اثر لجن کنترول و سرباره ذوب آهن بر عملکرد ذرت و جذب برخی عناصر
کمصرف گیاه در یک خاک آهکی

حسین شریعتمداری، یحیی رضایی نژاد ۱، علی عابدی ۲، علی محمودآبادی ۱ و مهین کرمی ۲

(تاریخ دریافت: ۱۳۹۶/۳/۲۵؛ پذیرش: ۱۳۹۶/۶/۲۵)

چکیده
با توجه به تاثیرات لجن کنترول و سرباره در خاک آهکی، مطالعه ای انجام گردید. مواردی چون ذرت و جذب برخی عناصر از خاک جهت درمان کمبود آهن در گیاهان مختلف در تحقیقات گذشته، در این تحقیق مقدار کلربرد بهینه این دو ترکیب و همچنین قابلیت جذب برخی عناصر ضروری موجود در لجن کنترول و سرباره برای گیاه ذرت در مرزهای بررسی شد. لجن کنترول حاوی حدوداً ۴۴ درصد رنی اکسیدهای گیاه و سرباره حاوی حدوداً ۷۳ درصد اکسیدهای آهن بوده که کلیه عناصر ضروری را دریافت می‌کنند. با گفته‌های ۵ در هفته، لجن کنترول و سرباره در ۴ سطح (L0، L1، L2 و L3) به ترتیب با رایانه‌ای، ۲۱، ۴۷ و ۷۵ درصد کاهش حداکثر سطح آب در خاک داشته و به همین راه حل می‌رسند. مقدار دریافت ضروری مواد غذایی در بسیاری از موارد به خاصیت گیاه ذرت کم می‌شود و جذب عناصر ضروری از خاک شده و می‌توانست سطح عملکرد گیاه ذرت به گونه‌ای که به ترکیب عصاره‌گیری نداده. عصاره گیری توسط سبک افزایش آهن و منگنز و کاهش شناسی قابل عملکرد غیره خاک شده و لی تأثیری روز، مس و کلسیم گیاه‌های افزایش خواهد داشته. همچنین مقدار تأمین نهایی درس افزایش‌های ضروری مواد غذایی در گیاه ذرت افزایش یافته، بر اساس نتایج این تحقیق سطح L3 و L1 کنترول و سرباره می‌توانند مناسب‌ترین سطح این ترکیبات با به‌عنوان کود آهن، چرب‌شده شوند.

واژه‌های کلیدی: لجن کنترول، سرباره، عناصر نغول‌های گیاه، عملکرد ذرت

مقدمه
نظر تغذیه گیاه مقدار آهن محلول در خاک حاوی اهمیت می‌باشد.

که در مقایسه با آهن کل خاک بسیار ناچیز است (۱۱) و ۱۵ در

حالت کلی با کاهش pH و رداکس خاک، حلالیت آهن افزایش می‌یابد و بر عکس با افزایش pH و رداکس، آهن رسوب

می‌کشیده است. این اجزای اصلی لیتوسفر و از عناصر کم‌صرف ضروری مورد نیاز گیاه می‌باشد که در تولید انرژی و بروزهای استفاده انرژی و بسیاری از واکنش‌های حیاتی دخالت دارد. از

۱. به ترتیب: دانشجوی سایه کارشناستی ارشد و دانشجوی دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۲. دانشجوی سابق کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شهرکرد

Resajeinjnad@cc.iut.ac.ir

* مسئولیت علمی: سید علی نادری
سولفوریک تبدیل می‌شود و به تأمین آهن مورد نیاز گیاه کمک می‌کند (24). اخیراً چندین نوع از ضایعات جنبی معدنی صنایع به عنوان منبع آهن مورد ارزیابی قرار گرفت. میزان کاربرد این ضایعات در این است که علاوه بر آهن، حاوی دیگر عناصر مورد نیاز گیاه از قبیل فسفر، پتاسیم، مس و روی می‌باشد. استرلوین و برگر (23) از فرسول (Ferrousul) به عنوان یک ماده اصلاحی خاک استفاده نمودند. این ماده یکی از محصولات جنوب معدن صنایع فولاد می‌باشد که مخلوطی از اسید سولفوریک و سولفات آهن است. این ترکیب حاوی 45 درصد اکسید آهن می‌باشد. کاربرد فرسول باعث عکردرد بونجه و درختش آندرسرون و پرایسکن (24) یکی از محصولات فری (Dust by-product of steel industry) به عنوان کود آهن و به عنوان کود مرغ مصرف گردید. این ترکیب در آتش گذاری طبیعی از سوپرگر از این ترکیب 34 درصد آلی از کربن و 5 درصد آلی و 2 درصد سنگن، بود و عملکرد سوپرگر از این ترکیب داد. از دیگر محصولات جنوب می‌توان به محصولات فری خارجی دانش آهن مانند لجن کوریتور و سرباره اشکار کرد که در پایه ای مناطق جهت درمان کمبود آهن کاربرد دارد (8 و 9). در کارخانه‌های فولادسازی هنگامی (Converctor) که اکسیژن به داخل کوره تولید فولاد پا کوریتور به دبیجه می‌شود گرد و غیرا به داخل کوره به پرده منتشر می‌شود که این ذرات مرغ تأمینکننده و دستگاه‌ها و محلولها می‌باشد. بنابراین آنتی‌آگ فیوز از مشابهات و به یکی از منابع آهن به صورت لجن در آشپزی لجن حاوی خسته شده و در انبار ذخیره می‌شود. میزان تولید لجن کوریتور نیز تا 18/1 درصد میزان فولاد تولید شده منفی می‌باشد (31). مقدار آهن در لجن کوریتور بین 55-70 درصد گرم کل لحی می‌تواند منفی باشد (33). سریاره کوریتور یکی دیگر از فرآورده‌های جنبی کارخانه آهن و فولاد است که به مقدار زیاد در کشورهای اروپایی تولید می‌شود. در کشورهای اروپایی افزایش قابل ملاحظه‌ای در کاربرد سرباره به عنوان مواد اکسیکسیکاکانی حاصل از صنایع فولاد در کشاورزی مشاهده می‌شود (26). در تولید فولاد به طریق کوریتوری مواد مذاب حاصل از کوره بلند ذوب آهن را به

می‌کند (21). کمبود آهن که بستر در خاک‌های آهنی بروز می‌کند از شایع‌ترین کمبود‌های غذایی است که کنترل آن نیز مشکل می‌باشد (27 و 28). در ایران نیز همانند سایر کشورها، آهنی‌ریزی در مناطق مختلف و جغرافیایی وجود دارد. این مسئله روی درختان میوه، درختان و درخت‌های زیتونی و حتی درختان غیر منظور فواید شدید است و روی گیاهان زراعی مثل پنیر، ذرت، سوپرگر و سوسیا که در خاک‌های آهنی رشد می‌کند، تهدید می‌باشد (29). اعتقاد بر این است که کمبود آهن گیاه با کاروز به عنوان عامل عمده مصرف‌های فرمولهای همبستگی میان Mn و Cu مقدار زیاد فسفر در خاک و ترکیب معکوس pH با نرخ آهک آزاد زیادی، همبستگی ضریب CO۲ اضافی، دمایهای پایین، کمبود آهن خاک، مقدار کم مواد آلی و غلظت بالای CO۲ و محیطی ریشه ایجاد می‌شود (19 و 30). روی‌ها و راه‌های بسیاری جهت درمان کزور آهن وجود دارد که یکی از این راه‌ها استفاده از ترکیبات مختلف اصلاحی یا مواد حاوی آهن در خاک بیاید. تعدادی از این ترکیبات غیرقابل از بین بردن معدن آهن، مواد آسیدی و اسیدزا، ضایعات معادن و محصولات جنوب صنایع، مواد آلی و مواد آلی آهن در و کلات‌های مصنوعی آهن مؤثرترین این مواد کلاتهای مصنوعی آهن هستند که به دلیل گرانی فقط برای محصولات ویژه مصرف می‌شوند (36). در شرایط کشور ما نیز علاوه بر گرانی، عدم تولید کلاته‌های آهن در داخل سیستم شده است تا عالجه کوروز بوسیله این ترکیب برای کشاورزان مکرون به صورت نیازگاه نقش نبردارند. بنابراین جستجو برای پیدا کردن ترکیباتی که دارای اثر مشابه در مطالعه کلروز آهنی بوده و در داخل کشور نیز تولید شوند ضروری به‌شمار می‌رود (5). محصولات جنوبی حاصل از سیب‌زیاری صنعتی اغلب غیروز آهنی باشد. به عنوان بنیادهای بسیاری که در کشورهای غربی می‌باشد (37). به عنوان نمود کاربرد معکوس زیاد بیماری و مواد بیشتری حاصل از عوامل میان در خاک‌های آهنی کمبود دارد (38). این ترکیب در خاک اکسید شده و به سولفات‌های آهن و اسید
همان شکل مذبّه به دستگاه‌های تبدیل کننده (کنترل) منتقی می‌کند. پس از درمیان اکسیژن به داخل کنترلور و انجماد فعل و انتقالعملیات شیمیایی، سریاره را به دستگاه زیر کنترل برد. مواد داخل کنترلور قرار گرفته می‌کند و سپس آن را به شکل دانه‌ای نسبت به آب مورد بررسی قرار داد. این ترتیب باعث افزایش محیطی در pH خاک می‌شود. تا در ضمن

مقدار آن، مسکن و فشار خاک را فشرده می‌کند. مقدار افزایش عمومی مناسب با مصرف مصرف انرژی به کنترل‌هایی در پی رفتگی ۲ و درصد وزنی این ترتیب باعث افزایش عملکرد کیما خاک می‌شود.

شکل‌دهنده (۳) کادربی‌پودر اکسی‌سید آهن ضایعاتی، لجن کنترلور و سرباره را به عنوان کود آهن برای ذره در یک خاک آهن‌بازرس قرار داد. تابعی نشان داده که مصرف مقدار پودر اکسید آهن (۲ درصد) لجن کنترلور و (۰/۵ درصد سرباره) در سبب افزایش عملکرد وزن خشک گیاه نسبت به شاهد و سکوت نشانه آهن شد. هم‌چنین جذب آهن و سایر عنصر غذایی در گیاه مناسب با افزایش مصرف این ترتیب به خوبی بود. پودر اکسید آهن ضایعاتی، لجن کنترلور و سوخته‌های (۵) کود را به اکسید آهن ضایعاتی، لجن کنترلور و سرباره در یک مرجح آزمایش انگلیسی و گلدنی با کود گاری مخلوط کرد. نتایج نشان داده که کود آهن مناسب به سه ترکیب معدنی آهن، سرباره افزایش قابل توجهی در وزن خشک گیاه نسبت به شاهد و هم‌چنین قابلیت جذب آهن و منگنز را افزایش می‌دهد. محمذی تراکشوند (۹) در تحقیق خود از سرباره صنایع فولاد اصفهان به عنوان یک دستگاه به خاک‌های آهکی استفاده نمود. این ترتیب سپر انرژی منفی در آهن قابل عصاره‌گیری که مقدار انرژی مناسب با سبب سرباره مصرف بود. مصرف ماده آهن به همراه این ترتیب به مقدار قابل ملاحظه‌ای بارز افزایش آهن، فسفر و منگنز قابل جذب شد.
جدول 1. ترکیب شیمیایی انجیر کورنتر و سرباره (آزمایشگاه مرکزی شرکت ذوب آهن اصفهان)

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>T.Fe</th>
<th>FeO</th>
<th>O2</th>
<th>CuO</th>
<th>SiO2</th>
<th>MgO</th>
<th>P2O5</th>
<th>MnO</th>
<th>ZnO</th>
<th>S</th>
<th>K2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار(%) در کورنتر</td>
<td>63/5</td>
<td>19/22</td>
<td>6/12</td>
<td>1/3</td>
<td>0/0</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/13</td>
<td>0/3</td>
</tr>
<tr>
<td>مقدار(%) در سرباره</td>
<td>16/3</td>
<td>8/9</td>
<td>13/2</td>
<td>5/5</td>
<td>5/5</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/18</td>
<td>0/22</td>
</tr>
</tbody>
</table>

T.Fe Total Fe

جدول 2. میزان انجیر کورنتر و سرباره مصرفی در تیمارهای مختلف آزمایشی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار کود مصرفی (ton ha(^{-1}))</td>
<td>3/20</td>
<td>2/78</td>
<td>1/13</td>
<td>1/36</td>
<td>1/54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سرباره دارای قطر کوچکتر از 5/5 میلی‌متر می‌باشد.

تیمارهای آزمایشی و طرح آماری

این تحقیق با 10 تیمار و در سه تکرار به صورت بلوک‌های (m) کامل تصادفی اجرا گردید. هر بلوک شامل 10 کرت به ابعاد (12m x 3 m) بود. تیمارهای آزمایشی به شرح زیر بودند: (1) سبزه‌های (Control)، بدون افزایش مواد حاوی آهن، (2) انجیر کورنتر در چهار سطح: 3، 4 و 5 برای مقدار توصیه آزمایش خاک (11) بر حسب آهن مطلق، انجیر کورنتر (11) بر حسب آهن بلکچسب انجیر کورنتر مصرف می‌شود. در طرح مختصر (Sp) 2 میزان مصرفی و در سری مشترک آزمایش در تیمارهای مختلف را نشان می‌دهد.

آزمایش روی ذرت (Zea mays) میکل کراس 70487 انجام شد که در تحقیقات قبلی واقعیت نسبتاً خوبی در مقایسه مصرف این دو ترکیب از خود نشان داده است.

آماده سازی زمین زراعی و عملیات تیمارهای آزمایشی

بر اساس آزمایش خاک، میزان فسفر و نیتروژن خاک توسط کودهای شیمیایی آزمایش‌های فسفات و سولفات‌پتاسیم به حد اهمیت مورد نظر رسیده شد. (11) تیمارهای انجیر کورنتر و
جدول ۳. خصوصیات فیزیکی و شیمیایی گازهای مختلف

<table>
<thead>
<tr>
<th>تیترزن کل</th>
<th>کلسیم و منیزیم (meq/l)</th>
<th>فسفر (mg/kg)</th>
<th>قابل جذب (mg/kg)</th>
<th>سلیسیم</th>
<th>آهن (%)</th>
<th>اکس (%)</th>
<th>pH</th>
<th>EC (ds/m)</th>
<th>وزیگی (وادي)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(% کل‌دار)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe= ۲/۵</td>
<td>۱۶۲</td>
<td>Cu=۴</td>
<td>Mg= ۴/۴</td>
<td>Mn=۲/۶</td>
<td>Zn= ۷/۱۴/۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

فصل رشد اضافه شده (۱۱۱). حذف عضاله‌های هر ذر در طی فصل رشد در چند نویت و به صورت دستی صورت گرفت.

نمونه‌برداری از گیاه و خاک توسط نمونه‌برداری در مرحله اول نمونه‌برداری جهت تعیین عامل‌های سیلو، ۵۰ روز پس از سبز شدن در یک مترمربع از یک نقطه می‌باشد محفظه در حالی که سبز در طول مدت ۵۰ روز پس از سبز شدن گیاهان در مرحله رسیدگی فیزیولوژیکی گیاه صورت گرفت. نمونه‌برداری از گیاه کریت پس از برداشت گیاه با زعایت‌های فیزیولوژیکی گیاه صورت گرفت.

حدود دم، متر اثر حانیه‌ای به صورت مدل ویک کل‌دار تعیین می‌شود.

به منظور تعیین میزان فلزات قابل جذب در نمونه‌های خاک از عصاره کریت در دمیده‌های ۳۵۵ دیده ساینتی کریات به مدت دو ساعت سوزاندن و به خاکتر تبدیل شده. خاکستر حاصل در ۱۰ میلی‌لیتر آب استفاده کرده و بعد از صرف کردن، غلتک عصاره در عصاره حاصل با استفاده جذب اتمی‌سازی گیاهی شد.
پردازش داده‌ها
تجزیه و تحلیل آماری اطلاعات به‌وسیله نرم‌افزار SAS گرفت. مقایسه میانگین‌ها در سطح 5% با آزمون دانکن و رسم نمودارها با استفاده از نرم‌افزار EXCEL انجام شد.

نتایج و بحث
اثر سطح مختلف لجن کرونیور و سرباره بر عناصر قابل عصاره‌گیری

| عصاره‌گیری خاک با AB-DTPA | عصاره‌گیری با AB-DTPA | عصاره‌گیری با افزایش محدود سرباره در سطح مختلف سرباره | نسبت به شاهد معیاری دارد | وجدار سرباره گونه‌ای هستند در صورتی که این سطح با شاهد دارای نرخ معنادار

<table>
<thead>
<tr>
<th>Mg</th>
<th>Ca</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>45</td>
<td>3</td>
<td>1.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

در هر سیستم میانگین‌ها دارای حرف مشترک، در سطح 5% فاقد تفاوت معنادار می‌باشد.

می‌باشد. تورول و لیدنسی (77) نشان دادند که می‌تواند احساس سیستم از اضافه شدن به خاک با گذشته زمان به فرم‌های غیر محلول بر تبدیل می‌شود. فهرن‌هوته (6) در تحقیق خود از یک ترکیب معنی‌داری به نام پوسته اکسیدی استفاده کرد. اضافه کردن این ترکیب در ابتدا آن‌ها قابل عصاره‌گیری با سرباره گونه‌ای با EDTA را افزایش داد ولی به مرور زمان از حلالیتی آن کاسته شده و آن‌ها قابل عصاره‌گیری در پایان مدت اکوپاسیون با شاهد تفاوت معنی‌داری نداشتند که دلیل آن انحصار اصلاح محدود است و سرباره سپس افزایش معنی‌دار منجر قابل عصاره‌گیری در خاک نشد. این افزایش مربوط به سطح S1، S2، S3، S4 می‌باشد. افزایش سرباره معنی‌دار در خاک سطح مختلف سرباره نسبت به شاهد معیاری دارد. وجدار معنی‌دار سرباره گونه‌ای هستند در صورتی که این سطح با شاهد دارای نرخ معنادار است به گونه‌ای که این افزایش تقریباً مناسب با کاربرد میزان ترکیب معنی‌دار بود. سطح S1 و S2 فاقد تفاوت معنی‌دار می‌باشند. در مورد سطح S1، S2 و S3 تفاوت معنی‌دار است.
تآثیر سطوح مختلف لجن کنترولور و سرباره بر عملکرد وزن خشک سیلو، بالاد و ساب + برگ

اثر سطوح مختلف این دو ترکیب بر عملکرد وزن خشک گیاه در مراحل سیلو و بر عملکرد سیلو + برگ در سطح 0.5 می‌گذارد. میزان وزن خشک گیاهی می‌تواند به وسیلهزدن و میزان عملکرد سیلو در است. شکل 2 اثر تیمارهای مختلف را بر عملکرد سیلو نشان می‌دهد. افزایش عملکرد مناسب با افزایش سطح در ترکیب پودر و پستنری عملکرد سیلو در سطح L1 - L3 می‌باشد. در مورد تیمار مخلوط با Fe-(EDTA) باید توجه کرد که این تیمار تأثیر خاصی بر عملکرد گیاه داشته و در مورد سرباره حتی سبک کاهش عملکرد شده است. عامل pH اصلی این رویداد را تأثیری که این دو ترکیب بر سیلو در حداکثر به Mی‌گذارد و در مقایسه با Fe-(EDTA) در رابطه خود نشان داد که کاربرد آن در مورد وزن لجن کنترولور افزایش قابل توجهی در وزن خشک گیاهی نسبت به شاهد را
پرداختن از این مقدار اثر معنی‌داری بر وزن خشک گیاه نداشته است. به نظر می‌رسد مقادیر زیاد لجن کنترول باعث افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.

برای دیده‌ها افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.

برهای افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.

برای دیده‌ها افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.

برهای افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.

برهای افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.

برهای افزایش pH خاک و ایجاد شرایط ناناسپ شیمیایی و عدم تعادل بنانوار ظلایی در خاک شده که این به نویه خود می‌تواند باعث کاهش عملکرد گیاه شود.
اثر لجِن کوچرتو و سرباره ذوب آهن بر عملکرد ذرت و جذب برخی عناصر کمصرف …

عملکرد سیال به مقدار اندازه نسبت به شاهد کاهش و در سطوح بالاتر این در ترکیب (Ls، L، L، L، L، L، L، L، L) نسبت به شاهد افزایش یافت که است. غلتک مس در بلادن ذرت نسبت به شاهد تغییر نداشت. این در عملکرد سیال + ب رک در سطوح مختلف تقریباً یک زیست افزایش مشاهده می‌شود. عدم افزایش معنی‌دار در عملکرد در عملکدهای مختلف، کاهش غیرمعنی‌دار غلتک منگنز و روی احتمالاً در تجربه رقیق شدن ناشی از افزایش عملکرد کیفی می‌باشد. ساده‌تر (29) در تحقیقات خود نشان داد که استفاده از Fe-EDDHA در عملکرد کاهش ذرت در صورت کاهش سد می‌تواند کاهش غلتک منگنز در گیاهان در اثر کاربرد سکوگیران آهن به وسیله ساده‌تر (29). پارکیان (30) و فرهن (31) نیز کارشتن شده است. آنها نتایج زیر یافته‌اند که انتخاب آنتاگونیست‌های از آهن و منگنز وجود دارد ذکر کردند. هادسون (32) نیز بی‌کاری سولفات آهن در III کاهش ذرت به این ترتیب رشد وی در تجربه این بیده به بیده رفت در اثر افزایش عملکرد تأکید نمود. محمدرضا تکان‌شوند (33) در کاربرد سرباره و عباسپور (12) و دستوری (34) در تحقیقات خود با کاربرد لجین کوچرتو به نتایج مشابه دست پیدا کردند.

اهرام سپداری از محتمل‌ترین حالت آنتاگونیستی را در مورد آهن و مس بیان کرده و لی در برخی تحقیقات (28) یک رابطه سیستمیکی را بین ریغ و اکسیژن در گیاه بینگ گریز عمده کردن. از اطراف دیگر از آنگز می‌شود که تحقیقاتی شاخص مناسبی جهت ارزیابی تأثیرات تقابلی اینو ریغ در گیاه باشد.

در رابطه با افزایش غلتک کلسیم و منیزیم می‌توان گفت که بهتر گیاه که منجر به توسعت ریشه، افزایش قدرت جذب تعرق و سوخت واس جایگاه است. منجر به افزایش انگال این در عصر باید گیاهی می‌شود. با افزایش رشد، منجر کلسیم که نقضی به مهیا در تشكیل دیواره‌های سلولی می‌باشد (عمدهاً به صورت پاتمات‌های کلسیم) نیز افزایش می‌باشد (24). غلتک منیزیم در بالا پیش از کلسیم بود. دلیل ذرت افزایش در عملکردهای متنوع را افزایش عملکردهای مختلف با افزایش سطح تمایز تقریباً کاهش پیدا کرده است. همچنین در هم‌تیمارها یک روند کاهش در غلتک روی عملکردهای مختلف گیاهی با سطح ترکیب اضافه شده مشاهده می‌شود. در تیمار محلول‌پاشی ترکیب عملکردهای مختلف غلتک منگنز و روی نسبت به شاهد کمتر بودند. در تیمارهای L، L، L، L، L، L، L، L، L غلتک مس در
اثر سطح مختلف دو ترکیب بر خاک عناصر توسط عملکرد میفتواند گیاه
به دلیل زیاد بودن عملکرد گیاه و وضعیت بدیهی رقیق شدن از
پارامتر جذب (حرارت گل فیتومتری در ماده برشک گیاه) بر حسب کیلوگرم در هر کیلوگرم نفتی بهتر نتایج استفاده
می‌شود. سطح مختلف دو ترکیب بر جذب عناصر (آهن، مگنت، روی، مس، کلسیم و نیتریم) توسط عملکردهای مختلف
گیاه اثر معنی‌دار (25٪) داشتند (جدول 6). با افزایش سطح دو
ترکیب میزان جذب آهن در عملکردهای سیلو افزایش بیدار کرده
است که این افزایش تقریباً بدون است (جدول 4). بیشترین جذب
آن هن وسط سطح بالا در ترکیب (ب) (S4، Ba) ویا
می‌باشد. این سطح بالایین عملکردهای سیلو (سیلای) را نسبت به
سطح دیگر داشته‌اند. سطح مختلف دو ترکیب کمی افزایش در جذب آهن توسط بالایی شده است (جدول 6)
جدول 6 نشان می‌دهد که افزایش دو ترکیب سبب افزایش
بیدار آهن در عملکردهای سیلا + برک نیز شده است. افزایش
عملکرد سیلا + برک و همچنین نقش اساسی آهن در سنگ
کارفلک سپس این تغییرات شده است.
در تیمار مخلوطیان جذب آهن در همه عملکردها نسبت
به شاهد افزایش غیرمعنی‌دار و نامناسب ییده است.
(جدول 6). این افزایش جذب نسبت به شاهد در این تیمار
می‌تواند مربوط به بالا رفتن عملکرد گیاه نسبت به شاهد باشد.
پارکتابان (8) نیز با مصرف کودهای مختلف آهن منفی سولفات
آهن II سکستین آهن و گرد و غبار حاصل از کارخانه فولاد
در کیسه سیلو دریافت که جذب آهن بوسیله گیاه وایستگی
زردی به عملکرد گیاه داشته است. افزایش جذب مغناطیس
عملکرد سیلز در تیمارهای لجن کونتور و سرباره نسبت به
شاهد (گرچه در سپاریز از موارد معنی‌دار نیست) به عملکرد

بایان محققون در این تیمارهای و همچنین افزایش مگنت
قابل جذب خاک (به ویژه در تیمارهای (S4، S) مربوط
می‌شود. غافل‌بر (12) و محمدی ترکاشوند (9) نتایج مشابهی
را برای آهن و مگنت گزارش کردند.
سطح مختلف این ترکیبات سبب تغییر غیرمعنی‌داری در
جذب مگنت در عملکردهای بالا و سیفاه + برک شده‌اند (جدول
6). این افزایش در عملکردهای بالا و سیفاه + دانه
نمونه‌پذیری از شاکی نشده است. در توجه این موضوع
می‌توان اشاره کرد که این نتیجه در عملکردهای سیلای + برک و
بانا گیاه شده است. محمدی ترکاشوند (9) نتایج مشابهی را
گزارش نمود.
همه سطح، جذب آهن در عملکردهای صورت نسبت به شاهد
افزایش داده‌اند به گونه‌ای که تیمارهای S4 و S4
معنی‌داری را نسبت به شاهد ایجاد کرده‌اند (جدول 6). این
افزایش جذب در بالا و سیفاه + برک نیز روداد است
(جدول 6). افزایش عملکرد می‌تواند عامل اصلی این تغییرات
باشد. غافل‌بر (12) در تحقیق خود نشان داد که مصرف 1 و
2 درصد لجن کونتور باعث افزایش جذب سی به وسیله گیاه
دردست گردد که این افزایش در تیمار 2 درصد بیشتر بود. وی
بخشی از افزایش جذب سی به افزایش عملکرد در تیمارهای
مذکور نسبت داد.

این امر می‌تواند تحریک بیشتر نمیزد در آوندهای آبیکت نسبت
به کلسیم باشد (24).

77
کاربرد لجن کنترول و سرباره جذب کلسیم ولبیوم در عملکرد میافتاوت درناف ذرت به گونه‌ای که بیشترین عملکرد مربوط به سطح بالای این در ترکیب (La) و (S) بود. با توجه به معنی‌دار نتایج تفاوت بین عملکرد سرباره و نیز معنی‌دار نتایج تفاوت بین عملکرد سرباره و لجن کنترول بریش‌های میوش در سطح La این ترکیب‌ها جهت کود به ارائه استفاده کرد. ضمن اینکه با توجه به جدید بودن کاربرد این ترکیب‌ها در منطقه آزمایشی پایه و ضعیت فاصله سنگین خاک در کاربرد نسبت به مواد ضروری، می‌باشد محلول‌پاشی فریبول آهن

سپس از منابع مورد استفاده

1. اشراقی، ا. 1382. غنی سازی کودهای آنی توسط ترکیبات معدنی آهن. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
2. افشاگی، ع. 1374. تحقیق روی یافته‌های مؤثر در بازیابی ترکیبات وانادیومی از سرباره. پایان‌نامه کارشناسی ارشد، دانشگاه مواد، دانشگاه صنعتی اصفهان.
3. دستویی، ع. 1380. اثر بیشتری با کودی کشیده، لجن کنترول و سرباره کارخانه‌های ذوب آهن و فولاد اصفهان بر رشد و عملکرد ذرت در یک خاک بیاه. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
4. سالاری، ع. 1371. حاصلخیزی خاک. چاب. جهارم. انتشارات دانشگاه تهران.
5. شریعتمداری، ح. 1388. بررسی امکان استفاده از پودر خون بعنوان کود آهن. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
6. فرهنگ، م. 1369. توضیح‌آهن و فولاد. انتشارات دانشگاه امریکا، تهران.
7. فرهنگ، پ. 1363. توضیح‌آهن و فولاد. انتشارات دانشگاه امریکا، تهران.