن که از دما و بیانک
* خشک کردن خشک‌کردن در خشک‌کردن از دما و بیانک
* به‌کار آن، باعث تنظیم رطوبت مناسب برای خرما و
* نگهداری محصولی با کیفیت بالا می‌شود. این تحقیق تأثیر
* دما و زمان خشک کردن بر فراوان خشک کردن کابینی خرما
* در سه شده است و سعی شده که دما و زمان مناسب و بهینه
* برای خشک کردن میوه خمرا با توجه به کیفیت محصول تهیه
* به دست آید.
مواد و روش‌ها
میوه خرما مورد استفاده در این تحقیق از استان بوشهر فراهم گردید.
میوه‌های خرما همگی از واریته کیکاب و در مرحله رتوب از نخلستان جمع‌آوری گردید. شاخ‌های خرما به طور تصادفی از خوشه‌ها و درختان متفاوت جدا گردیدند و در جعبه‌های چوبی تمیز قرار داده شدند. سپس جعبه‌های فاکتوریال مجوز انجام تحقیق به آزمایشگاه انتقال داده شدند. میزان رتوب آناتومی میوه‌های مورد استفاده حدود 30% (بر پایه مرطوب) بود.

میوه‌های خرما براساس شکل، اندازه و رنگ چهارگانه گردیدند و رنگ هایی که در این آزمایش و رنگ مُشبکه‌بندی در یک‌سیاه پلاستیکی از جنس پلی اتیلن با دانسیتهٔ کم به ضخامت 100 μm قرار داده شد و سپس کسی‌ها در زنجیره شدند و به‌منظور استفاده بعدی در مدت اپایین 68 درجه سانتی‌گراد در نگهداری گردیدند. چندساتری رطبه بر اساس روش با استفاده از تشخیص جامع گرفت.

روند خشک کردن میوه‌های رطبه
در ابتدای میوه‌های رطبه وزن میوه‌های دو سنتی‌متری در سینه‌های مشبک فلزی پرچم قرار داده و در یک دستگاه خشک کنی کابیلی مدل Proctor , USA با جریان C, 15 درجه سانتی‌گراد و عرضی هوا 96C در حالت 96 درجه سانتی‌گراد پذیرفته شد. سپس 30 برد میوه‌ها به مرطوب غیرت داده شدند. در نهایت، هر 20 دقیقه به مرطوب طبیعی یا به مرطوب مدار نیاز بود.

ارزیابی تغییرات رنگ در طی خشک کردن
در این بخش نمونه‌ها به‌کلکسیون در دیجیتال با میانه به رنگ سفید قرار گرفتند که بیان‌گر میزان ذخیره‌های فتوترونتی واستفاده شد. زاویه ناب رابط سطح رنگ به سطحی تغییر می‌کرد. اندازه پایین‌تر از سطح اصلی تغییرات رنگ در مدت زمان خشک کردن، در دماهای مختلف و در طی تغییرات پارامتر تغییرات رنگ در طی تغییرات طرفین آورده شد و در طی تغییرات افزایش رنگ در طی تغییرات افزایش

در این بخش نمونه‌ها به‌کلکسیون در دیجیتال با میانه به رنگ سفید قرار گرفتند که بیان‌گر میزان ذخیره‌های فتوترونتی استفاده شد. زاویه ناب رابط سطح رنگ به سطحی تغییر می‌کرد. اندازه پایین‌تر از سطح اصلی تغییرات رنگ در مدت زمان خشک کردن، در دماهای مختلف و در طی تغییرات پارامتر تغییرات رنگ در طی تغییرات افزایش

209

Downloaded from jcpp.iut.ac.ir at 22:41 IRDT on Tuesday June 18th 2019
گردیدند و مورد ارزیابی فراگرانت. مدل Lab مربوط از جزء روش‌هایی (Lightness) (مقدار L که محدوده از صفر تا 100) و دو جزء رنگی (محدوده 0 تا 100) شامل جزء (دارای طیف رنگی سبز) و جزء b (دارای طیف رنگی آبی) را می‌باشد.[16]

ارزیابی نگاه‌های بانف رطب در طی خشک کردن
برای تعیین خصوصیات بانف از آزمون Penetration استفاده شده است.[17] این مدل از یک تحلیل تجزیه و تحلیل سطحی است که با استفاده از نرم‌افزار SPSS روشن آنالیز اجرا گردید.

نتایج
تغییرات رطوبت در طی خشک کردن در دمای‌های مختلف
در ورزشی آموز ثابت داشت که دما و زمان خشک کردن بر رطوبت تأثیر می‌گذارد. از طرفی، رطوبت در طول مدت دوره خشک کردن در خشک کردن کم‌اکتشی شد که این تأثیر در دمای 50 0C و 60 0C بود.

بر اثر مقدار ذرات و زمان خشک کردن در دمای مختلف 150 0C در مقایسه شده شدند. این اثر مشخص می‌شود که به مقدار دما و ملاحظه می‌شود که با افزایش دمای خشک کردن در دمای مختلف، دمای خشک کردن به افزایش میزان رطوبت رتبه گردیده است.

اثربخشی نگاه‌های بانف رطب در طی خشک کردن
اثربخشی نگاه‌های بانف رطب با استفاده از استاندارد صورت گرفت. برای دقیقه بیشتر، استاندارد مدرج انتخاب گردید که دارای واحدهای حجمی با اندازه 100 حجم نمونه بود. در داخل استاندارد، هر 100 لیتر نمونه رطب با وزن مشخص وارد گردید. حجم اضافه شده در اثر وارد خشک کردن نمونه رطب به داخل استاندارد مدارا می‌باشد. مقدار این حجم نمونه رطب به نظر گرفته شد که با استفاده از وزن نمونه رطب به حجم به دست آمد. چگالی رطب تعیین شد.[18]

روش‌های آماری مورد استفاده
خشک کردن رطب در قالب یک طرح کامل تصادفی به صورت

210
بررسی فاکتورهای کیفی در تبدیل رطوب واریته کیکاب به خرما با استفاده از...

شکل (1-الف). منحنی درصد تغییرات وزن رطوب در دماهای متفاوت در طی فراورد خشک کردن

شکل (1-ب). منحنی تغییرات رطوبت رطوب در دماهای متفاوت در طی فراورد خشک کردن
آپ بیشتر در دمای بالاتر و افزایش بیشتر غلظت مواد استیبدی

تغییرات رنگ نمونه‌های رطوب در طی خشک کردن در دمای مختلف

نتایج تجربی واریانس و مقایسه میانگین‌های فاکتورهای رنگ

سنجی در سیستم رنگ چرخش (L*, a*, b*) بین دمای و زمان‌های مختلف خشک کردن در جدول (3) آورده شده است. در هر

سه مورد مشاهده می‌شود که دما و مدت زمان خشک کردن بر

فاکتورهای رنگ تأثیر معنی‌داری در سطح 5% داشته‌اند.

- تغییرات میزان پارامتر L، رنگ رطوب

بررسی روند میانگین تغییرات روش‌شناسی

اندازه‌گیری شده در طول مدت دوره خشک کردن، نشان

می‌دهد که با افزایش دما و زمان خشک کردن، (L، رنگ‌های

خشک شده کاهش می‌یابد (شکل 3).
جدول (1-الف). مقایسه میانگین تغییرات محتوای رطوبت نمونه‌های رطب در دماهای مختلف خشک کردن

*میانگین‌های دارای حرف مشترک در سطح 0/05 ≥ P درصد فاصله معنی‌دار آماری هستند.

جدول (1-ب). مقایسه میانگین تغییرات محتوای رطوبت نمونه‌های رطب در زمان‌های مختلف خشک کردن

*میانگین‌های دارای حرف مشترک در سطح 0/05 ≥ P درصد فاصله معنی‌دار آماری هستند.

شکل 2. تأثیر دما و زمان بر تغییرات pH رطب در طی خشک کردن در دماهای مختلف

جدول (2-الف). مقایسه میانگین تغییرات pH نمونه‌های رطب در دماهای مختلف خشک کردن

*میانگین‌های دارای حرف مشترک در سطح 0/05 ≥ P درصد دارای اختلاف معنی‌دار آماری هستند.

جدول (2-ب). مقایسه میانگین تغییرات pH نمونه‌های رطب در زمان‌های مختلف خشک کردن

*میانگین‌های دارای حرف مشترک در سطح 0/05 ≥ P درصد دارای اختلاف معنی‌دار آماری هستند.
جدول (3-الف) مقایسه میانگین تغییرات L و a و b رنگ نمونه‌های رطوب در دماهای مختلف خشک کردن

<table>
<thead>
<tr>
<th>دما (درجه سانتی‌گراد)</th>
<th>96</th>
<th>86</th>
<th>76</th>
<th>66</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>تغییرات (L)</td>
<td>22/88</td>
<td>22/84</td>
<td>22/80</td>
<td>22/76</td>
<td>22/72</td>
</tr>
<tr>
<td>T(1)</td>
<td>19/14</td>
<td>19/14</td>
<td>19/14</td>
<td>19/14</td>
<td>19/14</td>
</tr>
<tr>
<td>تغییرات (a)</td>
<td>32/87</td>
<td>32/87</td>
<td>32/87</td>
<td>32/87</td>
<td>32/87</td>
</tr>
<tr>
<td>رنگ</td>
<td>21/28</td>
<td>21/28</td>
<td>21/28</td>
<td>21/28</td>
<td>21/28</td>
</tr>
<tr>
<td>تغییرات (b)</td>
<td>33/78</td>
<td>33/78</td>
<td>33/78</td>
<td>33/78</td>
<td>33/78</td>
</tr>
<tr>
<td>رنگ</td>
<td>18/22</td>
<td>18/22</td>
<td>18/22</td>
<td>18/22</td>
<td>18/22</td>
</tr>
</tbody>
</table>

* میانگین‌های دارای حروف مختلف در سطح 5% ≤ P درصد دارای اختلاف معنی‌دار آماری هستند.

جدول (3-ب) مقایسه میانگین تغییرات L و a و b رنگ نمونه‌های رطوب در زمانهای مختلف خشک کردن

<table>
<thead>
<tr>
<th>زمان خشک کردن (دقیقه)</th>
<th>240</th>
<th>200</th>
<th>160</th>
<th>120</th>
<th>80</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>تغییرات (L)</td>
<td>24/80</td>
<td>24/80</td>
<td>24/80</td>
<td>24/80</td>
<td>24/80</td>
<td>24/80</td>
</tr>
<tr>
<td>T(1)</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
</tr>
<tr>
<td>تغییرات (a)</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
<td>29/50</td>
</tr>
<tr>
<td>رنگ</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
</tr>
<tr>
<td>تغییرات (b)</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
</tr>
<tr>
<td>رنگ</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
<td>27/50</td>
</tr>
</tbody>
</table>

* میانگین‌های دارای حروف مختلف در سطح 5% ≤ P درصد دارای اختلاف معنی‌دار آماری هستند.

شکل 3 تأثیر زمان بر پارامتر (L) رنگ رطوب در طی خشک کردن

- تغییرات میانگین پارامتر (L) رنگ رطوب
 - تغییرات میانگین پارامتر (b) رنگ رطوب
 - تغییرات میانگین پارامتر (a) رنگ رطوب

روند میانگین تغییراتی که در طول مدت دوره خشک کردن، نشان می‌دهد که با افزایش دما و زمان خشک کردن، (b) کاهش می‌یابد (شکل 5).

روند میانگین تغییراتی که در طول مدت دوره خشک کردن، نشان می‌دهد که با افزایش دما و زمان خشک کردن، (a) کاهش یافته است (شکل 4).

214
تغییرات یافته نمونه‌های رطب در طی خشک کردن میزان نرمی و سفتی یافته با روش دستگاهی اندازه‌گیری
بافت انجام شد. در این روش از میزان نیتروژن لازم برای
وارد کردن یک پروپاکی استوانه ای شکل سطح مقطع به قدر
7 میلی‌متر دریافت زیر عناوینی از فاکتورهای ضروری
بافت استفاده شد. در مقایسه میانگین‌های مکانیسم
نیتروژن وارد بر میوه رطب در دماها و زمان‌های مختلف
خشک کردن، اختلاف معنی‌داری در سطح 5% مشاهده
می‌شد (جدول 2). بررسی روند تغییرات بافت اندازه‌گیری
شده در مدت تکرار دما و زمان، نشان داد که با افزایش
زمان، مکانیسم نیتروژن از حالت افزایشی می‌باشد. این نتیجه
مورد نیاز خشک کردن رطب در دماها و زمان‌های مختلف منجر به تولید
رطبهای دارای محدوده وسیعی از میزان رطوبت بر پایه
خشک (14-24) شده است.
با داشتن نتایج آزمون بافت و رطوبت در شکل 6 منحنی
عوامل رابطه بافت و میزان رطوبت در رطبهای کیک کربن را
یافته می‌باشد. مشاهده می‌شود که منحنی از دو قسمت با شبک کم
(محدوده رطوبت بیش از 30%) و شبک زاید (محدوده رطوبت زیر
30%) تشکیل شده است. کاهش رطوبت نیاز به 30% (بر پایه
خشک) تأثیر قابل توجهی روی سطح بافت ندارد و در رطوبتهای
تغمین ۳۰% میزان تأثیر رطوبت ربط با فرآیند بافت استر می‌شود.

تغییرات چگالی
در مقایسه میانگین های چگالی میوه رطب در دماها و زمان‌های
مختلف خشک کردن، اختلاف معنی‌داری در سطح 5% مشاهده
نمی‌شود. بررسی روند تغییرات چگالی اندازه‌گیری شده در
طول مدت دوره خشک کردن، نشان می‌دهد که با افزایش زمان,
چگالی رطبهای هیچ تغییری نمی‌کند. این نتیجه در مورد افزایش
داما نیز مشاهده می‌شود.

بحث
هدف این تحقیق بررسی فرآیند خشک کردن رطبهای کیک
رطوبت واریت

215
شکل 4. تأثیر دما و زمان بر پارامتر (a) رنگ رطوبت در طی خشک کردن

شکل 5. تأثیر دما و زمان بر پارامتر (b) رنگ در طی خشک کردن
رئاسه فاکتورهای کیفی در تبدیل رطوبت واریتی کیکه به خرما با استفاده از...

![Graph](image)

شکل 6. تغییرات پافت در رطوبت‌های مختلف در طی خشک کردن با دماهای مختلف

جدول 2. مقایسه میانگین تغییرات پافت نمونه‌های رطوب در دماهای مختلف خشک کردن

<table>
<thead>
<tr>
<th>دما (Â°C)</th>
<th>پافت در دماهای مختلف (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/80/94</td>
<td>96 84 70</td>
</tr>
</tbody>
</table>

* : میانگین‌های دارای حروف متقارن در سطح P ≤ 0.05 درصد دارای اختلاف معنی‌دار آماری هستند.

راهنمایی کلی تغییرات پافت مورد استفاده قرار داد. همان طوری که مشاهده شد در رطوبت‌های بالایی (برای خشک) بافت رطوبت نرم می‌باشد و در رطوبت‌های کمتر از 30% میزان تأثیر رطوبت بر پافت بسیار چشمه‌گیرتر است. بافت نشان

شده و روند افزایش سرعت سخت از فرمول (241)

روطوبت (88/11 = مکریم نیرو) با میزان ضرب رگرسیون

71/9 تی چین کد. نمودارparing توجه داشته در رطوبت‌های زیر 30% حتی تغییر محدودی در میزان رطوبت، می‌تواند نرم بافت را تحت تأثیر قرار دهد و به همین دلیل کنترل مراحل آخر

در خشک کردن رطوبت به اهمیت بسیار بالا و انتخاب مواد

بسته بندی مناسب را نیز نشان می‌دهد. به طوری که در صورت

خشک شدن در دمای 84 Â°C بالاتر از 86 Â°C قرار گرفته است

که این احتمال وجود دارد که جریان خروج آب به علت

سخت شدن پوسته و بسته شدن رژه‌های پوسته رطوبت,

کاهش پافت باشد.

مقایسه نتایج رنگ سنگی در مورد پالمرهای L، a و b نشان
dad که با افزایش دما و زمان خشک شدن پالمرهای L، a و b به طور منظم کاهش می‌یابد. تغییرات رنگ در دمای 86 Â°C بیشتر و

شدیدتر از 84 Â°C می‌باشد و در صورت استفاده از دما

96 Â°C کنترل مؤثر بر فرآیند خشک شدن لازم است تا موجب

تبر شدن بیش از حد رطوبت و کاهش بارز وسیله‌ای آن نگردد.

منحنی عمومی به دست آمد در مورد رابطه پافت و میزان

روطوبت بر پایه خشک رطوبت واریتی کیکه را می‌توان به عنوان

217
متنایب مورد استفاده

1. فولادی م ح، الیفک‌لی چیتی ۱۳۸۷ اثر کاهش رطوبت بر کیفیت رطب مضایتی علوم و فنون کشاورزی و مبانی طبیعی ۱۷: ۱۹۱-۱۹۷.