تأثير کاربرد خاکی در ماده آلی توام با نیترورون بر رشد و ترکیب شیمیایی برنجه

فاطمه رسولی و منصور مقدمه

(تاریخ دریافت: 1386/9/27، تاریخ پذیرش: 1387/5/16)

چکیده

ماده آلی و نیترورون کل در اکثر خاک‌های آهکی ایران کم است و مصرف کدام کودهای نیترورون یا سبب آن‌و‌ایگی آب‌های سطحی و زیورپزی و اثرات کوچک‌نورساز محیطی دیگری می‌شود و لذا مصرف توأم نیترورون و ماده آلی به منظور تأمین یکی از نیاز نیترورون گیاه و بهبود خصوصیات نیترورون‌های شیمیایی خاک و خواص محیط زیست از اهمیت بی‌روزه برخوردار است. تحقیق حاضر مطابق منظور مطالعه تأثیر مصرف دو ماده آلی با یکدیگر نیترورون بر رشد و ترکیب شیمیایی برنجه و خصوصیات شیمیایی خاک انجام شد. ایمپیما در قالب طرح کاملاً تصادفی با سه تکرار در گلدان انگیز گردید. تیمارها شامل دو نوع ماده آلی (کمپوست زغال شِرْوی و کود دامی)، چهار سطح ماده آلی (0، 1، 2 و 3 درصد) و سه سطح نیترورون (175، 250 و 375 میلی گرم در کیلو گرم)، در برج، مصرف کمپوست و کود دامی سب افزایش وزن خشک برنجه گردید. بیشترین وزن خشک با مصرف 4 درصد کمپوست و 150 میلی گرم نیترورون حاصل شد. رشد برنجه با مصرف کود دامی تا سطح 2 درصد افزایش و مصرف نیترورون دمای محیط خاک یافته. اثر افزایش نیترورون بر رشد برنجه نهایی در سطح 4 درصد کود دامی مشاهده شد. در سطح بالاتر، اثر نیترورون در تشدید اثر شوری یا سمیت آسیمین سبب کاهش رشد برنجه گردید. میانگین غلظت نیترورون افزایش دامی افزایش و با کمپوست کاهش یافت. افزودن نیترورون، غلظت نیترورون افزایش دامی و کمپوست در سطح بالاتر افزایش دامی را بهبود بخشید با این حال مصرف کود دامی سب افزایش وزن خشک برنجه را بهبود بخشید. با این حال مصرف کود دامی سب افزایش وزن خشک برنجه را بهبود بخشید.

واژه‌های کلیدی: برنجه، نیترورون، کمپوست شهری، کود دامی، عناصر غذایی، قابلیت هدایت الکتریکی خاک (ECE)

مقدمه

کاربرد نیترورون در شالیزارهای آبزد شده بر رشد شادابی بوده‌است. نیترورون و بالا رفت مراد برازش دانه‌های تولید نیترورون به طول دوره رشد 100 120 کیلو گرم در هکتار نیترورون جنگل می‌کند. مقدار نیترورون جذب شده به رضایت مصرف نیترورون و سطح عملکرد واکنش حمایت و اغلب برای تولید هر 30 برنجه حدود 20 کیلو گرم و

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد حرفه‌ای، دانشکده کشاورزی، دانشگاه شیراز

fhrasouli@yahoo.com

*: مسئول مکاتبات، پست الکترونیکی.
عند انتباذ است، استفاده از ضایعات آلی باعث بهبود خواص فیزیکی (1). تغییر ویژگی‌های شیمیایی و وضعیت حالت خیزی
خاک (5) ۶۲ می‌شود. به هر حال مدل مشابهی در
صرف کودهای آلی ایجاد می‌گردد (۳۳) و سپس
برخی از عناصر سلگیس (۱۱) در خاک است. در
شیوع بی‌شیوعی
چاکر یا شیمیایی للمون به علت چاکری
های پذیرش به درستی نسبت به میزان
۵۰۰۰ و ۷ کیلوگرم در هکتار، عمکر کود بر
تنابی اول و دوم به
تزیم‌ها و بازیت کاکسی
نیتروژن تربیت ۶/۲۸ و ۳۳/۰ تن یک
کود دامی یا کمپوست همراه با سطوح خارش فوق الذکر عمکرد
برنج به ۹/۷۱ و ۶/۳۱ رسیده است.

در صورتی که کود در سیستم‌های توانا انجم دو
ماد آلی خاک در بالاتری نسبت به شیمیایی غیرفرمال
حذف می‌شود. ثابت سرعت تجزیه در اراضی‌شیلات‌زاری کمتر از
اراضی دگر است لذا اثرات ماده آلی تا حدی مشابه است در
خاک بهبود مانند حتی در این خاک‌ها حضور نیتروژن محدودی
سبب کاهش سرعت ذخیره ماده آلی در اثر فرآیندهای شیمیایی
شرایط می‌گردد. لذا وقتی ماده آلی به کریستال فراز و آثار
ترکیبات آلی به نحو موثرتری بارز می‌گردد (۱۳). این حال
نابود توجه داشته مشابه ماده آلی در این محدود است و
عناصر غنایی موجود در آنها از توانایی صحیح برخورد
نیستند. به عنوان مثال میزان نیتروژن و فسفر قابل استفاده
آلی کم و پتاسیم از زیاد می‌باشد به نارضایتی لازم است مقداری
کود شیمیایی نیتروژن در و یا فسفری به آن افزوده گردد (۳).

کود عمکرکه بالاتری همراه با سطوح خارش فوق الذکر
در جنگل سال بر عمکرکه بالاتری همراه با سطوح خارش فوق الذکر
امپارایک و همکاران (۳۴) ضمن شدن به اثرات ماده آلی در
تویید محصولات زراعی تاکید می‌نمایند که اهمیت حفظ و
افزایش ماده آلی خاک در حفاظت محیط زیست و معمول از
انتشار گازهای غلخانه‌ای کاهش خطر فرازند
به‌هورودیک (Eutrophication) مانند آلی، به مراتب بیش از تولید
در محصول است از نظر که سومهای اقتصادی ماده آلی در
حفاظت خاک و هوا ۴۰/۵۰ برای این از میزان آن در
تولید محصول است. بادویل و همکاران (۴۵) ملاحظه کرده
که مصرف کوددامی به حدی که به اثر نماید ۱۸۰ کیلوگرم
نیتروژن در هکتار کود ۳۱/۵ درصد نیتروژن مورد نیاز کیسه را
تا ۳ سال نماید که عمکرکه بالاتری و جداب فسفر و نیاسی
نزی افزایش می‌یابد. با افراد سالانه حداقل ۵ تن کود دامی

756
جدول 1. بعضی از خصوصیات فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>خصوصیت</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>بافت حاکی</td>
<td>0/58</td>
</tr>
<tr>
<td>سیلت لوم</td>
<td>ماده آلی (درصد)</td>
</tr>
<tr>
<td>قابلیت هدایت الکتریکی (دست زیمنس بر سانتی متر)</td>
<td>0/50</td>
</tr>
<tr>
<td>کربنات کلسیم معادل (درصد)</td>
<td>0/52</td>
</tr>
<tr>
<td>ترشح تنیترزون گل (درصد)</td>
<td>0/65</td>
</tr>
<tr>
<td>فسفر (میکروگرم در گرم)</td>
<td>5</td>
</tr>
<tr>
<td>نیترات (میکروگرم در گرم)</td>
<td>162</td>
</tr>
<tr>
<td>آلی (میکروگرم در گرم)</td>
<td>2/17</td>
</tr>
<tr>
<td>مگنیز (میکروگرم در گرم)</td>
<td>8/68</td>
</tr>
<tr>
<td>روی (میکروگرم در گرم)</td>
<td>4/1</td>
</tr>
<tr>
<td>سن (میکروگرم در گرم)</td>
<td>1/1</td>
</tr>
</tbody>
</table>

منگنز، سن و روی عصاره‌گیری شده با دی اس ی پی 18 به وسیله دستگاه جذب آنلی مدل شیمیاتو تونین شد (جدول 1). کود کمپوست زباله شهري بالاخره کمپوست سازی اصفهان و کود گاری از واحد دامپروری دانشگاه کشاورزی دانشگاه شیراز تهیه شد. نمونه‌ها پس از خشک شدن در هوا و آسیاب کردن به آزمایشگاه منتقل و برخی از خصوصیات شیمیایی آنها مانند قابلیت هدایت الکتریکی، غلظت کاتیون‌ها و آئون‌ها به روش آزمایشگاه شری اپل متعدد(2) در عصاره 18/5 کود به آب، ماده آلی و تنیترزون کل تغییر شد. سپس یک گرم از نمونه‌ها در دمای 55 درجه سانتی‌گراد و در کود کمپوست خاکستر به وسیله اسمید کاری‌گریک 2 مولار عصاره‌گیری و غلظت فسفر به روش زرد وانتادات و غلظت آهن، منگنز، روی و سن به وسیله دستگاه جذب آنلی اندازه‌گیری شد (جدول 2).

آزمایش به صورت تکراری 64 را پذیرفته کامل تصادفی در سه تکرار انجام شد. تیمارها شامل سه سطح نیترزون 75 و 150 به میلی‌گرم نیترزون در کیلوگرم خاک به صورت اوره، دو منبع ماده آلی (کمپوست زباله شهری و کود گاری) و چهار سطح ماده آلی (0، 1، 2 و 3 درصد) بود. تیمارها غذایی به تناها سبب پایداری در عملکرد می‌شود باعث می‌شود حفظ حاصل خبری خاک نیز می‌گردد. لذا این تحقیق جهت دستیابی به اهداف زیر انجام گردید:

1. مطالعه تأثیر کاربرد کمپوست و کود دامی با یا بدون نیترزون بر رشد و ترکیب شیمیایی بذری.

2. ارزیابی تغییرات برخی از خصوصیات فیزیکی و شیمیایی خاک پس از کاربرد این تیمارها.

مواد و روش‌ها

خاک کافی از افق سطحی (۰ تا ۳۰ سانتی‌متری) شرق چایگر واقع در حومه سروستان استان فارس به نام علمی Fine-loamy, carbonatic, thermic, Typic Calcixerepts خشک شده و از الک دو میلی‌متری گذاری شده، بعضی از ویژگی‌های فیزیکی و شیمیایی خاک تظم یافته به روش هیدروژن (9) کریم آیهی روش واکی بالاک (۹۱) نیترزون کل به روش كبلمان (10) با دستگاه اتوتایک مدل کریم لیسبی می‌باشد. روش کلیسی معادل به روش Kejeltic Auto Analyzer 1030 تیراسیون برگشته (12). فسفر به روش اولسن (25) با استفاده از دستگاه رنگ نانی با طول موج ۸۹۰ نانومتر و غلظت آهمن.
جدول ۲ بخشی از خصوصیات مواد آلی مورد آزمایش

<table>
<thead>
<tr>
<th>کمیوست</th>
<th>خصوصیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>فسفور گرم</td>
<td>نسبت کربن به فسفور</td>
</tr>
<tr>
<td>پ هاش</td>
<td>نسبت کربن به هاش</td>
</tr>
<tr>
<td>جدال (تپاسیم)</td>
<td>نسبت کربن به جدال</td>
</tr>
<tr>
<td>مس کل (میکروگرم در گرم)</td>
<td>نسبت کربن به مس کل</td>
</tr>
<tr>
<td>پتاسیم (میکروگرم در گرم)</td>
<td>نسبت کربن به پتاسیم</td>
</tr>
<tr>
<td>کلر (میکروگرم در گرم)</td>
<td>نسبت کربن به کلر</td>
</tr>
</tbody>
</table>

1. غیر قابل تشخیص

میلی متری بیوبر داده شده است. سپس در نمونه های مختلف مستندات آلی، نیتروژن کل، پتاسیم و کلر میزان ملاحظه نمود. نسبت جدایی سطح کربن به رشد آزمایشگاه [SAR=Na/(Ca+Mg)/2] محاسبه شد. در پایان، کلیه داده ها با استفاده از برنامه رایانه ای MSTACT تجزیه و تحلیل آماری و تحقیق اصلی و بهره نشان نیتروژن و کودهای آلی بر پایه های گیاهی اندام داده شده با آرمان دانش محققان شد.

بحث و نتایج

1. تأثیر نیتروژن و ماده آلی بر عملکرد بذر

نتایج مربوط به تأثیر نیتروژن و مواد آلی بر وزن خشک اندام به صورت جامد با سه کیلوگرم خاک مخلوط و به گلدان ها انتقال داده شدند. پس از اعمال تمیزها، اقدام به کشت بذر گردید. ۱۰ عدد بذر بذر نرم قدم انجام شد. در عمق ۱ سانتی متری خاک کشتی و رطوبت گلدانها استفاده از آب، مرطوب در حد ظرفیت مرغوب تکه های شد. پس از استقرار گاه دو هفته بعد از کاشت تعداد ۵ عدد کاشت یافت. سپس گلدان ها را غرق نموده بطوری که تا پایان دوره رشد روشی، ۱ سانتی متر از سطح خاک نگه داشتند. شاهد هنگامی که از محل طوفان قطع و پس از شستشو، خشک کردند، ۱۰ عدد کردند. سپس در دمای +۵ درجه C در کوره کاراکتر خاکستر شدند و به همراه یاد کرایدریک ۲ مولار عصاره گیاهی شد و غلفت فسفر امکان می‌پذیرد. مس و روز در عصاره حلال اندام گیاهی شد. خاک‌های موجود در هر گلدان پس از برداشت بذر و جداسازی ریشه‌ها از نک دو
جدول 3: تأثیر سطوح نیتریژن و مواد آلی بر وزن خشک در اندام هواپی مربط (گرم در گلدان)

<table>
<thead>
<tr>
<th>ماده آلی</th>
<th>سطح نیتریژن (میلی گرم در کیلوگرم)</th>
<th>ماده آلی</th>
<th>سطح نیتریژن (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>1/88 1/58</td>
<td>2/43 1/88</td>
<td>2/43 1/88</td>
</tr>
<tr>
<td>7/59</td>
<td>1/13 1/76</td>
<td>0/85 0/53</td>
<td>1/40 0/83</td>
</tr>
<tr>
<td>11/4</td>
<td>1/16 1/11</td>
<td>1/12 1/11</td>
<td>1/10 1/0</td>
</tr>
<tr>
<td>میانگین</td>
<td>7/83 0/39</td>
<td>3/09 1/19</td>
<td>1/03 0/58</td>
</tr>
</tbody>
</table>

* برای هر ماده آلی اعدادی که در هر سطح درصد معنی دار نمی‌باشد.

آزمون دانکن در سطح پنجم درصد معنی دار نمی‌باشد.

کاربرد بیشتر کود، رشد برنج 29 درصد کاهش یافته است. دلیل آن را می‌توان به افزایش املاح محلول در خاک تیمار شده با این کود نسبت داد. همان‌طور که در جدول 3 مشاهده می‌شود ماده آلی با بهبودی قادر به تولید بیشترین وزن خشک نیازه و افزودن نیتریژن معنی‌دار به همراه این ترکیبات جهت دست‌پایبایی به هدایت عملکرد ضروری بوده است. افزودن نیتریژن به کلمه سطح کمپوزیت سبب افزایش رشد برنج گردیده است. به عنوان مثال با افزودن 150 میلی گرم نیتریژن در کیلوگرم لحیم 20 0.4 درصد کمپوزیت نسبت برنج به ترتیب 7.3.5 و 8/8 برای شده است. دلیل آن را می‌توان به پایین بودن مقادیر نیتریژن نسبت داد. به طوری که کاربرد هر دو ترکیب آلی وزن خشک برنج را افزایش داده است. بیشترین وزن خشک با 4 درصد کمپوزیت و 5 درصد کود مادی نسبت به افزایش داشته است. مقادیر بیشتر کود مادی با کاهش رشد برنج همراه بوده است. به عنوان مثال با افزودن 2 درصد کود مادی میانگین وزن خشک برنج از 1/6 به 1/6 10 گرم در گلدان رسیده است و با افزایش رشد کاهش در این سطح معنی دار است.
و تجزیه بیشتر و سریع‌تر صورت آن را در سطح پایین‌تر تیترازون می‌دهد. همچنین کلی‌ترین نتیجه گرفته که افزوده ۴ درصد کمیوست و یا ۲ درصد کود دامی نیاز به کود تیترازون دارد برای افزایش وزن خشک بین دارای آزمایش مناسب بوده است.

۲. تاثیر تیترازون و ماده آمین بر گذارع النا در تیترازون

افزایش تیترازون بدون توجه به نوع ماده آمین سبب افزایش معنی دار میانگین غلظت تیترازون در اندازه های بین هر جمله است (جدول ۲). بطوری که در تیمار کمیوست و کود دامی با مصرف ۱۵۰ میلی‌گرم غلظت تیترازون را خواستاری ۷۵٪ غلظت در گل‌نده بوده و در نتیجه یا کمتر و یا به‌طور مشابه‌ی دیگر غلظت تیترازون افزایش یافته است. در میانگین غلظت تیترازون در سطح ۲۷ درصد کود تیترازون دامی در مقایسه با سایر سطوح مقدار قمتر را نشان داده است. این نتایج حاکی از است که کود دامی و کمیوست تیترازون قابل استفاده در خاک و جدای شده توسط گیاه بافتی است. بطوری که در این میزان گسترش‌شده تیترازون کل برنج را تأمین نماید و این موضوع با توجه به میزان تیترازون کل و نسبت کربن به تیترازون در تکنیک اکثریت به نظر می‌رسد. چرا که تیترازون معنی‌داری می‌دارد بر اساس میکروانالیزه‌ها. و همچنین در انتخاب راه‌های قرار گرفته است. نتایج ۴۲٪ معنی‌داری در خاک‌های قلبی‌ای، افزودن کودهای دامی همراه با تیترازون اصبع تیترازون را کاهش داده و بازیابی آن در شیب‌دارهای ۲۰ درصد افزایش می‌یابد.

دانشگاه آموزشی ۴ نشان می‌دهد که در تیمار کمیوست افزودن تیترازون با کاهش میانگین غلظت فسفر همراه بوده است.
جدول ۲: تأثیر سطح نیتروژن و مواد آلی بر غلظت نیتروژن و فسفر در اندازه هوایی بذر

<table>
<thead>
<tr>
<th>ماده آلی</th>
<th>سطح نیتروژن (ملی گرم در کیلوگرم)</th>
<th>غلظت فسفر (ملی گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>ماده آلی (درصد)</td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>۱۵۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۷۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۵۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۰</td>
<td></td>
</tr>
</tbody>
</table>

* برای هر ماده آلی اعدادهای داده ذکر شده در هر ستو در یک حرف کوچک و یا در هر دو حرفی به یک حرف بزرگ مشترک هستند طبق آزمون دانکین در سطح پنج درصد معنی‌دار نمی‌باشد.

پهلوی‌که غلظت فسفر از ۰/۳۱ در شاهد به ۰/۳۲ میلی‌گرم در کیلوگرم ماده خشک بذر نیتروژن برای آب‌واری سطح نیتروژن رسیده است. با توجه به اینکه در بیمار کمبوسیسم نیتروژن وزن خشک بذر نیتروژن بانه است لذا کاهش غلظت سفدر را می‌توان به رقیق شدن این عنصر در گیاه نسبت داد. سوراب و چیبال (۳۷) نشان دادند که با مصرف ۱۲۰ کیلوگرم نیتروژن در هکتار غلظت فسفر بذر نیتروژن کاهش یافته است و ایلوت و همکاران (۳۴) افرازیس غلظت فسفر به‌هم‌بینک بزرگ را در شرایط کم‌نیتروژن مشاهده شدند.
جدول ۵. تأثیر سطوح نیتروژن و مواد آلی بر غلظت آهن در اندام هواپی و برنج (میلی گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>سطوح نیتروژن (میلی گرم در کیلوگرم)</th>
<th>ماده آلی</th>
<th>ماده آلی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مانگان</td>
<td>کمبود</td>
<td></td>
</tr>
<tr>
<td>۷۷</td>
<td>۱</td>
<td>۷۷</td>
</tr>
<tr>
<td>۱۴۹</td>
<td>۱</td>
<td>۱۴۹</td>
</tr>
<tr>
<td>۱۱۴</td>
<td>۲</td>
<td>۱۱۴</td>
</tr>
<tr>
<td>۱۳۵</td>
<td>۴</td>
<td>۱۳۵</td>
</tr>
</tbody>
</table>

کود دامی

<table>
<thead>
<tr>
<th>مواد دامی</th>
<th>مانگان</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۷</td>
<td>۱</td>
<td>۷۷</td>
</tr>
<tr>
<td>۱۱۴</td>
<td>۲</td>
<td>۱۱۴</td>
</tr>
<tr>
<td>۱۳۵</td>
<td>۴</td>
<td>۱۳۵</td>
</tr>
</tbody>
</table>

برای هر ماده آلی، اعداد ذکر شده در هر ستون در یک خور کوچک و یا در هر ریف در یک خور بزرگ مشترک هستند طبق آزمون دانکین در سطح پنج درصد معنی دار نمی‌باشد.

| شکل ۱ | تأثیر ماده آلی بر غلظت منگنز و پتاس در اندام هواپی و برنج |

مدل‌بندی شدن فسفر آلی با مصرف کود دامی گزارش داده شده. سران و همکاران (۲۴) دو برابر شدن چربی فسفر برنج در اثر مصرف ۵ تا ۱۰ کود دامی را به بهبود ساختارهای خاک و تراکم پی‌باتش بهتر ریشه در اثر مصرف مواد آلی، نسبت داده‌اند. کاربرد هر دو ماده آلی غلظت آهن را افزایش (جدول ۵) و منگنز (شکل ۱) را کاهش داده است با توجه به بالا بودن غلظت آهن در ترکیبات آلی افزایش غلظت آهن معلول مدل‌بندی شدن فرم
تأثیر کاربرد خاکی در ماده آلی تیوم با نیترژن بر رشد و ...

بر همکنش منفی بین آهن و منگنز نسبت داد.

با برایدارهای متغیر به غلظت منگنز و غلظت آهن در
برنج در تیم هایی که رابطه خنثی بیشتری بین غلظت
این دو غلظت در گیاه به صورت رابطه زیر مشاهده گردید:

$\text{Mn} = 0.4 - 0.15 \text{Fe}$

به ترتیب غلظت منگنز و آهن به حسب گرم در Fe و Mn
کیلوگرم ماده خشک اندام هوایی برنج است. تأثیر بازدارندگی
آهن بر غلظت منگنز در اسفنج (24) و کندم (24) نیز گزارش
شد. آهن و منگنز برای کسب محیط پذیر جذب رود
ناقول آن در سطح رشته مقاوت کرده که غلظت آهن
به سطح بخشی از گذرانش تقاضا می‌کنند و از آنجا که غلظت آهن
بی‌هوازی خاک شیار خازن گل‌شکل های قابل استفاده و با
حملات گزارشی به غلظت منگنز (در طوفانی)، افزایش یافته و
اماکن به سمت این انعکس در برنج مهمل خواهد بود در
صرورتی که در حضور ماده آلی وارد شدن منگنز در این
تکنیک‌های آلی سبب کاهش تحرک فلز در نتیجه سنتی این
انعکس در برنج می‌شود (32).

میانگین غلظت گل‌شکل کاهش کمیوست و کود دامی
در مقایسه با شاهد افرازیه یافته است (شکل 1). به نحوی که از
۲۴/۹ و ۲/۵۶ در شاهده به ۳/۸۳ و در سطح یک
برنج کمیوست و کود دامی افرازیه یافته است. غلظت این
نوعی برای کاربرد بیش از یک درصد مواد آلی به دلیل نرپیدای
 وقت رونده کاهشی نسبت به اثر حرارتی دربرنج
یا حساسیت به مکانیسم نمایانی کاهش. گزارش یافته و
همکاران (24) حاکی از ناکافی بودن مرز میان برای حداکثر
رشد برنج می‌باشد.

صراف‌نظر از نوع ماده آلی میانگین غلظت روند و ممس‌باین
مصرف نیترژن روند افرازیه نشان می‌دهند (جدول ۳) منگنز و
بی‌هوازی (۲۳) افرازیه می‌باید روند مصرف نیترژن یافته
به ویژه (۲۳) افرازیه نیترژن مس در گیاه بر رشد و نوسان باد
صرورت کمیوست نیترژن مس در گیاه بر رشد و نوسان باد
جدول 4. تأثیر سطوح نیتروژن و مواد آلی بر غلظت روی و من دراهم هوايی پنج

<table>
<thead>
<tr>
<th>ماده آلی</th>
<th>غلظت روي (میلی‌گرم در کیلوگرم)</th>
<th>غلظت من (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>25 / 6c</td>
<td>36 / 6c</td>
</tr>
<tr>
<td>25 / 5</td>
<td>24 / 5</td>
<td>24 / 5</td>
</tr>
<tr>
<td>34 / 5</td>
<td>24 / 5</td>
<td>36 / 5</td>
</tr>
<tr>
<td>34 / 6</td>
<td>24 / 6</td>
<td>36 / 6</td>
</tr>
<tr>
<td>34 / 7</td>
<td>24 / 7</td>
<td>36 / 7</td>
</tr>
<tr>
<td>46 / 6</td>
<td>39 / 6</td>
<td>39 / 6</td>
</tr>
</tbody>
</table>

* برای هر ماده آلی، اعدادی که در هر ستون در یک حرف کوچک و یا در هر دو حرف بزرگ مشترک هستند طبق آزمون دالکین در سطح پنج درصد معنی‌دار نمی‌باشند.
جدول 7. تأثیر سطحویت نیتروژن و مواد آلی بر غلظت کلر، سدیم، سرب و کادمیم اندام هوایی

<table>
<thead>
<tr>
<th></th>
<th>سرب</th>
<th>سدیم</th>
<th>کلر</th>
<th>سطح ماده آلی (درصد)</th>
<th>ماده آلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کادمیم</td>
<td>میلی گرم در کیلوگرم</td>
<td>میلی گرم در کیلوگرم</td>
<td>میلی گرم در کیلوگرم</td>
<td>میلی گرم در کیلوگرم</td>
<td></td>
</tr>
<tr>
<td>NS **</td>
<td>0.79</td>
<td>0.46</td>
<td>0.84</td>
<td>7/94</td>
<td>0</td>
</tr>
<tr>
<td>NS</td>
<td>0.8</td>
<td>0.5</td>
<td>0.85</td>
<td>0.95</td>
<td>0.01</td>
</tr>
<tr>
<td>NS</td>
<td>0.81</td>
<td>0.51</td>
<td>0.86</td>
<td>0.96</td>
<td>0.02</td>
</tr>
<tr>
<td>NS</td>
<td>0.82</td>
<td>0.52</td>
<td>0.87</td>
<td>0.97</td>
<td>0.03</td>
</tr>
<tr>
<td>NS</td>
<td>0.83</td>
<td>0.53</td>
<td>0.88</td>
<td>0.98</td>
<td>0.04</td>
</tr>
<tr>
<td>NS</td>
<td>0.84</td>
<td>0.54</td>
<td>0.89</td>
<td>0.99</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*، **: براي هر ماده آلی، اعدادي كه در هر سطح در یک ثابت مثبت هستند، طبق ازموان دانکن در سطح پنج درصد معنادار نمي باشند.

* غیر قابل تشخیص توسط دستگاه جذب اتیویت و یا کم شدن قابلیت استفاده این عنصر در خاک آلی مورد آزمایش نسبت داد. افرودیت و رضايي نژاد (27) نشان دادند که با مصرف 50 تن کمپوست در هکتوار تغییری در غلظت سرب و کادمیم ذرت در مقایسه با شاهد حاصل نشد. است طبق گزارش مورنر و همکاران (21) با افزودن 40 تن کمپوست در هکتاً، اگرچه کادمیم اثر سوئی در رشد گیاه و میکروگانیزم‌های خاک نداشت ولی حضور این عنصر در ماده آلی سبب تشکیل مادی ترکیبات یلینی در خاک شده و اثر سلیم این ترکیبات در کشت بعدی ظاهر شده است. در تیمار کودمایی سرب و کادمیم ناچیز و در حد ذخایر دستگاه جذب اتیویت بود.

3. تأثیر نیتروژن و ماده آلی بر ویژگی‌های شیمیایی خاک

در تحقیق حاضر مصرف نیتروژن تأثیر معناداری بر بیانگیان ماده آلی نیتروژن و سایر عنصر غذای خاک نداشت. بنابراین داده‌های این تجربه در انتخاب گزارش نشد است. با این حال کاربرد هر دو ماده آلی خصوصیات شیمیایی خاک را بهبود بخشیده که در جدول 8 آن را گردیده است. داده‌های این جدول
جدول 8 تأثیر کمپوست و کود دامی بر ماده آلی نیتروژن، کل، قابلیت هدایت الکتریکی و عناصر غذایی قبل جذب خاک پس از برداشت بذری

<table>
<thead>
<tr>
<th>میلی گرم در کیلوگرم خاک</th>
<th>درصد</th>
<th>ماده</th>
<th>کمپوست</th>
<th>آلی نیتروژن</th>
<th>آلی (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/74</td>
<td>NS</td>
<td>0/86</td>
<td>1/84</td>
<td>0/69</td>
<td></td>
</tr>
<tr>
<td>0/33</td>
<td>NS</td>
<td>0/15</td>
<td>1/14</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>0/52</td>
<td>NS NS</td>
<td>0/79</td>
<td>1/78</td>
<td>1/82</td>
<td></td>
</tr>
<tr>
<td>0/84</td>
<td>NS NS</td>
<td>0/94</td>
<td>1/94</td>
<td>0/87</td>
<td></td>
</tr>
<tr>
<td>0/39</td>
<td>NS NS</td>
<td>1/16</td>
<td>1/17</td>
<td>0/87</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>NS NS</td>
<td>0/81</td>
<td>0/82</td>
<td>0/22</td>
<td></td>
</tr>
<tr>
<td>0/01</td>
<td>NS NS</td>
<td>0/85</td>
<td>0/85</td>
<td>0/23</td>
<td></td>
</tr>
</tbody>
</table>

گزارش بر اساس افزایش در صفحه‌ها، تیتمسی خاک با افزودن ماده آلی افزایش یافته ولی در کلیه سطوح خاک یافته است. یادآوری می‌باشد که در کیفیت دستگاه جدید آنی، برای بررسی هدایت الکتریکی می‌باشد.

منبع: دانشگاه نیروی ملی مهندسی و معماری خوزستان
تأثیر کاربرد خاک در ماده آلی و نسبت جذبی سدیم (SAR) در خاک پس از برداشت برنج

شکل 2. رابطه میزان ماده آلی و نسبت جذبی سدیم (SAR) در خاک پس از برداشت برنج

می‌دهد که خاک اصلاح شده با کود دامی درایل فاصله‌های کریپ‌کتیک، نیتروژن کل، فسفر، مینیموم و آهن بیشتر و مس، روی، سرب و نسبت جذبی سدیم کمتری نسبت به کمیسیون است. کانتروی و رضایی نژاد (3) بیان داشتند که قابلیت استفاده خاصیت خاک فاصله با کاربرد کمیسیون و کود دامی افزایش یافته و کود گاواری از پتانسیل بیشتر جهت تأمین عناصر غلیظی بر خودروی بوده است.

نتیجه‌گیری

مصرف نیتروژن هر متر مربع به کمیسیون و یا کود دامی باعث افزایش وزن خشک برنج گردیده باقی‌مانده تا هرگز خشک برنج مربوط به تجارچه درصد کمیسیون‌های کمتر ۱۵ میلی‌گرم نیتروژن و یک درصد کود دامی تا ۱۵ میلی‌گرم نیتروژن در کیلوگرم خاک بود. کاربرد میزان کبیسیون غلظت بسیاری از عناصر غلیظی در گیاه گردید. با مصرف کود دامی، غلظت نیتروژن، فسفر و پتاس در برنج بیشتر و غلظت منکسر، روی و مس گیاه کمتر از تجارچه کمیسیون‌های بود. اگرچه با افزودن مواد آلی بسیاری از میزان‌های شیمیایی خاک بهبود یافت با این حال افزایش‌های خاک در سطح‌های بالای کود دامی عامل محور کننده عملکرد گردید. با مصرف مکرر ترکیبات آلی ممکن است غلظت عناصر سنگین نظر سرب و کادمیم به حد سرب افزایش یابد. لیکن در خاک آلی مس و آزمایش و در اولین مراتب کاربرد این مواد، اثرات معنی‌دار مشاهده نگردید. با توجه به این که نیتروژن کل در کود دامی یک‌بار از

ساختمان خاک و آشیانی املاح نسبت دادند. با افزودن هر دو ماده آلی به ویژه کمیسیون محیط SAR خاک افزایش یافت (شکل 2). به‌طوری‌که SAR خاک از ۵/۰/۰ در شاهد به ۲/۱/۸ به ترتیب با افزودن بالابرید سطح کود دامی و کمیسیون تغییر نموده است. در تحقیق حرارت در راستای افزایش SAR محیط خاک، همین‌طور کمیسیون SAR محیط خاک باعث استفاده می‌شود که کاهش‌ها راه اندازی ترکیبات آلی با ذرات رس تشکیل کمیکس‌های پایداری‌گذاری می‌دهد لذا تخریب ساختمان خاک محتمل نمی‌باشد. بورس و راوندر (11) معفون‌دادن ماده آلی به تهیه نمی‌تواند شاخص وضعیت ساختمان خاک باشد. آن‌ان تأثیر شیرابه‌های سدیم را بر وزن گیاهی خاک بررسی نمودند و به این نتیجه رسیدند که جثه چانه ماده آلی حاوی مقادیر زیاد سدیم بوده و امکان محیط آلی کم باشد نه تنها سبب بهبود ساختمان خاک می‌گردد بلکه تخریب ساختمان و کاهش حرکت آب در خاک را بر غیر سبب خواهد داشت. آن‌ان همچنین مشاهده نمودند که در خاک‌های یلی برف (۲۱ درصد رس) به دلیل بیشتر بودن انرژی جذب، کمیکس‌های رس- ماده آلی از پایداری بیشتری برخوردارند و مقاومت بیشتری در مقابل تخریب نشان می‌دهند. ساتان و همکاران (27) مشاهده نمودند که با کاربرد ۵ تن کود دامی به همراه اوره، نسبت جذب سدیم خاک از ۴/۰ به ۱/۸ کاهش یافته است و در آن آزمایشات ثابت که افزایش کل سمیم کلسیم بومی خاک و جایگزینی آن با سدیم بیان نمودند. به‌طور کلی نتایج مربوط به خاک پس از برداشت کبیسیون

717
علوم و فنون کشاورزی و منابع طبیعی / سال دوازدهم / شماره جهل و ششم (ب) / زمستان ۱۳۸۷

کمبوست است لذا توصیه می‌کنم که جهت صرفه‌جویی در مصرف کودهای معدنی و جلوگیری از تجمع مضر نیتروژن در گیاه و به هم خوردن تغذیه و افزایش قابلیت هدایت الکتریکی محلول کود از مصرف نیتروژن در سطوح بالای کود دامی خودداری شود و میزان نیتروژن مصرفی با توجه به

ماتیع مورد استفاده

1. اطلاعیه، ۱۳۷۱. ۱۱۱. حد تحلیل گیاهان به شوری. نشریه فنی شماره ۱۶. بخش خاک‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز.
2. افشاری، م. و. ز. رضائی نژاد. ۱۳۷۸. انباشت مواد آلی بر خواص شیمیایی درآمده و جذب عنصر موسهیزه در گیاه. جهتی تحقیقات ۱۴۶-۱۴۷.
3. سالاری‌نژاد، ع. ۱۳۷۴. بررسی خصوصیات تولید. انتشارات دانشگاه تهران.
4. قنبری، ا. و. اسماعیلی، و. ج. م. (۱۳۷۹). نتایج تحقیق مواد آلی، منگنز و مس بر عملکرد و کیفیت گندم آبی در استان‌های سردسیر کشور. تغذیه ملی خوار. صفحات ۲۷۸-۳۰۱.

718