بررسی مقاومت پوشه گیاهی غیر مستغرق در مقابل چربان در ساحل رودخانه‌ها

علیرضا مسجدي ۱، منوچهر فتحی مقدم ۲ و بابک نما نسب ۳

(تاریخ دریافت: ۱۳۸۵/۶/۱۳ ; تاریخ پذیرش: ۱۳۸۵/۱۱/۳۰)

چکیده

گیاه‌ز رودخانه‌ای در حاشیه رودخانه کارون رشد می‌کند. اندام پوستی این گیاهان در زمان سیل‌پیمایی باعث کاهش سرعت چربان و جلوگیری از فرسایش کارایی می‌شود. در این بررسی، گیاهان موجود در این سواحل و درخت‌های سیل‌پیمایی و بروسی تأثیر آنها در کاهش سرعت و تنظیم چربان از اهمیت خاصی برخوردار است. در این تحقیق با استفاده از مدل آزمایشگاهی به بروسی و ضرب زیری گیاه‌ز رودخانه‌ای پرداخته شد. این گیاه در شرایط غیر مستغرق و زیر بحرانی در قله فشیده‌ای به طول ۱۲/۶۰ ساعت ۵/۰۰۰ و ارتقاء فلز قرار داده شدند. تعداد کل آزمایش‌های در این تحقیق ۲۵ عدد بود. با توجه به آزمایش‌های انجام شده، روش ترکیبی و نموداری به درست آمده می‌توان تجربه گرفت که شرایط چربان نظر سرعت، عمق و شعاع هیدرولیک و هم‌چنین تابعی از نوع و میزان پوشه گیاهی است. همچنین در شرایط نیمه مستغرق گیاهان، با تغییر سرعت، عمق، شکل رونده، عمق استراق و حاصل ضرب سرعت در شعاع هیدرولیک (VR) در شرایط طبیعی تراکم، ضرب زیری داریس- ویسیاگ و منابع دارای تغییرات غیر خطی می‌باشد.

واژه‌های کلیدی: پوشه گیاهی ، مقاومت چربان، گز (Tamarix stricta). سواحل رودخانه‌ها

مقدمه

حفظ سیل‌پیمایی و ساوان‌های رودخانه‌ها، مناطق ساحلی و هم‌چنین محافل کردن از زمین‌ها و ذخایر ارزشمند موجود در این سواحل (استگاههای انسان، تصفیه خانه‌ها، کاهشی ثابت، آب حوضچه‌های پروشی میگو و غیره) از اهمیت خاصی برخوردار می‌باشند. وجود پوشه گیاهی در حاشیه رودخانه‌ها باعث کاهش سرعت چربان در هنگام سیل‌پیمایی و جلوگیری از فرسایش

۱. استادار آبیاری، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اهواز
۲. دانشیار مهندسی آب، دانشکده کشاورزی، دانشگاه شهید چمران اهواز
۳. دانشجویی سابق کارشناسی ارشد تأمینات آب، دانشگاه علوم و تحقیقات اهواز

* مسئول مکاتبات، پست الکترونیکی: dmjasjedi.2007@yahoo.com
روخانه ساحل جهادی ایجاد می‌شود.
نقش پوشش‌گاه در حفاظت و ثبت‌پذیری دیواره و سواحل
روخانه و دریاها به طور گسترده‌ای توسعه محققان در آن تا آن را به عنوان یک گروه اقتصادی و ریزی بعنوان شناختن‌ها. این روش در بررسی و
قابلیت تحلیلی و پیش‌بینی بار آبیاری به چنین پیش‌بینی
تاکنون در ایران بررسی‌های محدودی در این امر انجام گرفته
است.

در سالهای آخر به عنوان وقوع سیل به ویژه در اروپا
پژوهش‌های بایزنزی و رویکرد به آن بیابان مناسب‌تر
کرده است. پژوهش‌های آزمایشگاهی و کالاسی چهار یک به بررسی نهایی، بالاخره
باتری به دست آمده است.

انجام تحقیقات برای دست‌آوردن راه‌های بین‌زیستی
هیدرولیکی جریان به دست‌آوردن سیستم‌های و مهیج‌نوع و
ارتقا پوشش‌گاه در آزمایشگاه‌های سازمان حفاظت خاک ایالت
کارولینا جنوبی و در قراردادهای ایالت‌های مختلف شرکت
شده 2 و 3. حاصل این آزمایش‌ها ارائه یک سری ضرای
زیری کنترل و مانیگ در کالاسی‌های کشت شده با عرض
1/2-3/4 متر و شیب کاره مناسب می‌باشد.

لی وشن (10) اثربخشی گیاهان به سیستم‌های استاتیوی
مختلف رادر حالت مستمر در حال مصرف می‌باشد. در این
حتای نشان داد که اگر بروز مختلف قرارگیری
سیستم‌های استثماری تأثیر مهمی در جریان دارد. علما به آن
مدل‌های فیزیکی برای تعیین ضریب زیری در شبیه‌سازی
سیستم‌ها با سیستم‌های استاتیوی ای سفر مورد استفاده قرار
گرفته به طوری که یک بخش از برنامه برای محاسبه دیا می‌باشد
منطقه رویش گیاه برنامه‌ریزی شده بود. کوشش و عملکرد لی و

52
بررسی مقاومت پوشش گیاهی غير مستقیم در مقابل جریان در ساحل رودخانه‌ها

برای درخت بید بر گیاه ضریب اصطکاک تقیی بحساب می‌شود.

خطر با عمق و مستقیم از سیرت افزایش می‌یابد. به طور غیر
منطقت آرامشی متفاوت تعادل یکسانی از درختان بی درگ
همراه با عمق تأثیر مهمی روی ضریب اصطکاک تدارد. در کل
آرامش‌ها، ضریب اصطکاک با افزایش عدد رینولدز افزایش
می‌یابد. به طور تقریبی، یک عدد رینولدز الکترومغناطیسی
اندازه‌گیری کننده شتاب و بار توسط سیستم نسبت به بار توسط سیستم
که در طول درخت بید بر گیاه ضریب اصطکاک تقیی بحساب می‌شود.

مواد و روش‌ها

به منظور بررسی اثر مقاومت جریان گیاهان موجود در سواحل
و دشت‌های سیلایی بر خصوصیات جریان مانند سرعت، عمق،
سرعت است Fahr و حاصل ضرب سرعت در شعاع هیدرولیکی آرامش‌های
روی بلور شیشه‌ای به طول 1/2 متراً، عرض 5/10 متراً و ارتفاع 1/2 متراً یا شیب متغیر انجام شد.

گیاهان مورد آزمایش در این تحقیق گروهی گردیده که
در مسیر جریان در خورآم آرام گیاهان گردیدند. در فاصله
6 متری در بالا و 2 متری در پایین خود رابطه ریختگی گیاهان به
دریچه گردید. جهت کنترل عمق جریان در فلش، دریچه‌ها در
پایین سطح شیر گردید. دریچه در پایین سطح پشمی در
ورودی فلش غیر بات. جریان آب پشمی بات. پشمی بات اینچی وارد
نکت هوای و به ارتفاع 7 متری گردید و سپس از طریق لوله
اینچی که در مسیر آن شیر فلکا قرار دارد وارد فلش شده و پس
از عبور از پوشش گیاهی مورد آزمایش شده و سپس توسط
دریچه در پایین دست فلش کنترل گردید (شکل 1). روش
برآورد مقاومت جریان گیاهان در این تحقیقات، تعیین
شیب افت انرژی (Energy lose slope) در طول بازه گیاهان
بود. برای این منظور با استفاده گیری از شیب خط خیز
(Hs) با استفاده از روش یکنوازی (L) مقادیر شیب افت
به دست آمده سپس با تقسیم بر طول بازه گیاهان
صورت گرفته و به تاکنون تعقیبی در خصوص ضریب زیری گیاهان
 isi.ir
شکل 1. شماتیک مدل تنزیکی (پیان)

انرژی (S_T) به دست آمده ($S_T = H_T / L$) یا توجه به روش محاسبه مقاومت جریان گیاهان. جهت تعیین ضریب زیری گیاهان طبق معادله مانینگ ابتدا گیاهان کر و روختهایی از حاشیه رودخانه کارون برداشت و سطح‌های 35 سانتیمتری H_T از آن را برده و در سوی رودخانه تعیین شده در جهت جلو به طول 20 متر با ارتفاع طبیعی و تصادفی در باره مورد نظر در فاصله 9 متری از ابتدا فاصله قرار داده شد. ترکم طبیعی گیاهان در آزمایشهای براساس ترکم موجود در دشت (6) سیالی انتخاب شده بود به نحوی که در صورتی که از بایا به باره مورد نظر نگاه شود کف پست تبقیباً قابل رویت نباشد. گیاهان در تمام طول آزمایش به صورت عمودی نیستند ($AH < 0$) و جریان به صورت عمودی ($F_r > 1$) نیست. جهت استفاده از متوسط سرعت جریان در معادله مانینگ از سرعت متوسط جریان در بالای سطح گیاهان (جلوی گیاهان) در 6 نقطه با توجه به تغییرات عمق استفاده شد (شکل 2).

کل سطح مانینگ تیت در عمق 12، 16، 19، 23، 27 و 31 سانتیمتری (H_T) با دیپ های 120، 100 و 50 لیتر بر ثانیه (Q) انجام شده بود. اختلاف سطح آب در بالایی و پایین دست بازه (S_T) توسط عمق سنج با دقت 300 میلیمتر و سرعت جریان در قسمت‌های مختلف (V_T) توسط میکروسنجین بیا...
این تحقیق با توجه به محاسبه‌های موجود در مدل فیزیکی 22 عدد بود، با توجه به مشاهدهای عقیده‌ای (جندولی) و بررسی نمودارهای به دست آمده می‌توان نتایج زیر را استنتاج نمود:

1- سرعت جریان

جهت بررسی تغییرات زیری با سرعت جریان در گیاه غیر رودخانه‌ای رونده تغییرات سرعت جریان را در مقابل ضرایب زیری در اعماق مختلف ترسیم گردید. شکل 3 نشان می‌دهد با افزایش سرعت جریان در اعماق مختلف، ضریب زیری مانند (nv) به طور نسبی کاهش می‌یابد. به عبارت دیگر افزایش سرعت جریان در گیاهان باعث همکاری شدن گیاهان در مسیر جریان شده و در نتیجه باعث کاهش زیری در گیاهان می‌گردد.

2- عمق جریان

جهت بررسی تغییرات زیری با عمق جریان در گیاه غیر رودخانه‌ای رونده تغییرات عمق جریان را در مقابل ضرایب زیری در اعماق مختلف ترسیم گردید. شکل 4 نشان می‌دهد با افزایش عمق جریان در اعماق مختلف، ضریب زیری مانند (nv) به طور نسبی افزایش می‌یابد. با توجه به نمودارهای به دست آمده می‌توان نتیجه گرفت که برای دیس پکس، افزایش عمق جریان در گیاهان باعث می‌گردد تا گیاه در مقابل جریان آب به طور استحصال قرار گرفته و سطح تماس

\[
n_{vb} = \frac{1}{\sqrt{\frac{R}{\sqrt{S_f}}}} \quad [1]
\]

ضریب زیری مانند (n) ضریب متوسط اندازه‌گیری شده در جلوی گیاهان

\[
S_f = \frac{\text{شیب خاک اطراف در بادگیر و پایین دست گیاهان}}{S_f}
\]

سس جهت بررسی ضریب زیری دارسی- ویسپا کلیه ضرایب مانند (Sf) استفاده از معادله (۲) به ضریب دورسی-

ویسپا تبدیل شد:

\[
f_{veg} = \frac{A}{g} \left(\frac{n_{veg}}{R^{\frac{1}{3}}} \right)^y \quad [2]
\]

محدوده معیارهای اندازه‌گیری شده از این تحقیق عبارت‌اند از:

الف. عمق جریان (y = ۲۷۰ cm)

ب. سرعت جریان (V = ۱۸–۱۸۰ m/s)

(Re = ۶۰۰–۶۰۰۰)

(0.۵ = Fr = ۰–۲۰)

(0.۲۵ = Sf = ۰–۰.۰۵)

تایب و بحث

پس از انجام آزمایش‌ها روزی مدل فیزیکی و گیاهان، نتایج حاصل به صورت نمودار نشان داده شد. تعداد کل آزمایش‌ها در
جدول 1. نتایج حاصل از آزمایش‌ها روی گیاه گر رودخانه‌ای

<table>
<thead>
<tr>
<th>Test No.</th>
<th>y (m)</th>
<th>Q (m³/s)</th>
<th>∇ (m/s)</th>
<th>Fr</th>
<th>V / √gy</th>
<th>R (m)</th>
<th>Re</th>
<th>Sf</th>
<th>n_{Veg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/13</td>
<td>0/28</td>
<td>0/28</td>
<td>0/88</td>
<td>0/10</td>
<td>0/68</td>
<td>0/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0/18</td>
<td>0/24</td>
<td>0/21</td>
<td>0/97</td>
<td>0/85</td>
<td>0/46</td>
<td>0/49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0/19</td>
<td>0/18</td>
<td>0/15</td>
<td>0/11</td>
<td>0/80</td>
<td>0/43</td>
<td>0/74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0/22</td>
<td>0/21</td>
<td>0/22</td>
<td>0/12</td>
<td>0/119</td>
<td>0/31</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0/13</td>
<td>0/21</td>
<td>0/24</td>
<td>0/15</td>
<td>0/85</td>
<td>0/24</td>
<td>0/71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0/19</td>
<td>0/21</td>
<td>0/30</td>
<td>0/76</td>
<td>0/96</td>
<td>0/40</td>
<td>0/78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0/19</td>
<td>0/30</td>
<td>0/29</td>
<td>0/11</td>
<td>0/80</td>
<td>0/100</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0/16</td>
<td>0/21</td>
<td>0/18</td>
<td>0/11</td>
<td>0/92</td>
<td>0/77</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0/25</td>
<td>0/20</td>
<td>0/15</td>
<td>0/14</td>
<td>0/80</td>
<td>0/76</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0/27</td>
<td>0/20</td>
<td>0/14</td>
<td>0/18</td>
<td>0/80</td>
<td>0/76</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0/13</td>
<td>0/24</td>
<td>0/56</td>
<td>0/85</td>
<td>0/55</td>
<td>0/210</td>
<td>0/73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0/19</td>
<td>0/24</td>
<td>0/41</td>
<td>0/97</td>
<td>0/142</td>
<td>0/150</td>
<td>0/74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0/19</td>
<td>0/24</td>
<td>0/31</td>
<td>0/11</td>
<td>0/80</td>
<td>0/190</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0/13</td>
<td>0/29</td>
<td>0/23</td>
<td>0/11</td>
<td>0/92</td>
<td>0/77</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0/15</td>
<td>0/27</td>
<td>0/21</td>
<td>0/14</td>
<td>0/80</td>
<td>0/76</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0/17</td>
<td>0/25</td>
<td>0/18</td>
<td>0/18</td>
<td>0/80</td>
<td>0/76</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0/13</td>
<td>0/21</td>
<td>0/80</td>
<td>0/85</td>
<td>0/53</td>
<td>0/142</td>
<td>0/73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0/16</td>
<td>0/25</td>
<td>0/56</td>
<td>0/85</td>
<td>0/55</td>
<td>0/210</td>
<td>0/73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0/19</td>
<td>0/24</td>
<td>0/11</td>
<td>0/11</td>
<td>0/92</td>
<td>0/77</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0/13</td>
<td>0/23</td>
<td>0/73</td>
<td>0/85</td>
<td>0/119</td>
<td>0/114</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0/16</td>
<td>0/23</td>
<td>0/30</td>
<td>0/26</td>
<td>0/119</td>
<td>0/114</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0/17</td>
<td>0/30</td>
<td>0/31</td>
<td>0/13</td>
<td>0/119</td>
<td>0/114</td>
<td>0/79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![نمودگر گر رودخانه‌ای](n=13-27-cm)

شکل 2. تغییرات سرعت جریان با ضریب زیری مانیگ (n)

538
شکل ۴: تغییرات عمق جریان با ضریب زیری مانیگ (n)

شکل ۵: تغییرات عمق استفراغ با ضریب زیری مانیگ (n)

شکل ۶: تغییرات عمق استفراغ (y/H) با سطح استفراغ (a/A)
شکل ۷. تغییرات VR با ضریب زیری مانیگ (n) هیدرولیکی در گیاه گر رودخانه‌ای روند تغییرات VR در مقابل ضریب زیری مختلف ترسیم گردد.

شکل ۷ نشان می‌دهد با افزایش VR در درصد های مختلف ترسیم گردد، ضریب زیری مانیگ (n_{veg}) به طور غیر خطا کاهش می‌یابد.

با توجه به نمودارهای به دست آمده می‌توان نتیجه گرفت که کاهش ضریب زیری مانیگ به دلیل همسو شدن گیاهان در مسیر جریان با اضافه شدن سرعت و شمع هیدرولیکی است.

نتیجه‌گیری

نتایج کلی این تحقیق نشان می‌دهد که:

۱. ادامه پیوست گیاه گر به دلیل زیری نتیجه‌گیری نشده‌است.
۲. گیاه گر پوشش مناسبی جهت حفاظت از سواحل و جلوگیری از فرسایش کاراهای است.
۳. ضریب زیری گیاه‌های ناشی از شرایط جریان نتیجه‌گیری توسط عمق و شمع هیدرولیکی و همچنین نتایج توزیع و پوشش گیاهی است.

۴. در پوشش گیاهی غیر مستقر ضریب زیری مانیگ (n_{veg}) با افزایش سرعت جریان به طور غیر خطی کاهش می‌یابد.
۵. در پوشش گیاه غیر مستقر ضریب زیری مانیگ (n_{veg}) با افزایش عمق جریان و عمق استفراغ به طور غیر خطی به جریان می‌رود.

۲. عمق استفراغ

جهر بررسی تغییرات زیری با عمق استفراغ (y/H) در گیاه گر رودخانه‌ای روند تغییرات عمق استفراغ را در مقابل ضریب زیری در سرعت‌های مختلف ترسیم گردد. شکل ۷ نشان می‌دهد با افزایش عمق استفراغ در سرعت‌های مختلف، ضریب زیری مانیگ (n_{veg}) به طور غیر خطی افزایش می‌یابد. با توجه به نمودارهای به دست آمده می‌توان نتیجه گرفت که افزایش عمق استفراغ در گیاهان باعث می‌گردد تا سطح مسافر گیاه با جریان بهتر شده و مقدار انرژی جذب شده توسط گیاهان افزایش یابد.

جهر بررسی اثر سطح مسافر گیاه با جریان، عمق استفراغ در مقابل سطح جذب انرژی (a/A) در شکل ۷ نشان داده شده است. با توجه به نمودار نتیجه گرفت که افزایش عمق استفراغ باعث افزایش در سطح استفراغ و یا به عبارت دیگر مقدار انرژی جذب شده در سرعت‌های مختلف افزایش می‌یابد.

۵- حاصل ضرب سرعت در شمع هیدرولیکی (VR)

جهر بررسی تغییرات زیری با حاصل ضرب سرعت در شمع