بررسی نقش محافظ سرمایی پکتین در سورمیف منجمد

مرضیه موسوی نسب "غلامرضا مصباحی و لیلا مقصودی"(تاریخ دریافت: 3 شهريور 1387/تاریخ پذیرش: 16 ماه 1387)

چکیده
پکتین هیدرولیزشده یا خصوصیات و کاربردهای منتفی و فراوان است که در این پژوهش نقش محافظ سرمایی و تأثیر مثبت آن بر غذا در منجمد (سورمیف) بررسی شده است. در این مطالعه پکتین مورد مطالعه نسبت به 3 ونی/حجمی و 1 ونی/حجمی از پیش نماده شده و در فواصل 4 و 1.5 کیلوگرمی پیشینی استخرج در آب، میزان آب و مایع منجمد، خصوصیات سرمایی و نرخ اتمام پل مورد بررسی قرار گرفت. نتایج نشان داد که میزان کاهش خصوصیات سرمایی از لحاظ المیزان میزان پرتو خورشید از مصرف غذاهای کلیدی: پکتین گوشت ماهی، سورمیف ماده محافظ سرمایی (کربورونکنت)، انجام، خواص عملکردی

واژه‌های کلیدی: پکتین، گوشت ماهی، سورمیف، ماده محافظ سرمایی (کربورونکنت)، انجام، خواص عملکردی

مقدمه
پکتین و سایر مواد هیدرولیزشده مشابه آن در محصولات غذای مختلف برای نقش ها و وظایف متفاوتی از جمله جامد کننده و باند کننده آب، ترشح کننده، کتالیز کننده کاری، ایجاد کننده کادورت، پوشش دهنده، افزایش کننده زل، ایجاد کننده و تثبیت کننده سوسپنسیونها یا جلوگیری کننده از آب افتاختن، قرار دهنده، ایجاد کننده کف و حجم دهنده.

1. به ترتیب استاندارد، مری و دانشجویی کارشناسی سابق ارشد علم و صناع غذا، دانشگاه شیراز
2. مسئول مکاتبات، پست الکترونیکی: mousavi@shiraz.ac.ir
گروه‌های هیدروفیل و آب شکیگاهی از پیوندهای هیدروژنی تشکیل شده که سبب پایداری ساختار مهوس می‌شود. این ترکیبات، از نظر احتمال، بیشتر در اثر اتلاف (ربه‌رئیس انجام گرفته) هستند. این نتایج احتمالاً می‌تواند به نشان بروز اثرات اصلاحی و تأثیر بکرین بر خصوصیات بیشتری پردازشی کند.

سسوریم‌کیک از مه‌نتی‌های میکروبالی در گردش‌های دایر ارتش افزوده و به مناسبت و آن‌ها گروه‌های هیدروفیلی که برای ساختارهای میکروبالی توجه می‌دارند، آنتی‌بیوتیک می‌باشد. این نتایج احتمالاً به خصوصیات ویژه سسوریم‌کیک ارتباط دارد.

د. از مطلوب‌ترین میکروبی میکروبا و بیوشیمی‌ها که به‌طور مستقیم نقش در بلند شده و در نتیجه میکروبا و بیوشیمی‌ها باعث کاهش خواص عملکردی ارتباط داشته و بیوشیمی‌ها باعثکاهش می‌شود.

ب. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

پ. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

س. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

ج. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

h. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

و. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

ی. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

ر. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.

س. از مطلوب‌ترین میکروبا و بیوشیمی‌ها که در نتیجه بهترین خواص عملکردی ارتباط دارند و میکروبا و بیوشیمی‌ها باعثکاهش خواص عملکردی ارتباط دارند.
سوریتوپل مایع بین یک چندکسالگی سال بیش از ۱۲ سال استفاده گردیده است. این بیماری باعث کاهش می‌شود که در سطح بیماری مشاهده می‌شود. این بیماری باعث کاهش می‌شود که در سطح بیماری مشاهده می‌شود.

**مواد و روش‌ها**

تهیه سویمهای حاوی سروریتول مایع بین یک چندکسالگی در این تحقیق در دو بخش کلی فاز بهره‌برداری و ابزار انجام شد. این بیماری باعث کاهش می‌شود که در سطح بیماری مشاهده می‌شود.

**حسنیت زیاد آن به انجام سروریتوپل مایع می‌تواند بعنوان جمله‌کاهش‌های عملکردی پروتئین‌ها و سروریتوپل امکان استفاده از پکنگ در آن به عنوان محیط سرما‌ای می‌باشد.

**سپریتوپل مایع بین یک چندکسالگی در طول دوره انجام می‌تواند بعنوان جمله‌کاهش‌های عملکردی پروتئین‌ها و سروریتوپل امکان استفاده از پکنگ در آن به عنوان محیط سرما‌ای می‌باشد.**
فشرده که همه آب آن خارج شود. در أبیگیری مخلوط آخر پس از فشردن گونه‌داری چرخی ماهی با دست. یک وزنه سنجین را برای فشردن مخلوط به مدت ۱۰ تا ۱۵ دقیقه روی گوشت چرخی ماهی کذشته‌ها تا آب آن به طور کامل خارج شود (۱۱). محصول به دست آمده از این مخلوط همان سرورمی کاملاً می‌باشد. در مخلوط بعد سرورمی خام به دو قسمت تقسیم شد. به یک قسمت از آنها به عنوان سرورمی‌شده چیزی اضافه نشد و به یک قسمت از آنها پکتین با درجه استرپیکاسیون پایین (Low methoxylated polygalacturonic acid) اضافه گردید.

طرز اضافه کردن پکتین به صورت بود که ابتدا مخلوط

۱/۲۰ گرم سرورمی را در ۲۰۰ میلی لیتر محلول سولفوروان (Sorval) مختلف به مدت ۱ دقیقه توسط دستگاه بخاری ساختمان‌های ساکت (استریپز) هم‌سازی شد و بعد از سنتز تریوژیس بکر، سلس و سپس با ۱۰ میلی لیتر زیرهای با فشار دوباره به بالا مخلوط کرد و بعد از سنتز تریوژیس با همان دستگاه، سلس و سپس با ۱۰ میلی لیتر زیرهای ساختمان‌های ساکت آماده گرفته شد. سپس میزان پروتئین‌های (Lowry) محلول در نمک (SEP) در صورت سازگاری ۲۰۰ ظرف سپس سولفور خود در محلول فوق ریخته و به مدت ۱۲ ساعت در یخچال مخلوط توسط مگنت موجود در یخچال کاملاً به یکم زده شد. روز بعد مخلوط را در پارچه صافی ریخته و پس از خروج آب آن قادر سولفوریک را با دست فشرده که همه آب آن به طور کامل خارج شود (۲۴) آنها نمونه‌های شاهد و حاوی پکتین در یک هیات پی این بسته و درب‌بندی و گردید و پس از انجام داده در دمای ۱۰٪-۲۰٪ در زمان صفر و پس از ۲ و ۴ ماه نگهداری برسی آنها انجام شد.

اندازه‌گیری طرفیت نگهداری آب (Water binding capacity)

ظرفیت نگهداری آب طبق روش پورتوس و وود اندازه‌گیری شد (۲۰). ابتدا ۲۵ گرم سولفوریک را وزن کرد و ۵ میلی لیتر آب مت거یب به آن اضافه کرد. به کمک همین شیشه‌ای آن را به هم زده و به خوبی به هم مخلوط کردن. مخلوط را به مدت ۲۴ ساعت در دمای ۴°C فراز داده تا به تعادل برسد. سپس آن را با دستگاه ساکت (استریپز) گرفته آنها پکتین در یک هیات پی این بسته و درب‌بندی و گردید و پس از انجام داده در دمای ۱۰٪-۲۰٪ در زمان صفر و پس از ۲ و ۴ ماه نگهداری برسی آنها انجام شد.

اندازه‌گیری پروتئین محلول به روش لوری (Salt extractable proteins) نمک

ابتدا ۶ گرم سولفوریک را وزن کرد و ۵ میلی لیتر آب متطریب به آن اضافه کرد. به کمک همین شیشه‌ای آن را به هم زده و به خوبی به هم مخلوط کردن. مخلوط را به مدت ۲۴ ساعت در دمای ۴°C فراز داده تا به تعادل برسد. سپس آن را با دستگاه ساکت (استریپز) گرفته آنها پکتین در یک هیات پی این بسته و درب‌بندی و گردید و پس از انجام داده در دمای ۱۰٪-۲۰٪ در زمان صفر و پس از ۲ و ۴ ماه نگهداری برسی آنها انجام شد. ساختمان‌های ساکت (استریپز) به دست آمده از این مخلوط همان سرورمی کاملاً می‌باشد. در مخلوط بعد سرورمی خام به دو قسمت تقسیم شد. به یک قسمت از آنها به عنوان سرورمی‌شده چیزی اضافه نشد و به یک قسمت از آنها پکتین با درجه استرپیکاسیون پایین (Low methoxylated polygalacturonic acid) اضافه گردید.

طرح اضافه کردن پکتین به صورت بود که ابتدا مخلوط

۱/۲۰ گرم سولفوریک را در ۲۰۰ میلی لیتر محلول سولفوروان (Sorval) مختلف به مدت ۱ دقیقه توسط دستگاه بخاری ساختمان‌های ساکت (استریپز) هم‌سازی شد و بعد از سنتز تریوژیس بکر، سلس و سپس با ۱۰ میلی لیتر زیرهای با فشار دوباره به بالا مخلوط کرد و بعد از سنتز تریوژیس با همان دستگاه، سلس و سپس با ۱۰ میلی لیتر زیرهای ساختمان‌های ساکت آماده گرفته شد. سپس میزان پروتئین‌های (Lowry) محلول در نمک (SEP) در صورت سازگاری ۲۰۰ ظرف سپس سولفور خود در محلول فوق ریخته و به مدت ۱۲ ساعت در یخچال مخلوط توسط مگنت موجود در یخچال کاملاً به یکم زده شد. روز بعد مخلوط را در پارچه صافی ریخته و پس از خروج آب آن قادر سولفوریک را با دست فشرده که همه آب آن به طور کامل خارج شود (۲۴) آنها نمونه‌های شاهد و حاوی پکتین در یک هیات پی این بسته و درب‌بندی و گردید و پس از انجام داده در دمای ۱۰٪-۲۰٪ در زمان صفر و پس از ۲ و ۴ ماه نگهداری برسی آنها انجام شد.

اندازه‌گیری پروتئین محلول به روش لوری (Salt extractable proteins) نمک

ابتدا ۶ گرم سولفوریک را وزن کرد و ۵ میلی لیتر آب متطریب به آن اضافه کرد. به کمک همین شیشه‌ای آن را به هم زده و به خوبی به هم مخلوط کردن. مخلوط را به مدت ۲۴ ساعت در دمای ۴°C فراز داده تا به تعادل برسد. سپس آن را با دستگاه ساکت (استریپز) گرفته آنها پکتین در یک هیات پی این بسته و درب‌بندی و گردید و پس از انجام داده در دمای ۱۰٪-۲۰٪ در زمان صفر و پس از ۲ و ۴ ماه نگهداری برسی آنها انجام شد.

اندازه‌گیری پروتئین محلول به روش لوری (Salt extractable proteins) نمک

ابتدا ۶ گرم سولفوریک را وزن کرد و ۵ میلی لیتر آب متطریب به آن اضافه کرد. به کمک همین شیشه‌ای آن را به هم زده و به خوبی به هم مخلوط کردن. مخلوط را به مدت ۲۴ ساعت در دمای ۴°C فراز داده تا به تعادل برسد. سپس آن را با دستگاه ساکت (استریپز) گرفته آنها پکتین در یک هیات پی این بسته و درب‌بندی و گردید و پس از انجام داده در دمای ۱۰٪-۲۰٪ در زمان صفر و پس از ۲ و ۴ ماه نگهداری برسی آنها انجام شد.
دانشیه دهه این پانزدهم از مهندسین آزمایشگاهی در حلت محفلظم نگهداری آب به است و در اساس این آزمایش‌هایی که به عنوان پیک ماهه محفلظم سرمایی کرایه و نکاً داده شده و نتایج به دست آمده در این آزمایش‌ها مبتنی می‌باشد که برای مفاهیم سرمایی مورد استفاده آنها از نوع دیگری است. در حقیقت مESSAGES استندارد که پس از ۴ ماه نگهداری نوع سوریئی در دهای C ۲۰ در نمونه حاوی ساکورز + سوئیتو + لیکئول + لینز (Litesse) شکل اصلی صدها پیک استروتوز از ۱/۴۲ در ۰/۶۹ در نمونه حاوی ساکورز + سوئیتو از ۱/۸۵ در نمونه شاهد از ۱/۸۵ در ۰/۶۹ همگر در آزمایش‌های کاندید که در‌دندانهای خاص شرکت نگهداری آب در نمونه شاهد از نمونه‌های دوام‌پذیر نگهداری بود (۲۴).

در سال ۱۹۷۳ هنما و همکاران بیان کردند که تحقیقات نگهداری آب در پروپتی‌های ماهی از ارتباط با پروپتی‌های دیافریبرین بوده و کاهش ظرفیت نگهداری آب در طول مدیت نگهداری عمده‌ها به یافته و ارسش‌های پروپتی‌های دیافریبرین می‌باشد. احتمالاً ارسش‌های پروپتی‌ها در حین انجام و نگهداری در اثر تغيیر‌پذیری‌های هیدروفوبیک، دی سولفید و برهم کنش‌های بین زنجیره‌های پروپتی‌ها و در نتیجه از دست دادن آب توسط بین زنجیره‌ها می‌باشد (۷) حال موارد محفلنظم سرمایی با سرعتی که در نگهداری‌های دیافریبرین، دانش‌های شدید چاک‌های داده و در نتیجه از کاهش شدید ظرفیت نگهداری آب در طول دوره نگهداری جلوگیری می‌کند (۳) و (۴).

بررسی نکاتی در نگهداری آب

آزمایش‌ها در سه تکرار انجام و طرح آماری اعمال شده طرح کاملاً تصادفی و آزمون مورد استفاده آزمون جدایی دانکن بود. از ترم انفیزی آماری داده‌ها استفاده شد.

نتایج و بحث

ظرفیت نگهداری آب (WBC) نتایج حاصل از آنالیز گیری طرفیت نگهداری آب نمونه‌های مختلف در جدول ۱ و ظرفیت کاهش ظرفیت نگهداری آب در جدول ۲ نشان داده شده‌اند. همان‌طور که مشاهده می‌گردد در نمونه‌های نگهداری شده در دمای C °۲۰ در بایان دوره نگهداری ظرفیت کاهش ظرفیت نگهداری آب در نمونه حاوی پکتیو کمتر بود (P<۰/۰۵) که

پرسی نکات محفلنظم سرمایی پکتیو در سوریئی نمجد

پس از تهیه محفلنظم‌های استندارد پروپتی (آلبومن سرم گازی) و تبعین میزان جذب آنها در طول موج ۲۰۰ نانومتر با استفاده اسپکتروفوتر (دل سایت انگلیسی) منحنی استندارد مربوط (شکل) رسم شده و معادله استندارد به دست آورده شد. سپس میزان جذب نمونه مجهول با استفاده اسپکتروفوتر تبعین گردید و در معادله استندارد گذاری شده و فلزات پروپتی محلول برحسب میکروگرم در میلی لتر به دست آمد.

اندازه‌گیری درصد شرایب‌های نمجه‌ای

پس از خارج کردن محلول از حالت انجامدی میزان آب و مواد محلول خروجی از محلول با توجه به وزن نمونه و مجدداً میزان عبور از حالت انجامدی و فرمول زیر انداده گیری شد (۱) (۲) (۳) ۱۰۰ × وزن نمونه محصول (پروپتی‌ها) بیشتر دچار صدهم شده‌اند.

 процент نمونه محصول/وزن نمونه‌های محصول = شرایب‌های

بررسی آماری نتایج

آزمایش‌ها در سه تکرار انجام و طرح آماری اعمال شده طرح کاملاً تصادفی و آزمون مورد استفاده آزمون جدایی دانکن بود. از ترم انفیزی آماری داده‌ها استفاده شد.
شکل 2. منحنی استاندارد آزمایش لوری برای اندازه‌گیری میزان پروتئین‌های محلول.

جدول 1. گرافیت نگهداری آب (گرم/گرم) نمونه‌ها در طول دوره نگهداری (دمای $20^\circ C$)

<table>
<thead>
<tr>
<th>زمان</th>
<th>صفر</th>
<th>نمونه‌*</th>
</tr>
</thead>
<tbody>
<tr>
<td>آماده</td>
<td>$0.36 (\pm 0.02) A$</td>
<td>شاهد</td>
</tr>
<tr>
<td></td>
<td>$0.34 (\pm 0.02) B$</td>
<td>حاوی پکتین</td>
</tr>
</tbody>
</table>

جدول 2. درصد کاهش گرافیت نگهداری آب نمونه‌ها در طول دوره نگهداری (دمای $20^\circ C$)

<table>
<thead>
<tr>
<th>زمان</th>
<th>نمونه*</th>
</tr>
</thead>
<tbody>
<tr>
<td>آماده</td>
<td>$0.11 A$</td>
</tr>
<tr>
<td></td>
<td>$0.21 B$</td>
</tr>
</tbody>
</table>

* : عدد میانگین ± نریزان (SD) است.
** : در روش تفاوت حروف کوچک با استاندارد احتمال معتبر بین داده‌ها می‌باشد ($P<0.05$).
*** : در هر روش تفاوت حروف بزرگ با استاندارد احتمال معتبر بین داده‌ها می‌باشد ($P<0.05$).

کمتر بود ($<0.05$) به عبارت دیگر در مورد نمونه‌های حاوی پکتین، گرچه میزان پروتئین‌های محلول در نمک در ابتدا (زمان صفر) کم بود اما در هر سه دوره نگهداری در فرایند مقدار کاهش آن به میزان بوده است. علتهای نبودن میزان پروتئین‌های محلول در نمک در نمونه‌های حاوی پکتین در ابتدا (زمان صفر).

شاید کاهش حلالات پروتئین‌های موفيبریل در این نمونه‌های محلول به این دلیل باشد که این ساده‌تر در انتقال با روش افزودن پکتین به ساده‌تر در انتقال با روش افزودن پکتین به ماده غذایی، و سرانجام پروتئین‌های محلول در نمک را در ابتدا (زمان صفر) در حد بالاتری داشت و به وسیله
پکتین، تا انتهای یک‌گذاری آن جلوگیری نمود.

نتایج به دست آمده در این آزمایش مطابق با نتایج به دست‌آمده توسط کورکچی نشان‌دهنده اختلاف آماری معنایی بین داده‌ها می‌باشد (P<0.05). 

جدول 3: درصد پروتئین‌های محلول در نمک نمونه‌ها در طول دوره گهگاهی (دما: 20 °C)

<table>
<thead>
<tr>
<th>زمان</th>
<th>نمونه*</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>29/4 (± 0.4)**</td>
</tr>
<tr>
<td>حاوی پکتین</td>
<td>29/4 (± 0.4)**</td>
</tr>
</tbody>
</table>

جدول 4: درصد کاهش مقدار پروتئین‌های محلول در نمک نمونه‌ها در طول دوره گهگاهی (دما: 20 °C)

<table>
<thead>
<tr>
<th>زمان</th>
<th>نمونه*</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>16/4*</td>
</tr>
<tr>
<td>حاوی پکتین</td>
<td>21/1*</td>
</tr>
</tbody>
</table>

در این پژوهش نشان داده است: به 24% و در نمونه کنترل از 24% به 19% رسید. آنها دریافتند که درصد کاهش پروتئین‌های محلول در نمک در نمونه کنترل از نمونه‌های حاوا ماده مصرف سرمایی بیشتر (P<0.05). و در نمونه حاوی ساکاروز + سرپینول از همه نمونه‌ها کمتر بود.

کاهش میزان پروتئین‌های محلول در نمک در طول مدت نگهداری آغلب به علت نوسانات دما (Fluctuation) سردرخته و واسرتی پروتئین‌های مغزیبل در دمای انجام شده می‌باشد.

مواد مصرف سرمایی با جلوگیری از واسرتی پروتئین‌ها از کاهش شدید پروتئین‌های محلول در نمک در طول مدت نگهداری جلوگیری می‌کنند (25) و پکتین نیز تأثیرات را در این پژوهش نشان داده است.

مست بی‌شمار اولیه در زمان صفر

میزان آب و مواد محلول در آب خروجی (شیرابه) از نمونه‌ها

هنگام رفع انجام درصد شیرابه نمونه‌ها و درصد افزایش شیرابه نمونه‌ها به ترتیب در جداول 5 و 6 نشان داده شده است.
جدول ۵. درصد شیرابه نمونه‌ها در طول دوره نگهداری (دمای C° ۲۰) ۲ از نمونه‌های حاوی پکتین بود (۵>P<0/05) همچنین در پنتکس پیش از ۱،۵ ماه نگهداری نمونه‌ها در دمای انجماد، میزان شیرابه هنگام فصل انجماد در همه نمونه‌های سورئی افزایش یافت ولی این افزایش نیز در نمونه شاهد به طور معنی‌داری بیشتر از نمونه‌های حاوی پکتین بود (۵>P<0/05). بنابراین می‌توان یک پکتین را عنوان یک ماده محافظ سرمایی از نظر خصوصیات مذکور یک به یک مانند آنها، به‌طور مکرر بهتر است که برای افزودن پکتین به محلول روش‌های مناسب‌تری را بررسی نمود.

جدول ۶. درصد افزایش شیرابه نمونه‌ها در طول دوره نگهداری (دمای C° ۲۰) نسبت به مقدار اولیه در زمان ۴ ماه

<table>
<thead>
<tr>
<th>زمان (۴ ماه)</th>
<th>نمونه‌های پکتین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۷/۳ *</td>
<td>شاهد</td>
</tr>
<tr>
<td>۷/۱ b</td>
<td>شاهد</td>
</tr>
</tbody>
</table>

* حرارت متقابل نشان دهنده اختلاف آماری معنی‌دار بین داده‌ها می‌باشد (۵>P<0/05).

نتیجه گیری

به طور کلی در طول دوره نگهداری نمونه‌های سروبیمی در دمای انجماد (بîد ۴ ماه) هر چند که میزان پروتئین‌ها محلول در نمک و لیزر نگهداری آب در نمونه‌ها کاهش داشت.
منابع مورد استفاده

1. مفصودی، ل. ۱۳۸۶. بررسی اثر کاراییپرکتونکسیافزودن‌های مختلف روی پایداری پروتئین‌های سوئیسی در طول مدت نگهداری.