مدل سازی و اکتشن کلزا به تنظیم توامان شوری و کمبود نیتروژن

یعقوب حسنی ۱، مهدی همایی ۲، نجفعلی کریمیان ۳ و سعید سعادت ۴

(تاریخ دریافت: ۱۲خرداد ۱۳۸۷ / تاریخ پذیرش: ۱۲خرداد ۱۳۸۷)

چکیده
مدل سازی پایین گیاه به تنظیم درگاهان شوری و کمبود نیتروژن در توانایی خشک و نیمه خشک برای تخمین عملکرد بهینه اهمیتی فراوان دارد. به دنبال مطالعه و ارزیابی مدل های (LS) (و مدل بی‌جهت بالال MB) که توانایی مدل سازی پایین گیاه با عناصر گیاهی پیشنهاد شده ان به مدل یافته تعیین اثر هم‌زمان نیتروژن و شوری فراهم آید. سپس، به مظهر ارزیابی سود مدل‌هاي پیشنهادی در مورد پایین گیاه کلزا (Brassica napus L.) به تنظیم توامان شوری و کمبود نیتروژن طراحی گردید. تیمارهای شوری شامل ۶ سطح آب شور (آن غیر شور ۲-۳،۴۶ و ۱۲ دسی زیمنس بر متر) و تیمارهای نیتروژن شامل ۴ سطح (۰،۶،۷۵ و ۳۰۰ میلی گرم نیتروژن در گیاه هر شب) به صورت نیترات آمونیوم به دنبال نشان داد که هر دو مدل تعیین یافته مناسب از عملکرد کلزا ارائه می‌نمایند. لیکن، برآورد مدل تعیین یافته (MB) (R²=0/۸۷) بهتر است. مقایسه آماره‌های خصائص پیشنهادی، رعشه میانگین مربعات خطا، کارایی مدل، ضریب تبین و ضریب جرم میانگین دو مدل تعیین یافته نشان داد که عملکرد نسبی دانه با درآمد شوری برای سطح نیتروژن خاک، همچنین شوری‌های آب آبیاری و اثرات متقابل شوری و نیتروژن، به وسیله مدل تعیین یافته MB مناسب می‌باشد. تجربه رضایت‌بخشی MB با درآمد و نیتروژن، به کاهش وجود تنظیم شوری و نیتروژن ویژه MB روز افزایش یافته داشت. با استفاده از مدل تعیین یافته MB نشان داده شد که حداکثر کاهش عملکرد در شرایط شوری برای سطح مختلف کاربرد نیتروژن متفاوت است. MB به کاهش آب تثبیت یک مرحله ۶۵ میلی‌گرم نیتروژن در کیلوگرم خاک، حد اکتشن کاهش عملکرد در شرایط نیتروژن حداکثر ۴ دسی زیمنس بر متر کاهش یافت. مصرف نیتروژن در شرایط شوری می‌تواند به دلیل کاهش سرمایه‌گذاری بکر در کاهش کلزا گردید. همچنین این مقاله جزئی از افزایش تعرق گیاه افزایش بانه که می‌توان آن را به حرکت توسعه نیتروژن در خاک رساندن به ریشه گیاه مرتبط دانست.

واژه‌های کلیدی: تعرق، شوری، کلر، مدل لیبرگ-اسپرینگل (LS) (و مدل بی‌جهت بالال MB) (و نیتروژن)

مقدمه
سپس توانایی چندین تعداد قدری شده است. به رغم پیشرفت فناوری در جهان امروز، شور اکتشن می‌تواند یک هکتان از خاک‌های زیر کشت بیشتر تولید کشاورزی را تهدید می‌کند.

مقدمه
تشش شوری، عامل محیطی مهم است که آثار زیان‌باری بر تولید فرآورده‌های کشاورزی دارد. از نظر تاریخی، شوری خاک

۱. به ترتیب دانشجوی سایر دکتری و دانشیار خاک شناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
۲. استاد علوم خاک، دانشکده کشاورزی، دانشگاه شیراز
۳. استاد برای مؤسسه تحقیقات خاک و آب کشور تهران

dorsa802001@yahoo.com, پست الکترونیکی

۷۲۱
باتشان نشانگی گیاه به هر یک از عوامل محدود کننده رشد و نیز اثر متقابل عوامل ضروری است. به‌طوری‌که چگونگی پاسخ گیاه به تهدیدهای مهم‌ترین شرایط و کمبود نیتروژن منشأ یابد. ممکن است کاربرد تعبیرات نیتروژن به کاشت عمکرد و یا آلوه شدن آب‌رسی زیرزمینی به نتیجه گردد.

برخی از پژوهشگران (11 و 17) رقابت بین پویشگر (NO) با یک جذب توسط گیاه را بررسی کرده‌اند. رقابت بین این دو بیون و پتاسیم مولکول می‌ریزد و به منفی این دو بیون و گذب آنها از طرف سیستم‌های ناقل یکسان نسبت داده شده است (13). در نتیجه، در شرایط کارآمد، جذب توسط گیاه به یک آنتی‌گاز افزایش می‌یابد. NO. جذب چربی کاشت

با افزودن نیتروژن به‌طوری‌که (صرفه NO) گیاه با ویتامین این‌ست. با این وجود برخی از نسخه‌گران (7) برهم‌کنش بین بیون نیتروژن و کلیر باد شده در بالا را مشاهده نکرده‌اند.

مدل‌های چند عضوی بررسی پاسخ گیاه در شرایط تنش ناشی از کمبود عناصر غذایی وجود دارد که به‌طور مشابه (MB) و (LS) می‌باشند. بر نیاز مدل در هر زمان، یک عامل رشد که محدود کننده ترین آهسته‌سازی، مقدار عمکرد را تعیین می‌کند و پاسخ گیاه به این عامل رشد خطي است (8):

\[
y_f = \min \left\{ \begin{array}{l}
\frac{1}{v} \\
\frac{1}{a - b} x + \frac{1}{z} \geq x_{cr} \\
\frac{1}{m - n} z + \frac{1}{z} \geq z_{cr}
\end{array} \right. \]

که در آن x و NO فاکتورهای نشانگی در b و a به ترتیب عرض از n و m به ترتیب y و z عرض از x و y، پیش‌بینی این عناصر ممکن است تشدید شود. از جمله این عوامل می‌توان به کمبود شرایط مورد آلودگی، عدم رشد کافی رشد، رقابت بین NO با بیون جذب توسط ریشه، آبسورب بیون NO و همچنین نیتروژن در بقولات مناسب برای تشکیل غده‌های نیتروژن کننده نیتروژن در بقولات در خاک‌های شریف وجود دارد. بنابراین

افزون بر تشکیل شریف، کمبود نیتروژن نیز وجود دارد. بنابراین
عامل‌های موتور بر رشد مربوطه که برآورد هر عامل رشد ثابت فرض می‌شود، عمکل‌کردن پیش‌بینی شده و عمکل‌کردن جداییک می‌باشد.

هر یک از دو مدل ۲ و ۴ ممکن است نتایج متفاوتی در ارتباط با مدل‌بندی کودی نیتروژن در شرایط شور ارایه دهد. مثالی‌جاین‌های مدل LS پیش‌بینی عمکل‌کردن را در شرایطی که شور عامل محدود کننده رشد است توضیح دهد. افزودن کود نیتروژن تأثیری بر افزایش عمکل‌کردن ندارد و حتی در صورت عدم جذب به وسیله گیاه و خارج شدن از منطقه ریشه ممکن است باعث آلودگی آب‌های زیرزمینی هم شود. لذا جانشین‌های مدل MB برای تخمین پاک‌گی یا به دو عامل شوری و کمپی نیتروژن به‌کار رود.

صاروت با اضافه کردن نیتروژن می‌توان اثر منفی عامل شوری را تغییر دهد.

به‌شکلی که در مدل MB و LS فقط برای شرایطی که عامل‌های موتور بر رشد گیاه، عناصر غذایی بوده استفاده شده‌اند، بنابراین هدف از انجام این پژوهش بررسی پاسخ کمی‌گی عمکل‌کردن گیاه کلی در شرایطی که نیتروژن به‌کار می‌رود و در شرایع کارایی کودی نیتروژن می‌باشد، عمکل‌کردن کودی صحت MB و LS برای مدل‌بندی کودی نیتروژن در شرایط شور ورد.

مواد و روش‌ها

آزمایش به‌صورت گلداری و در گلخانه‌های انگلیسی در انجام گرفت. بیمارستانی آزمایشی شامل ۵ سطح آب‌شور (آب غیرشهری-نیتروژن، ۵، ۱۰ و ۱۵ سیمپی گرم نیتروژن در کیلوگرم خاک از منبع نیتروژن عضوی) بود. آزمایش در سه تکرار به صورت فاکتوریال در قالب طرح بلوک‌های کاملاً تصادفی از شرکت (Coarse-loamy, mixed thermic calcic Haplosalids)

۷۳۳
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>FC (درصد وزنی)</th>
<th>Na⁺ (mg kg⁻¹)</th>
<th>K⁺ (mg kg⁻¹)</th>
<th>Cl⁻ (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>OC (%)</th>
<th>SO₄²⁻ (mg kg⁻¹)</th>
<th>EC (DS m⁻¹)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>102</td>
<td>179</td>
<td>116</td>
<td>0.023</td>
<td>6.59</td>
<td>2.49</td>
<td>0.80</td>
<td>7.8</td>
</tr>
</tbody>
</table>

جدول 2. برخی ویژگی‌های شیمیایی آب شور مورد استفاده

<table>
<thead>
<tr>
<th>B</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Cl⁻</th>
<th>CO₃²⁻</th>
<th>HCO₃⁻</th>
<th>SO₄²⁻</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol L⁻¹</td>
<td>ds m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/34</td>
<td>128/15</td>
<td>141/52</td>
<td>138/65</td>
<td>0/29</td>
<td>0/29</td>
<td>0/24</td>
<td>0/26</td>
<td>0/15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمونه‌ها با به‌سرعت شد. پس از آماده‌سازی کلبان‌های آزمایشی، 8 کیلوگرم خاک شکل و در کاسب‌های پلاستیکی بزرگ ریخته شد. سپس، مقادیر مناسب عناصر غذایی ضروری بر اساس توصیه مؤسسه تحقیقات خاک و آب (2) برای کلزا، به صورت محلول و با توجه به ظرفیت زراعی (FC) خاک مورد آزمایش به خاک درون کیسه‌ها اضافه شد. در این مرحله فقط یک مقادیر محاسبه شده تیمارهای نیتروژن به خاک اضافه گردید. 9 نمونه دیگر آن هر ۵۰ روز یکبار از طریق آب ایجادی به کلبان‌ها اضافه شد. دلیل تعداد زیاد تفسیر نیتروژن‌دهی، تأمین نیتروژن مورد نیاز گیاه با توجه به اعمال جزئی آب‌شویی بود. همچنین مقادیر تیماتین نیز در سه نیویس‌های طول دوره آزمایش به کلبان‌ها اضافه گردید. سپس از افزودن عناصر غذایی به خاک درون کیسه‌ها و رسیدن تا عمل آن در خاک خاک درون کیسه‌ها به هم زده و سعی شد تا عمل آن در شکل خاک غذایی اضافه شده به طور کامل انجام پذیرد. سپس خاک‌ها با گیاهان ظاهری یکسان (۳/۹ تا ۳ متر مکعب) در گلدان‌های قرار داده شد. هر عدد ۴۰۱ Hyola (Brassica napus L.) نرسیده به کلزا (کلزا) کلدان کاشته شد. همه کلبان‌ها در نوع هفته اول استقرار گیاه‌های ایسلندی به مرحله ۲ ۳ ۳ ۳ ۲ ۲ ۲ ۲ غیرنرمال (EC) یا آب ایجادی شدند (با توجه به حساس بودن)

برای انجام این آزمایش، گلدان‌های ۱۵ لیتری تهیه و کف
مدل‌سازی واکنش گاز‌ها به تنش‌های نوسان شوری و کم‌سازه

مدل‌های انجام شد (10). بین ریاضی آماری‌ها به صورت زیر است:

\[ME = \max \left| P_i - O_i \right| \]

\[RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2} \]

\[CD = \frac{\sum_{i=1}^{n} (O_i - \bar{O})^2}{\sum_{i=1}^{n} (P_i - \bar{O})^2} \]

\[EF = \frac{\sum_{i=1}^{n} (O_i - \bar{O})^2 - \sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2} \]

\[CRM = \frac{\sum_{i=1}^{n} O_i - \sum_{i=1}^{n} P_i}{\sum_{i=1}^{n} O_i} \]

که در آن \(p_i \) مقادیر برآورد شده، \(O_i \) مقادیر اندادگری شده، \(CD \) و \(RMSE \) نرخ مبینه است که درصد مقدار برابر ME نرخ مبینه است که درصد مقدار برابر

\[\text{کاهش تبخیر، سطح خاک هر گلدن 240 کرم سگریه} \]

\[\text{پوشش‌بندی شده. به منظور اعمال تیمارهای شوری ابتدا آب شور منتقل شده به گلدن‌ها، مناسبی با هر تیمار آب شور رقیق گردید. سیسم، آب‌ایران گلدن‌ها با استفاده از آب شور مربوطه و تا رسیدن به BC با رعایت جزء اشبوع مناسب انجام گردید.} \]

\[\text{ظرف آزمایش، حجم و زمان بطور بیشتر استادگری اطمینان حاصل شود. مقدار تبخیر و تعریف گلدن دارای گیاه، یا به روش و زن دندان روزانه گلدن‌ها محاسبه شد. برای اندادگری، مقدار تبخیر، گلدن‌ها} \]

\[\text{به عنوان شاهد (بدون گیاه) در بین گلدن‌های آزمایش فرآوری شده.} \]

\[\text{با معلوم بودن مقدار تبخیر از هر گلدن، مقدار تعریف گلدن محاسبه شد. در طول دوره انجام آزمایش مداومهای لازم (کنترل دمای گلدن‌های سام پی‌اچ علیه آفت مانند شته و آب‌ایران با موقع) به عمل آمد. پس از رسیدن غلوباما، آنها را از بوته جدا کرده و در پاکت موادی قرار داده شدند. مرحله برداشت غلوباما، با توجه به رسیدن تدریجی غلوباما و برای جلوگیری از باز شدن آنها و ریزش دانه و بی‌توجهی به توانایی انجام گرفت و به‌طور مداومهای لازم از دانه‌های کاکلار کاکلار از غلوباما جدا و وزن شدند. ظرف آزمایش، حجم و زمان بطور بیشتر استادگری انجام شد.} \]

\[\text{با روش دانه کاکلار و دانه‌های نوکالیس (1) اندادگری گلدن‌های شدن.} \]

\[\text{با منظور کم‌کردن آلبوم و ترکیب بر امکانکردن آنها} \]

\[\text{کل گرا، عملکرد نسبی با استفاده از مدل‌های تیمار خاکی MB و LS محاسبه شد. عملکرد نسبی برآورد شده توسط مدل‌ها با} \]

\[\text{مقادیر اندادگری گلدن در پیایان سطح مختلف شوری و} \]

\[\text{نیتروزون و نتایج مدل‌ها با یکدیگر مقایسه گرددند. همچنین، مقایسه کلی مدل‌ها با محاسبه آمارهای خطای بین‌شیبی (Maximum Error, ME) ریشه میانگین مربعات خطا (Root Mean Square Error, RMSE) ضریب تبیین (Coefficient of Determination, CD) کوارتز سدال (Modeling Efficiency, EF) و ضریب جرم سدال (Coefficient of Residual Mass, CRM) برابر همکاران انجام شد.} \]
شکل 3 تعریف گیاه کارا را به عنوان تابعی از کاربرد نیتروژن نشان می‌دهد. به طور کلی با افزایش نیتروژن کاربردی، تعریف گیاه افزایش یافته است. زیرا افزودن نیتروژن به خاک سطح تعریف کننده گیاه را افزایش می‌دهد. از دیدگاه سو، افزایش تعریف گیاه باعث افزایش گذب نیتروژن دانه (غلطه نیتروژن در دانه) عملکرد دانه = نیتروژن گذب شده در دانه (شکل 4).

علت افزایش گذب نیتروژن با افزایش تعریف، سازوکار انتقال نیتروژن از خاک به طرف ریشه است. این مکانیزم حرکت توده‌ای می‌باشد که عامل اصلی انتقال حرکت و جابه‌جا (آب می‌باشد و تعریف نیتروژن اصلی این حرکت می‌باشد).

شکل 5 تأثیر نیتروژن کاربردی در حاکم بر غلظت پوست کاربردی در دانه کارا را نشان می‌دهد. همان‌گونه که دیده می‌شود غلظت پوست کاربردی از دانه کارا با افزایش نیتروژن کاهش یافته است. این امر می‌تواند بیانگر اثر سوء شوری بر رشد گیاه و افزایش عملکرد در نتیجه کاربرد نیتروژن باشد. یکی از علت‌های کاهش غلظت پوست کاربردی در نتیجه کاربرد نیتروژن رقابتی این دولت بالا گذب پوست کاربردی می‌باشد.

عملکرد دانه کارا به عنوان تابعی از تعریف گیاه در شکل 2 نشان داده است. از این‌رو افزایش تعریف، عملکرد دانه کارا افزایش یافته است. محل برخورد خط رسم شده بر محور افکن نمایانگر میزان تبخیر از سطح خاک گل‌دانه‌هاست. رابطه مستقیم عملکرد و تعریف توسط دیگر پژوهشگران تیزگرایی شده است (۹ و ۱۵).
شکل 2. تاثیر تعرق تجمیعی (در طول دوره رشد گیاه) بر جذب نیتروژن در دانه گیاه کلزا

شکل 3. تأثیر کاربرد نیتروژن بر تعرق تجمیعی گیاه کلزا

شکل 5. تأثیر سطح نیتروژن کربندی در خاک بر غلظت بون کل در دانه کلزا

جدول 3. پارامترهای محاسبه شده برای مدل‌های LS و MB

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EC_L)</td>
<td>مدل</td>
<td>z</td>
</tr>
<tr>
<td>dS m⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg kg⁻¹) افزایش عاملهای نسبی به ازای هر واحد نیتروژن (dS m⁻¹)</td>
<td></td>
<td>0.343</td>
</tr>
<tr>
<td>کاهش عاملهای نسبی به ازای هر واحد شوری (dS m⁻¹)</td>
<td></td>
<td>0.374</td>
</tr>
<tr>
<td>MB مدل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg mg⁻¹</td>
<td></td>
<td>0.01175</td>
</tr>
<tr>
<td>dS m⁻¹</td>
<td></td>
<td>0.013393</td>
</tr>
<tr>
<td>dS m⁻¹</td>
<td></td>
<td>0.01824</td>
</tr>
<tr>
<td>C_N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC_{max}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
مشاهده می‌شود که فاقدار عاملکرد برآورد شده با وسیله مدل LS نسبت به عاملکرد واقعی کمتر تخمین زده شده است. مقایسه MB و LS کمی بین مدل‌های اصلی و مربوط به آن در جدول 4 ارائه شده است.

<table>
<thead>
<tr>
<th>مدل‌ها</th>
<th>R²</th>
<th>CRM</th>
<th>ME</th>
<th>EF</th>
<th>CD</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>0/98</td>
<td>0/15</td>
<td>0/12</td>
<td>0/87</td>
<td>0/8</td>
<td>0/85</td>
</tr>
<tr>
<td>MB</td>
<td>0/99</td>
<td>0/15</td>
<td>0/07</td>
<td>0/87</td>
<td>1/09</td>
<td>0/5</td>
</tr>
</tbody>
</table>

عامل نیتروژن در حالت مصرف شده که تنظیم شده و نداشته است. به عبارت دیگر در تیمار‌هایی از نیتروژن که مشابه نیتروژن در سندرم تیمار و جدایی محدودیت نشده شد، برای رشد گیاه ایجاد محدودیت نموده است. به عبارت دیگر نیتروژن در سندرم تیمار و جدایی محدودیت نموده است. این پارامترها به دست آمده‌اند. همچنین جدول 5 نشان می‌دهد که برای از دست داده‌شده است.

tab. 4. آماره‌ها محاسبه شده برای مقدارهای مدل‌ها بر اساس سطوح نیتروژن خاک

78
مدل‌سازی واکنش کلر آب به تشتهای نواحی شهری و کمیته نیروز

شکل 7. مقایسه عملکرد ده‌ای نسبی اندازه‌گیری شده و برآورده شده دانه کالرا به‌وسیله

جدول 5: آماره‌های محاسبه شده برای مقایسه مدل‌ها بر اساس سطح‌های ایلایی آب‌آوری

<table>
<thead>
<tr>
<th>R²</th>
<th>CRM</th>
<th>ME</th>
<th>EF</th>
<th>CD</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>0/4/5</td>
<td>0/4/5</td>
<td>0/4/5</td>
<td>0/4/5</td>
<td>0/4/5</td>
</tr>
<tr>
<td>0.95</td>
<td>0/4/5</td>
<td>0/4/5</td>
<td>0/4/5</td>
<td>0/4/5</td>
<td>0/4/5</td>
</tr>
</tbody>
</table>

MB

LS
شکل 9: مقایسه عملکرد‌های نسبی اندازه‌گیری شده و عملکرد پرآورد MB شده به وسیله مدل تعیین‌یافته.

شکل 10: رابطه عملکرد نسبی دانه در هر کلزا با شوری آب آپارایی در سطوح مختلف تیتروزن بر اساس مدل تعیین‌یافته LS و داده‌های اندازه‌گیری شده.

مدل تعیین‌یافته LS نسبت به مدل تعیین‌یافته MB بهتر می‌باشد. بیشتر آماره‌های فوق برتراستی مدل تعیین‌یافته RA نسبت به مدل تعیین‌یافته LS نشان می‌دهد.

در شکل‌های 8 و 9 به ترتیب، نسبت نسبی MB به عنوان برآورد شده به مسیرهای مدل‌های تعیین‌یافته LS و MB به عنوان تابعی از نسبت نسبی اندازه‌گیری شده، ارایه شده RA است. R² برای مدل‌های MB و LS به ترتیب برابر با 0.94 و 0.9 است. بنا براین، مدل تعیین‌یافته LS نسبت به مدول MB تعیین‌یافته LS مناسب‌تر می‌باشد.

در شکل 10 رابطه میان عملکرد نسبی دانه و سطوح شوری در مقایسه مختلف مصرف تیتروزن بر اساس مدل تعیین‌یافته LS نسبت به مدل تعیین‌یافته MB را نشان می‌دهد. زیرا مقدار RSME برای مدل LS همچنین بچتر از مدل تعیین‌یافته MB است. مقدار CRM برای مدل LS تقریباً با رابطه مدل تعیین‌یافته MB بچتر است.

بنا براین، برآورد عملکرد با مدل تعیین‌یافته MB به مفادی WCR واقعی عملکرد نرمال‌کننده باشند. مقدار WCR برای مدل‌های MB به ترتیب مثبت و منفی می‌باشد. هر نشان می‌دهد مقدار برآورد شده عملکرد نسبی دانه به وسیله مدل‌های LS و MB به ترتیب بیشتر و کمتر از مقدار واقعی عملکرد نسبی تخمین زده می‌شود. با توجه به آماره CD نسبت بين پراکنش مقداری برآورد شده و اندازه‌گیری شده برای
شکل 11. رابطه عملکرد نسبی دانه کلزا با شوری آب آبیاری در سطوح مختلف نیترژن
با استفاده از مدل تجزیه و تحلیل MB و داده‌های اندازه‌گیری شده

در مقدار کاربرد ۷۵ میلی‌گرم نیترژن در کیلوگرم خاک و بدون کاربرد نیترژن بر تریب و ۱۲ و ۱۶ دسی‌زمین بر متر می‌باشد. میزان کاهش به ترتیب با کاربرد هر ۷۵ میلی‌گرم نیترژن در کیلوگرم خاک، حد آستانه کاهش عملکرد شرایط در سطوح مختلف نیترژن به ۱/۵ ds m⁻¹ "ربای این گیاه حدود ۵/۰۵ ds m⁻¹" رسید. این عملکرد به کمک برای این شکل می‌توان عملاً در کندن کاهش عملکرد به کمک نشانده نیترژن برای رشد گیاه در شرایط اخیر ذکر کرده‌اند. این دلیل برای نتایج این پژوهش نیز صادق است.

در کاربرد ۳۰۰ میلی‌گرم نیترژن در کیلوگرم خاک حد آستانه کاهش عملکرد حدود ۱ ds m⁻¹ است. لیکن وقتی که نیترژن عملکرد کاهش محدود کننده رشد گیاه می‌باشد حد آستانه کاهش عملکرد شوری بیشتر است. برای مثال با کاربرد ۱۵۰ میلی‌گرم نیترژن در کیلوگرم خاک، حد آستانه کاهش عملکرد را برای شوری به می‌رسد. حد آستانه کاهش عملکرد در شرایط شوری
جدول 6: آماره‌های محاسبه‌شده برای مقایسه مدل‌های تعیین یافته LS و MB در سطوح مختلف شوری آب آبیاری برای هر یک از سطوح نیتروژن

<table>
<thead>
<tr>
<th>مدل‌ها</th>
<th>R²</th>
<th>CRM</th>
<th>EF</th>
<th>CD</th>
<th>RSME</th>
<th>ME</th>
<th>سطوح نیتروژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>0.38</td>
<td>-6/78</td>
<td>0/15</td>
<td>5/34</td>
<td>0/11</td>
<td>N₁</td>
<td>MB</td>
</tr>
<tr>
<td>LS</td>
<td>0/20</td>
<td>-4/10</td>
<td>0/43</td>
<td>3/32</td>
<td>0/09</td>
<td>N₁</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/26</td>
<td>-1/14</td>
<td>0/88</td>
<td>3/52</td>
<td>0/36</td>
<td>N₂</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/36</td>
<td>-0/16</td>
<td>0/32</td>
<td>3/37</td>
<td>0/11</td>
<td>N₂</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/46</td>
<td>-0/16</td>
<td>0/33</td>
<td>3/43</td>
<td>0/30</td>
<td>N₂</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/56</td>
<td>-0/14</td>
<td>0/32</td>
<td>3/38</td>
<td>0/11</td>
<td>N₂</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/65</td>
<td>-0/14</td>
<td>0/32</td>
<td>3/37</td>
<td>0/30</td>
<td>N₂</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/75</td>
<td>-0/14</td>
<td>0/32</td>
<td>3/38</td>
<td>0/11</td>
<td>N₂</td>
<td>MB</td>
</tr>
<tr>
<td>MB</td>
<td>0/85</td>
<td>-0/14</td>
<td>0/32</td>
<td>3/37</td>
<td>0/30</td>
<td>N₂</td>
<td>MB</td>
</tr>
</tbody>
</table>

که مقدار برآورد شده نسبت به مقدار اندازه‌گیری شده کمتر MB برآورده شد. لینی در مورد مدل تعیین یافته در همه سطوح نیتروژن با مقدار برآورد شده، در مقایسه با اندازه‌گیری شده دارای پیش‌برآورد است. مقدار MB در همه سطوح نیتروژن خاک در شوری‌های مختلف آب آبیاری نشان داد که سطوح MB در مقایسه با مدل تعیین یافته MB به یک ترتیب در مقایسه با LS بهبود یافته است. با این حال، کارایی مدل تعیین یافته MB بهتر از مدل LS بهبود یافته لیست. ضریب تبیین برای مدل MB در پایین‌ترین سطح نیتروژن خاک (نیتروژن بومی خاک) و کاراکتر 50 میلی‌گرم در کیلوگرم N

Downloaded from jcpp.iut.ac.ir at 13:07 IRDT on Thursday May 14th 2020
نتیجه‌گیری

پیش‌بینی‌های خاص - آپ سیاس پیچیده است و برهمکنش‌های زیادی بین اجزای مختلفی وجود دارد. در این پژوهش، پاسخ‌های کلی به دو عامل نشان‌زایی شوری و کم‌بود نیتروژن بررسی گردید. نتایج نشان داد که انگلی سیستم‌های توانایی نشان‌داده و توانایی عملکرد داده کلارا در سطح گسترده‌تری به شیپ‌های نامیاب. با این حال، پیش‌بینی

 CRM برای سطوح نیتروژن خاص، شوری‌های آپ ای‌بی‌ای و اثرات مختلف شوری و نیتروژن (هر یک از سطوح نیتروژن خاص در

 سطوح مختلف شوری) به وسیله سیستم تعیین‌نامه MB تأثیر دریافت بخشی پیش‌بینی. برای پیش‌بینی MB در مدل تعیین‌نامه LS فرض می‌کنند که تغییرات گوناگونی رشد در هر زمان فقط یک عامل فرد عملاً عملکرد را تحت تأثیر قرار

 می‌دهد. در مقابل مدل تعیین‌نامه MB اثرات هش‌مانی زمان عامل رشد بر اساس فردی‌شناسی تغییرات و به‌عنوان یک مدل می‌باشد. نتایج نشان داد که آستانه کلاید عملکرد در

 منابع مورد استفاده

 1. امامی، ع. 1375. روش‌های تجزیه گیاه (جلد اول). نشریه شماره 80، مؤسسه تحقیقات خاک، و آب، سازمان تحقیقات و

 آموزش کشاورزی وزارت کشاورزی، تهران.

 2. خلخالی، ز. ج. رضایی، م. ج. ملکوتی و ب. مهاجر ملارد. 1379. تغییر بیشتری کلیار. نشر آموزش کشاورزی وزارت کشاورزی،

 تهران.

 3. علی‌اصبی، م. 1376. شرح روش‌های تجزیه شیمیایی خاک (جلد دوم). نشریه شماره 102، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات و آموزش کشاورزی وزارت کشاورزی، تهران، ایران.

 4. علی‌اصبی، م. و. ع. بهبهانی، ر. 1372. شرح روش‌های تجزیه شیمیایی خاک (جلد اول). نشریه شماره 83، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات و آموزش کشاورزی، وزارت کشاورزی، تهران.

 5. همایی، م. 1381. واکنش گیاهان به نیتروژن. انتشارات کمیته ملی آبیاری و زهکشی ایران، شماره 57، صفحه 97.

