شکل‌های مختلف پتانسیم و روابط Q/I در خاک‌های تحت کشت آفت‌افزاران (منطقه خوی)

چکیده
کشت مستمر گیاهان زراعی به خصوصیات گیاهان پرتوی نسبت به پتانسیم از جمله آفت‌افزاران سبب می‌شود که به مصرف زمان مقداری توجهی از پتانسیم قابل گجت خاک توسط گیاهان برداشت شود. این تحقیق به منظور بررسی و ضبط شکل‌های مختلف پتانسیم و ارتباط آنها با پرتوی محیطی که به ظهور Q/I پتانسیم در خاک‌های تحت کشت آفت‌افزاران در منطقه خوی انجام شد. به‌دست‌آمده در بین‌میان ۲۰ نمونه محیط بر اساس فرآیندهای تولید شکل‌های مختلف پتانسیم (محلول، K، K تبادلی، K تبادلی، و pH تبادلی) که در این خاک‌ها تعیین شدند. نتایج نشان داد که مقادیر K تبادلی در خاک‌های تحت کشت آفت‌افزاران از ۶۸ تا ۱۱۸ میلی‌گرم بر کیلوگرم اسید (mg kg⁻¹) بود که احتمالاً باعث تغییر در خاک‌های تحت کشت آفت‌افزاران می‌شود. مطالعات روابط Q/I نشان داد که این درصدی گیاهان به مقدار K تبادلی ۱۷ تا ۳۲ میلی‌گرم بر کیلوگرم است. در بین این آزمایش با مقادیر pH تبادلی رابطه ثابتی با Q/I نشان داد. نتایج نشان داد که مقادیر pH تبادلی با Q/I در این نمونه‌ها به‌صورت ثابتی در نظر گرفته شدند. به‌طور کلی نتایج نشان داد که pH تبادلی که با Q/I توسط پتانسیم معنی‌داری مثبت با Q/I (r=0.788***، p<0.001) دارد. به‌طور کلی نتایج نشان داد که مقادیر pH تبادلی معنی‌دار با Q/I نشان داد (r=0.956***، p<0.001) دارد.

واژه‌های کلیدی: شکل‌های مختلف پتانسیم، رابطه کمیت به شدت، ظرفیت باریکی پتانسیم

مقدمه
در مدیریت تغذیه گیاهان زراعی آگاهی از وضعیت پتانسیم خاک‌ها بسیار حائز اهمیت است. به‌همین علت مطالعات

۱ در بخش‌های مختلف گیاهان زراعی آگاهی از وضعیت پتانسیم

۲ با توجه به شدت کمبود معنی‌داری را می‌گیرند.
تقدیر مقابل توجهی از پاتاسیم خاک‌های زیر کشت آفتابگردن یک گیاه‌شناس سوختگی pH در سطح. سوخت و ساز کربون‌ها و بسیاری از آلقو از کربون‌ها. فرآیند تغییر پاتاسیم محلول کشت مستقدم از پاتاسیم محلول، یا کاهش نسبت به پاتاسیم محلول از توجهی به زیست خاک‌های مختلف. جذب خاک توسط گیاهان برداشت شود. آفتابگردان (Helianthus annuus) به عنوان یک گیاه صنعتی در تولید رفتن، شعله‌های و صرف آجیل، سطح زیر کشت قابل توجهی (14 میلیون هکتار) از اراضی جهان و 79 هزار هکتار از کل اراضی کشور را در دهه اخیر به خود اختصاص داده است. علاوه بر این، مصرف اقلام زیر کشت این محصول در استان‌های غربی باینگ بر 32 هزار هکتار می‌باشد که به‌اشتاق از 14 میلیون هکتار توسط برندهای کشت آفتابگردن کشور را شامل می‌شود. (2)

مطالعات متعددی برتری فرد بدنی آفتابگردن نسبت به عنصر ذراتی پاتاسیم را نشان داده‌اند. (17) ضمن اشاره به بر توپ بدن آفتابگردن، بیان نمود که از زمین‌پرده ثابت نمی‌باشد. آفتابگردان (Helianthus annuus) K از خاک خارج می‌شود. تا در نتیجه کراتیس آنانس (33) حاکی از آن است که آفتابگردان نیاز شدیدی به پاتاسیم دارد، و طیفی که دانه آفتابگردان خاک‌های خاک‌های کشاورزی، مطالعه رابطه تعاملی پاتاسیم با کلسیم و موزیم لازم و ضروری است. اگر که این پاتاسیم محلول خاک در تغذیه گیاه در حد زیادی تحت تأثیر حضور سایر کاتیون‌ها به ویژه (K/Na) کلسیم و موزیم قرار می‌گیرد. روابط کمیتی به شدت پاتامتری متغیر برای انجام توصیه‌های کودی است، اما خال روش آزمایش پیش‌پردازه بوده و تابع به دانش و جنبه‌های زیبای می‌باشد. بنابراین دلیل پاتامتری در ازام‌شیب‌های متداول تجزیه خاک جهت تهیه کوده‌ای عملکرد ایجاد کننده که نادر است، لذا محققان برای رفع این مشکل از پاتاسیم لازم می‌باشد. این از پاتاسیم خاک و سایر محصولات مختلف خاک مشخص نمایند. این از چنین یک توانایی پاتاسیم در خاک را بهتر مورد ارزیابی قرار دهد.

تغییرات میزان K برای خاک‌های میکیانی جویان در آمریکای مرکزی تحت تأثیر پاتاسیم محلولی (PBCK) برای خاک‌های متنورپولی‌تهید وابسته به وجود خاک‌های کالیولی‌تهید بود. تغییرات خاک، برای تامین و تغذیه سطوح آلی پاتاسیم در محلول خاک به وسیله طرفیت بایری (PBC) تغییرات می‌باشد. چنین پاتاسیم (K)
شکل‌های مختلف پتاسیم و روابط Q1 در خاک‌های تحت کشت آفتابگردن (منطقه خوی)

### شکل‌های مختلف پتاسیم

پتاسیم محلول در غلظت گیاه‌های آبیاری، پتاسیم تخاطیلی به روش استات‌آمینو که در مولوی‌های pH 7.0 و پتاسیم غیرتخاطیلی به روش اسید نیتریک یک مولوی جوشان (16) در دو نوار اندوزه گیری شدند. نسبت پتاسیم تخاطیلی (PAR) = [K]/[Ca + Mg], نسبت پتاسیم غیرتخاطیلی (EPR) = [K]/[CE-EC]. محقق‌گر دیده‌اند.

### روابط کیفیت به شدت پتاسیم (Q1)

برای تعیین روابط Q1، 25 میلی‌لیتر محلول 0/01 مولار کلسیم که حاوی پتاسیم با غلظت‌های 0/0، 0/05، 0/1، 0/15، 0/2، 0/3، 0/4، 0/5 و 0/6 میلی‌گرم در لیتر بوده به انواع مختلف گیاهان در 30 ۵ بین جرید سانتی‌گرم در انکه‌ای‌های غیرتخاطیل تکان داده شد. سپس با سرعت 2500 دوردر دقیقه در دفعه به مدت ۱۵ دقیقه سانتریبوز گردیدند. در محلول صاف روش قابلیت هدایت الکتریکی (EC) توسط دستگاه EN سنج، غلظت کلسیم و منیزیم (EC)، غلظت کلسیم و منیزیم (EC)، اندوزه گیری شدند. میزان پتاسیم جلب با واجد شده (K) از تفاوت غلظت اولیه و غلظت تعلق از (C) با استفاده از رابطه زیر به دست آمده:

\[
\Delta K (mgkg^{-1}) = \frac{(C - C_{0}) \times V}{M_{S}}
\]

که در آن \(C\) و \(C_{0}\) به ترتیب غلظت اولیه و تعلق پتاسیم (g) محصول (mL) و جرم خاک (g) هستند. برای محاسبه نسبت غلظت پتاسیم (AR) \(K = \sqrt{\frac{a_{K}}{\text{Ca} + \text{Mg}}}\)

این قدرت پوست محلول‌ها با استفاده از فاصله‌های تغذیه‌ی جنگلی (EC) با استفاده از معادله کانتینیک (29).

\[
\text{Log}z = 5.91 \times 10^{-1} \times \frac{1}{1 + \mu} + \frac{1}{1 + \mu} \times \frac{a_{i}}{a_{i} + \gamma_{i}c_{i}} + \text{دلایل گردید. (29)}
\]

آگاهی فعالیت‌های، با استفاده از رابطهی

### مواد و روش‌ها

خصوصیات خیزیکی و شیمیایی خاک

در این مطالعه تعداد 20 نمونه مرکب خاک سطحی (25-0 سانتی‌متری) از اراضی تحت کشت آفتابگردن با توجه به مطالعات واکنش‌های نیمه تشکیل‌دهنده آب‌دار بانی غربی از 16 سری مختلف خاک در منطقه خوی جمع آوری گردید. نمونه‌ها پس از هوا خشک شدن از 2 میلی‌متر عبور داده شدند. برای محاسبه خاک‌های خیزیکی و شیمیایی خاک‌های مناسب بانی به روش موارد کلیسیم کربنات کلسیم عمیل (CCE) و روش انتقال سدیم (SEC) تب‌پراکن دیده‌اند. (30) از واحد کیلومتری به روش واکی 1-الک (30) در 14 مeters.
نتایج و بحث

خصوصیات ویژه و شیمیایی خاک‌ها در جدول 1 نشان داده شده است. به طوری که ملاحظه می‌شود خاک‌های مورد مطالعه در شش کلاس مختلف شوند، یا خاک‌هایی که دارای گل‌گیری بسیار بالا هستند و یا حتی از زبان‌هایی که دارای گل‌گیری کمتر دارند. به طور صریح، همگرایی پتانسیل باعث کاهش کودهای خاک گزارشگر شده است. همچنین به طور مستقیم به مدت 100 میلی‌گرم در کیلوگرم پتانسیل تؤمیل استفاده کنند. در صورتی که همگرایی در اثر تغییرات تیتانیوم و خاک‌هایی با جوهر 196 میلی‌گرم بر کیلوگرم پتانسیل تؤمیل استفاده، کیلوگرم باید مقدار می‌گذرد بر کیلو‌گرم خاک (میانگین 54 میلی‌گرم بر کیلو‌گرم خاک) است. تأثیر نگهداری پتانسیل تأثیر مثبت نشان داده است. همچنین نرخ پتانسیل نسبت به خاک‌های مختلف پتانسیل در خاک‌هایی مورد مطالعه در جدول 2 نشان داده شده است. مقدار پتانسیل محلول خاک‌ها در مقایسه با مقادیر گزارش شده توسط فرین و شاپیرو (13) باید خاک‌های مناطق خشک و نیمه-خشک
جدول 1. برخی خصوصیات فیزیکی و شیمیایی خاک‌ها

<table>
<thead>
<tr>
<th>CEC cmol, kg⁻¹</th>
<th>pH 1M CaCl₂</th>
<th>کربنات کلسیم</th>
<th>رس</th>
<th>کربن آنی</th>
<th>بافت خاک</th>
<th>سری خاک</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>8/2</td>
<td>18</td>
<td>0/21</td>
<td>0/27</td>
<td>L</td>
<td>1</td>
<td>عبادالله کندی</td>
</tr>
<tr>
<td>18</td>
<td>8/0</td>
<td>19</td>
<td>0/55</td>
<td>0/20</td>
<td>L</td>
<td>2</td>
<td>عبادالله کندی</td>
</tr>
<tr>
<td>20</td>
<td>8/2</td>
<td>17</td>
<td>0/34</td>
<td>0/23</td>
<td>C</td>
<td>3</td>
<td>قطرر</td>
</tr>
<tr>
<td>26</td>
<td>8/0</td>
<td>14</td>
<td>0/89</td>
<td>0/52</td>
<td>C</td>
<td>4</td>
<td>قطرر</td>
</tr>
<tr>
<td>27</td>
<td>8/6</td>
<td>15</td>
<td>0/77</td>
<td>0/42</td>
<td>Si,C</td>
<td>5</td>
<td>قطرر</td>
</tr>
<tr>
<td>29</td>
<td>8/6</td>
<td>15</td>
<td>0/80</td>
<td>0/50</td>
<td>C</td>
<td>6</td>
<td>قطرر</td>
</tr>
<tr>
<td>28</td>
<td>8/1</td>
<td>19</td>
<td>0/81</td>
<td>0/45</td>
<td>Si,C</td>
<td>7</td>
<td>خوی</td>
</tr>
<tr>
<td>30</td>
<td>8/4</td>
<td>19</td>
<td>0/57</td>
<td>0/50</td>
<td>L</td>
<td>8</td>
<td>خوی</td>
</tr>
<tr>
<td>17</td>
<td>8/0</td>
<td>10</td>
<td>0/76</td>
<td>0/35</td>
<td>مغناطیسی</td>
<td>9</td>
<td>خوی</td>
</tr>
<tr>
<td>13</td>
<td>8/7</td>
<td>4/4</td>
<td>0/41</td>
<td>0/15</td>
<td>S,L</td>
<td>10</td>
<td>خوی</td>
</tr>
<tr>
<td>33</td>
<td>8/0</td>
<td>15</td>
<td>0/67</td>
<td>0/32</td>
<td>C,L</td>
<td>11</td>
<td>خوی</td>
</tr>
<tr>
<td>20</td>
<td>8/5</td>
<td>13</td>
<td>0/64</td>
<td>0/23</td>
<td>C</td>
<td>12</td>
<td>خوی</td>
</tr>
<tr>
<td>18</td>
<td>8/6</td>
<td>15</td>
<td>0/63</td>
<td>0/15</td>
<td>S,L</td>
<td>13</td>
<td>پیربازان</td>
</tr>
<tr>
<td>25</td>
<td>8/0</td>
<td>16</td>
<td>0/51</td>
<td>0/24</td>
<td>C</td>
<td>15</td>
<td>آب‌آمپادی</td>
</tr>
<tr>
<td>20</td>
<td>8/0</td>
<td>19</td>
<td>0/52</td>
<td>0/17</td>
<td>L</td>
<td>16</td>
<td>قره‌نیه</td>
</tr>
<tr>
<td>15</td>
<td>8/8</td>
<td>14</td>
<td>0/31</td>
<td>0/10</td>
<td>S,L</td>
<td>17</td>
<td>قره‌نیه</td>
</tr>
<tr>
<td>20</td>
<td>8/0</td>
<td>16</td>
<td>0/46</td>
<td>0/15</td>
<td>S,L</td>
<td>18</td>
<td>دیچ‌دل</td>
</tr>
<tr>
<td>12</td>
<td>8/8</td>
<td>7/5</td>
<td>0/60</td>
<td>0/25</td>
<td>LS</td>
<td>19</td>
<td>قره‌نیه</td>
</tr>
<tr>
<td>20</td>
<td>8/0</td>
<td>15</td>
<td>0/64</td>
<td>0/22</td>
<td>مغناطیسی</td>
<td>20</td>
<td>مغناطیسی</td>
</tr>
<tr>
<td>14</td>
<td>8/9</td>
<td>14</td>
<td>0/60</td>
<td>0/24</td>
<td>منیکنگ</td>
<td></td>
<td>منیکنگ</td>
</tr>
</tbody>
</table>

پیدا کرده آند (25). این هیپستگی در خاک‌های شالیزاری شمال کشور معنی‌دار بوده (p<0.05) ولی در خاک‌های غیر شالیزاری معنی‌دار نبود (1). هیپستگی بین درصد رس و میزان پتاسیم تبادلی در خاک‌ها مورد مطالعه در این تحقیق معنی‌دار نشد (جدول 3).

به عقیده شارلیو و بال (25) وجود هیپستگی بین پتاسیم تبادلی و درصد رس به معنی تبدیل‌های شدید به سطح حداکثر پتاسیم تبادلی است. این حال در خاک‌های مورد مطالعه،

شده است.

"میزان پتاسیم تبادلی آنقدر کاهش نیافت که به سطح حداقل برسد. نتایج نشان می‌دهد که بین مقدار پتاسیم تبادلی و محلول در خاک‌های مورد مطالعه هیپستگی معنی‌دار (r=0.87) وجود دارد (جدول 3)."
علوم و فنون کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و ششم (ب) / زمستان 1387
جدول ۳: ضراپی همبستگی (r) بین شکل‌های مختلف پناسیم و برخی از خصوصیات نیزیکی و شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>$K_m$</th>
<th>$K_{es}$</th>
<th>$K_{ec}$</th>
<th>PAR</th>
<th>EPR</th>
<th>CEC</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>0.658</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td>CEC</td>
</tr>
<tr>
<td></td>
<td><em>0.658</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td>EPR</td>
</tr>
<tr>
<td></td>
<td><em>0.658</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td>PAR</td>
</tr>
<tr>
<td></td>
<td><em>0.658</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td>$K_{es}$</td>
</tr>
<tr>
<td></td>
<td><em>0.658</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td>$K_{ec}$</td>
</tr>
<tr>
<td></td>
<td><em>0.658</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td><em>0.658</em>**</td>
<td><em>0.545</em>**</td>
<td>$K_{m}$</td>
</tr>
</tbody>
</table>

$K_n$, پناسیم نیزیکی; $K_{es}$، پناسیم طبیعی; $K_{ec}$، پناسیم تبدیلی; PAR، نسبت جذب پناسیم; EPR، نسبت جذب پناسیم، درصد پناسیم تبدیلی. *، معنادار در سطح ۰/۰۵ و **، معنادار در سطح ۰/۰۱ درصد ۱/۰۰ درصد ۰/۰۰۱ درصد ۰/۰۰۰۱ و ۰/۰۰۰۰۱.

$EPR = \sqrt{PAR} - 0.689$

$R^2 = 0.53 **$

شکل ۱. رابطه بین نسبت پناسیم نیزیکی (PAR) و نسبت جذب پناسیم (EPR) در خاک‌های مورد مطالعه
روابط

شکل ۲ تغییرات غلظت پتاسیم اضافه شده با زمان را جهت تعیین زمان تعادل در حاکم‌های مورد بررسی نشان می‌دهد. براساس تابعی به دست آمده زمان تعادل برای مطالعات Q/I ساعت تعیین گردید.

شکل ۳ روابط کمیته به شدت (Q/I) حاکم‌های مورد مطالعه را نشان می‌دهد. به طوری که ملاحظه می‌شود نمودارهای عمده‌ای در تابعی جذب (پایل موخر X-ha) قرار گرفتند. نمودارهای به دست آمده غیر خطی خود، به دست آمده از Q/I نوع پتاسیم به شدت آمده غیر خطی خودی که با افزایش لیزی و نیز به کاهش کاتیون‌های افزایش نشانه‌ای از EPR و PAR که در رابطه با ویژگی‌های کاتیون-کاتیونی/ باعث شده است. علت تفاوت در شبیه و عرض از مبدا در روابط فوق به تفاوت‌های کاتیون شناسی رس. میزان پتاسیم بدنی و برداشتهای آن حاکم نسبت داده شده است که بین (۷۹) شبیه رابطه خطی ارزیابی می‌گردد. Q/I در سطح پتاسیم تبادل است طریکی که با افزایش ۸۰ درصد کاهش در میزان پتاسیم تبادل اتفاق افتاده است (۱۲).

(PBC)ک

ظرفیت بازی پاسی بالای (۱)

D مقدار PBCک در حاکم‌های ۱۱ تا ۱۸۰ کاهش یافته است. (۲) PBCک (کاربرد: ۳) مواد (میانگین L) (۲۰۰۰) جدول ۲. مقدار PBCک حاکم یک ماده ناشتا از عوامل مختلف است. یکی از عوامل می‌باشد. نتایج در میزان PBCک رابطه این پاسیم تبادلی نشان داده است که با کاهش درصد پتاسیم تبادلی افزایش می‌یابد (۲۶). همچنین مقدار PBCک حاکمی متداول از مقدارهای آن آهنگ. نتایج تابعی به تبادل PBCک نشان داده است که بر اساس تابعی با کاتونی‌های رس. میزان سیب افزایش می‌گردد (۹). انواع و همکاران (۱۱) گروه‌های که کمیکس هوموس و کاتینوسی در لازم به حاکم‌های رس از آزادشدن پتاسیم‌های موجود در غشاء‌های بین لایه‌های ممکن است که باید در ترتیب گریز پدیده‌ای نسبت به پتاسیم افزایش می‌یابد. برخی محقنه‌های نسبت به این امر را

---

تیتر: بیان استخراج با اسید و نتیجه‌گیری مولکول جوشان

(۱) سری قصیرو (۳) سری خوی (۷۰) به زیر جلد بهینه کاهش نتایج است.

---

پاسیم قابل استخراج با اسید N-trimethyl مولکول جوشان

D میانگین ۱۲۳۵ تا ۱۵۰۰ میلی‌گرم کربنوتیولگر، (به طور متوسط ۵۸۳ میلی‌گرم کربنوتیولگر) است. (جدول ۲). دامنه تغییرات پتاسیم غیر تبادل حاکم ۱۱۰ تا ۲۱۲ میلی‌گرم کربنوتیولگر (به طور متوسط ۵۸۳ میلی‌گرم کربنوتیولگر) است. (جدول ۲).
جدول 2 پارامترهای کمیت به شدت (Q/I) خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شمار خاک</th>
<th>AR_k</th>
<th>AR_0</th>
<th>E_k</th>
<th>K_0</th>
<th>PBC_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+/1</td>
<td>+/0</td>
<td>-550</td>
<td>1/5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>+/0</td>
<td>+/0</td>
<td>-350</td>
<td>2/4</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>+/0</td>
<td>+/0</td>
<td>-250</td>
<td>1/3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>+/0</td>
<td>+/0</td>
<td>-150</td>
<td>1/3</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>+/0</td>
<td>+/0</td>
<td>-100</td>
<td>3/6</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>+/0</td>
<td>+/0</td>
<td>-400</td>
<td>3/9</td>
<td>108</td>
</tr>
<tr>
<td>7</td>
<td>+/0</td>
<td>+/0</td>
<td>-300</td>
<td>1/6</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>+/0</td>
<td>+/0</td>
<td>-200</td>
<td>1/6</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>+/0</td>
<td>+/0</td>
<td>-150</td>
<td>2/6</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>+/0</td>
<td>+/0</td>
<td>-90</td>
<td>1/2</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>+/0</td>
<td>+/0</td>
<td>-80</td>
<td>1/6</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>+/0</td>
<td>+/0</td>
<td>-55</td>
<td>1/8</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>+/0</td>
<td>+/0</td>
<td>-25</td>
<td>0/8</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>+/0</td>
<td>+/0</td>
<td>-10</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>+/0</td>
<td>+/0</td>
<td>-10</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>+/0</td>
<td>+/0</td>
<td>-30</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>+/0</td>
<td>+/0</td>
<td>-40</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>+/0</td>
<td>+/0</td>
<td>-50</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>19</td>
<td>+/0</td>
<td>+/0</td>
<td>-60</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>+/0</td>
<td>+/0</td>
<td>-70</td>
<td>1/3</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>+/0</td>
<td>+/0</td>
<td>-80</td>
<td>1/3</td>
<td>44</td>
</tr>
</tbody>
</table>

شکل 2 تغییرات غلظت پتاسیم اضافه شده با زمان

شکل‌های مختلف پتاسیم و روابط Q/I در خاک‌های تحت کشت آفتابگردان (منطقه خوی)

*AR_k: ضریب گاوان، PBC_k: توانایی پتاسیم در محلول، AR_0: توانایی پتاسیم به سهولت قابل دسترس، ΔK: نسبت تغذیه پتاسیم در محلول با نسبت AR_0: AN: ظرفیت بهبودی نتیجه‌گیری. نتایج تغذیه پتاسیم به انرژی نهایی پتاسیم.
شکل 3. نمودارهای کمیت به شدت (Q1) در تعدادی از خاک‌های مورد مطالعه

اواپیش نسبت سطوح داخلی به خارجی در تیه‌های

کلونی‌های آلی – معدنی می‌دانند (21). باید توجه داشت که

علاوه بر مقدار ماده آلی، ماهیت ماده آلی نیز حائز اهمیت است. 

یک رابطه خطی معنی‌داری (P ≤ 0.01) بین پارامترهای

РBCK و CEC (P ≤ 0.05) و بیشتر آماد (شکل 2). دامنه تغییرات

(0.05) (Kg = РBCK/CEC) KG

کلونی‌های آلی (mol L-1) با توجه به شکل 5

(5/8/9/11)
جدول ۵ ضرایب همبستگی (r) بین پارامترهای Q/I و شکل‌های مختلف پتانسی در خاک‌های تحت کشت آفت‌اگرداز

<table>
<thead>
<tr>
<th>AR^K</th>
<th>AR_o^K</th>
<th>EPP</th>
<th>K^o</th>
<th>PBC^K</th>
<th>K_G</th>
<th>K_{sex}</th>
<th>K_so</th>
<th>K_{ex}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β</th>
<th>AR^K</th>
<th>AR_o^K</th>
<th>EPP</th>
<th>K^o</th>
<th>PBC^K</th>
<th>K_G</th>
<th>K_{sex}</th>
<th>K_so</th>
<th>K_{ex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram 1](image1.png)

شکل ۴ رابطه بین CEC و PBC^K در خاک‌های مورد مطالعه

![Diagram 2](image2.png)

شکل ۵ رابطه بین AR_o^K و ΔK^o در خاک‌های مورد مطالعه
دانه تغییرات مقدار $\Delta K^o$ دامنه تغییرات مقدار $\Delta K^o$ (به طور متوسط مقدار $\Delta K^o$) است (جدول ۱). مقادیر $\Delta K^o$ متوسط به عنوان $K_{\text{ماکانه}}$ تابیده به تولید و همکاران (۲۷) نیز همبستگی بااین را بین پاسخ تابیده و پاسخ آسان $\Delta K^o$ همانطور که در جدول ۵ ملاحظه می‌شود بین مقادیر پاسخ تابیده (Ka) و پاسخ به‌همراه قابلیت T در $P \leq 0.01$ (۱۰۰) نیز همبستگی معنی‌داری به دست آمده است. ولی همکاران (۲۷) نیز همبستگی بالایی را بین پاسخ تابیده و پاسخ آسان قابلیت تابیده گزارش کرده اند. به عقیده ریج و بلک (۲۲) این آزمون‌آزمایی که دارای مکان‌های جدی اختصاصی برای پاسخ به‌سرعت در نظر گرفته می‌شود. نیز پاسخ به‌سرعت را استخراج پاسخ به‌سرعت گزارش کردند. در نتیجه مقادیر پاسخ تابیده با پاسخ آسان قابلیت تابیده ($\Delta K^o$ خواهد بود. در خاک‌های مورد مطالعه ($\Delta K^o$ با $P \leq 0.01$ $\Delta K^o$) و درصد $P \leq 0.01$ همبستگی معنی‌داری را بین پاسخ تابیده ($\Delta K^o$) و پاسخ آسان ($\Delta K^o$) صدای (۲۲) نیز همبستگی معنی‌داری را بین $\Delta K^o$ و AR$^K$ نشان می‌دهد که همبستگی معنی‌داری بین پاسخ تابیده $\Delta K^o$ و پاسخ آسان AR$^K$ آماری مناسب و متقابل با نظر یازی درaba (۲۷) نمایان می‌کند. بر اساس این پیشنهاد مقدار عددی $\Delta K^o$ برای خاک‌های مورد مطالعه، ۲ می‌باشد. تحت این شرایط که ممکن است با کمک پاسخ تابیده و مواجه شود. مقادیر پاسخ به‌سرعت $\Delta K^o$ و AR$^K$ (۱۰۰) و درصد $P \leq 0.01$ $\Delta K^o$ و AR$^K$
نتیجه‌گیری
مقدار پتاسیم قابل استفاده بیش از ۵۰ درصد از خاک‌های زیر کشت آفتابگردان در این تحقیق کمتر از ۲۵۰ میلی‌گرم بر کیلوگرم بوده و محدودتر از E1 Q1 نیز عمداً در ناحیه جذب قرار داشتند که حاکی از تخلیه پتاسیم نبادلی است. همچنین عدم وجود هم‌بستگی بین عوامل پتاسیم نبادلی و میزان رس و خاک نمودارهای جدیدی پتاسیم حاکی از عدم تخلیه پتاسیم نبادلی و انتقال تغذیه‌گی آفتابگردان به پتاسیم نبادلی در خاک‌های مورد مطالعه است.

مطالعه مورد استفاده
۱. آوشین دریاب، شی‌ن. ۱۳۷۳. بررسی تخلیه پتاسیم از خاک‌های شالیزاری شمال کشور، پایان‌نامه کارشناسی ارشد، دانشگاه تهران.
۲. بی‌نام‌ی، ۱۳۸۱. اداره کل آمار و اطلاعات وزارت کشاورزی، امارت‌های سال‌های ۸۱-۸۰، وزارت کشاورزی، تهران، ایران.
۳. سپهری، افکار. ۱۳۷۹. بررسی اثرات پتاسیم، نیترات و گازهای نمک‌گذار در رشد گیاهان کشاورزی، دانشگاه تربیت مدرس، تهران.
۴. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران.
۵. هسین‌پور، وزه. ۱۳۷۹. نسبت کمیت-شدت پتاسیم و هم‌بستگی پارامترهای آن با خصوصیات خاک در تعدادی از خاک‌های ایران. مجله علوم و فنون کشاورزی و منابع طبیعی، ۵(۳): ۳۲-۴۵.
۶. خراسانی، روشن. ۱۳۸۱. بررسی تغذیه پتاسیم-کلسیم در برخی از خاک‌های آب‌خاکی خراسان. مجله علوم و فنون کشاورزی و منابع طبیعی، ۵(۳): ۳۲-۴۵.

12. Fergus, I. F., A. E. Martin. 1972. Studies on potassium. IV. Interspecific differences in the uptake of non-
exchangeable potassium. Aust. J. Soil Res. 12: (2) 147-158.