بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن طی فرآیندهای غذایی

لاله مشری برچنگی1 و جواد کرامت2

چکیده

محدودیت مصرف رنگ‌های قرمز مصنوعی در مراحل غذایی، سبب توجه بیشتر به تولید رنگ‌های طبیعی به عنوان افزودنی‌های مجزا گردیده است. یکی از منابع مهم تولید انگور گوجه فرنگی چغندر قرمز (Beta vulgaris L.) در فرآورده‌های غذایی مورد استفاده قرار می‌گیرد. در این تحقیق نمونه‌های چغندر قرمز از عملیات آماده‌سازی، آنتی‌ژرنی شدن، استفاده شده و در حالت ترشحی و نیز در حال تولید رنگ‌های طبیعی، قیمت‌های مختلف محصولات رنگ‌های طبیعی مورد بررسی قرار گرفته است. به منظور مقایسه کیفیت انگر گوجه‌های جمنشیری، رنگ‌های گوجه‌های بستنی ساخته شده در مزارع آزمایشگاهی، بررسی و مقایسه از نظر میزان پیشنهاد، و رنگ‌های مصنوعی کاربردی‌ترین ساخته شده در مزارع آزمایشگاهی، تولید شد و مورد بررسی قرار گرفت.

نتایج نشان داد که رنگ تولیدی با مخلوطی خاص بهره و در دمای دمای درجه مالتی‌گرده در تاریکی و pH 16.9 درجه بدون ترفند و در مخلوطی پیش‌تر یک بسته با pH 16.9 درجه و در مخلوطی پیش‌تر یک بسته با pH 16.9 درجه نیز بهترین رنگ در مکانی‌های تولید قرار داشته و در نهایت بهترین رنگ در تولید رنگ‌های طبیعی و رنگ‌های مصنوعی بود.

واژه‌های کلیدی: رنگ قرمز، چغندر قرمز، تولید رنگ، رنگ‌های آماده‌باش

مقدمه

حقیقت مصرف کننده قرمز از آن که اطلاعی از سایر خصوصیات از قبیل تهیه با داشتن به ظاهر خوراکی توجه می‌شود.

1. عضو هیئت علمی، پخش بخش صنایع غذایی، مرکز تحقیقات کشاورزی استان
2. استادیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

3. Appearance
با این‌باره، مشخصات ظاهری یک فازودار غذایی عامل مهمی است که مربوطاً در اولین بروزاتر خطرای نقش اساسی و تسمین کننده دراد سایر خصوصیات کیفی مانند عطر، باتر، و غیره می‌باشد. هستند که پس از مصرف محصول غذایی، و احیاناً پس از یک یا برخی و تجربه کردن آن مورد توجه و اقتباشت می‌شوند. خصوصیات ظاهری محصول شامل مشخصات مانند: رنگ، شکل، نوع بسته‌بندی، اندازه، کیفیت و غیره است.

رنگ یکی از مهم‌ترین خواص کیفی ظاهری محصول است، که در بدو ام می‌توان صرف کندند مشاهده می‌شود. رنگ عامل مؤثر در جلب نظر و انتخاب ماده غذایی است، که از طریق احساس دریافتی می‌گردد و وجود آن در تشکیل سریع پذیرش نهایی یا فازودار غذایی مؤثر است، زیرا باعث جاذبیت ماده غذایی می‌گردد.

اگرچه ممکن است رابطه علمی بین رنگ و عظر و طعم مواد غذایی از نظر ترکیب در خصوصیات فیزیکی کیفی محصولی وجود نداشته باشد، ولی آزمایش‌های چندین نشان داده است که در اگرچه مواد رنگ مطلوب بر اساس عطر و طعم ماده غذایی اثر مثبت و قابل ملاحظه‌ای دارد. لذا پس از خرید و مصرف یک فازودار غذایی نیز رنگ از اهمیت خاصی برخوردار است. طیف تعیین‌اف. دی. 1، اصلاحات رنگ غذا اعبارت است از:

1. رنگ‌های نگه‌داشته‌ای که مصرفی می‌کنند
2. رنگ‌های مصنوعی یا سایر مواد ساخته شده توسط یک مصرفی مصنوعی
3. مصرفی مصنوعی، استخراج یا شکل‌دان و یا مشتق‌های مواد رنگی، مایعات، جنگل‌ها، خیال‌ها، مواد معدنی یا مایعات دیگر، که به منظور ایجاد رنگ در مواد خوراکی، آشامیدنی و آشپزی پیوسته مصرف خواهد کرد (13).

TEXT1

1. U. S. FDA (United States Food and Drug Administration), 1986
2. Colorant
3. Certified
4. Uncertified
5. National Cancer Institute
6. P-Cresidine
7. Generally Recognized As Safe (GRAS)
8. Riboh
9. Roselle
10. Cranberry

۱۰۹۷، مصرفی مصنوعی یا مایعات، مایعات یا مشتق‌های مواد رنگی، مایعات، جنگل‌ها، خیال‌ها، خیال‌ها، مواد معدنی یا مایعات دیگر، که به منظور ایجاد رنگ در مواد خوراکی، آشامیدنی و آشپزی پیوسته مصرف خواهد کرد (13).

TEXT2

1. U. S. FDA (United States Food and Drug Administration), 1986
2. Colorant
3. Certified
4. Uncertified
5. National Cancer Institute
6. P-Cresidine
7. Generally Recognized As Safe (GRAS)
8. Riboh
9. Roselle
10. Cranberry

۱۰۹۷، مصرفی مصنوعی یا مایعات، مایعات یا مشتق‌های مواد رنگی، مایعات، جنگل‌ها، خیال‌ها، خیال‌ها، مواد معدنی یا مایعات دیگر، که به منظور ایجاد رنگ در مواد خوراکی، آشامیدنی و آشپزی پیوسته مصرف خواهد کرد (13).

TEXT3

1. U. S. FDA (United States Food and Drug Administration), 1986
2. Colorant
3. Certified
4. Uncertified
5. National Cancer Institute
6. P-Cresidine
7. Generally Recognized As Safe (GRAS)
8. Riboh
9. Roselle
10. Cranberry

۱۰۹۷، مصرفی مصنوعی یا مایعات، مایعات یا مشتق‌های مواد رنگی، مایعات، جنگل‌ها، خیال‌ها، خیال‌ها، مواد معدنی یا مایعات دیگر، که به منظور ایجاد رنگ در مواد خوراکی، آشامیدنی و آشپزی پیوسته مصرف خواهد کرد (13).
درس تولید رنگ خوراکی قرمز از چندندر قرمز و پاپاداری آن بین فرایندهای غذایی

ایشان کرده که چندندر قرمز‌گیاهی است از نوع (Beta vulgaris L.) و از جنس Beta است. چندندرهای گوجه‌فرنگی در کناره‌های vulgaris سی‌بی‌آ است. چندندر قرمز رنگ‌دهی گذشته بوده و از نوع نوآوری زکان یک درستی از مزایا عطر اسفنج خریداری گردیده. غده‌های چندندر در اندازه‌های کوچک (با قطر گمرک از 3/7 سانتی‌متر) و زیاد (با قطر پیش از 3/3 سانتی‌متر) انتخاب شدند. نمونه‌ای انتخابی در وا و رطوبت خفیق (حدود 60 تا 90 درصد رطوبت و دمای صفر تا 7 درجه سانتی‌گراد) نگهداری شدند و برای هر آزمایش از هر اندازه به طور تصادفی نمونه‌برداری انجام گرفت.

آزمایشات 7-پلیمری است که به صورت دو چکخت ناحیه مواد محلول تلقوی از سیستم آمیج جدید می‌آید. همچنین می‌تواند پیوستی از مواد محلول تلقوی از اندازه‌های بزرگ‌تری به دست آید. تا آن لایه شیپهای بزرگ‌تر و دیده می‌شود. است. 8) انتخاب وضعیتی از چندندر قرمز توسط سیستم‌های غذایی، در سال 1973 و 1976 توسط ویلیام ویلیام تامپسون، در سال 1976، فیلیپ 3) برای استخراج رنگ قرمز از چندندر قرمز، از روش‌های پرس کردن و سانتریفیژور انتخاب شد. در سال 1968 و 1972، بت‌لینگم استخراج بین‌المللی از که چندندر قرمز را توسط استخراج دیفیوزیون، با استفاده از حل و دستگاه دیفیوزیون با جریان معادل و مداوم 3 انجام دادند. در سال 1976 و همین طور سال 1973 تخییر عصاره چندندر قرمز توسط مایکروگانومیا ثابت شد که تحت شرایط بین‌المللی توسط آدامز پیشنهاد شد (4) 10 و 15).

در این بررسی نوعی شده است با استفاده از یک سیستم روزن، رنگ قرمز طبیعی خوراکی برای مصرف انسانی استخراج و تولید رنگ، در ضمن، به‌طور شایع استخراج رنگ و فعالیت‌های پیاده‌بردن در شرایط مختلف مورد بررسی قرار گرفته است. همچنین، به منظور بررسی امکان مصرف این رنگ در صنایع غذایی و پیشنهاد به صنایع برای تولید رنگ به صورت صنعتی، فراوری چند محصول با استفاده از رنگ قرمز تولیدی انجام شده است.

5. Macrotetricial 6. Aliphatic
روش استخراج سرد، پس از آنزیم‌بری نمونه‌ها، عمليات عصاره‌گیری انجام شد. اما در روش استخراج گرم، چندین‌بار ابتدا توسط دستگاه خلافلی به صورت خلافلی سيستم‌های تولید گردید و نيز رنگ در تولید چند محصول به كار برده شد.

عمليات فوق به شرح زیر گرفته شده: سیستم رژیم مورد نظر شامل دو قيف جداکننده با حجم‌های بایكر وتولید نيز و باند نخبي نيز، نظام رژیم آن تنظيم بود. قیف‌ها جداکننده‌که چندر، برابر فرستاده‌گر، درجه چرخنده باند تولید و دو تولید حلال و شست و شوی ستون (دو باند) مورد استفاده قرار گرفته باست. از ستون نصب گردیدند. اختلاف ارتفاع باعث شده بود استفاده از بمب، توليد حلال به دخل ستون انجام شود. رژیم آمریکیت پر رين ناگرا وارد نمي شود و رينان آپه و جهت عكس از پایین به بالا وارد ستون گردند تا رين را به ستون به ميان افزایش حجم پيدا كند. عمل شست و شو در ستون به عنوان آن جهت بي طرف بالا، به طلب دنبال زدن به همان اندازه ذرات، و در نهایت به عبور پیدا می‌کند در عمل شست و شو یا پایین به بالا سرعت جزيان آپه به محدودیت تنظيم شده که افزایش حجم در ستون حدود 5 درصد باشد. در ضمن، دو رين زيني به ازدياد نيز از ستون خارج گردید. در اين سیستم، با بازكاردن قيق جداکننده و تنظيم آن، عصاره جداکننده با دي 0.5 ميلي اينت در دقیقه حلال از نادي از چرخنده خروج مي كند. در عمل نيازي و پيدا به پایین به بالا، سرعت جزيان آپه به محدودي حجم که افزایش حجم در ستون حدود 5 درصد باشد.

1. جذب رنگ از عصاره چندر قيرم به منظور جذب رنگ عصاره توسط رنگ، عصاره چندر قيرم موجود در قيق جداکننده، یک لیتری، با استفاده از اختلاف سطح به ستون رزين وارد شد. ذبي خروجي از ستون 1 ميلي اينت در دقیقه تنظيم گريدي. عمليات جذب از طرف اين ستون از رنگ ادامه یافت.

2. استخراج رنگ از ستون رزين برای جداسازی و استخراج رنگ جذب شده از ستون رزين، حالا در قيق جداکننده، دو نريه رخ خلاط، و با دو باند به محدودي 0.5 ميلي اينت در دقیقه عمليات شست و شو در جهت عكس انجام گرفت.

3. تچليط به جداسازی حلال از حلال استخراج شده به كمک دستگاه تچليط دراز و تحت خلا، حالا در دماي 35-40 درجه سنگی گراد در محلول رنگ جداگشته.

4. خشک كردن تچليط و توليد پودر رنگ به منظور توليد پودر و خشک كردن محلول رنگ به رنگ كردن تچليط باد، و از دست آمده از دستگاه خشک كردن تچليط استفاده شد.

5. تهیه و توريد چندر از نادي استخراج پودر رنگ، و وپزيگان چندر نادي توليدی، شامل خاکستر به روش خاکستر

بررسی تولید رنگ خوراکی قروم از چغندر قرمز و پاپیداری آن طی فرآیندهای غذایی

رنگ تولید شده به طول زمان تهیه و نگهداری آن کمک کرده و شرایط تهیه و نگهداری آن را تسهیل می‌کند. با توجه به تقاضای‌های چندین عصاره چغندر، رنگ تولید شده و پودر رنگ نشان داد که طول موج ماکزیمم چربی برای عصاره چغندر دارای دو طول موج ماکزیمم چربی و برای بقیه دارای یک طول موج ماکزیمم چربی به شرح زیر است:

\[\lambda_{\text{max}} = 278 \text{ nm (عصاره چغندر)} \]
\[\lambda_{\text{max}} = 390 \text{ nm (پودر)} \]

در مورد عصاره چغندر، طول موج ماکزیمم چربی 784 نانومتر مربوط به بنزانتیم و طول موج ماکزیمم چربی 350 نانومتر مربوط به بیتا سانیسین بود.

پس از آزمایش معنی‌دار خلوت نمونه با استفاده از کروماتوگرافی صفحه نازک، ثابت شد که نگ تولیدی بیننی سنگی باشد. در حالت که کروماتوگرافی صفحه نازک عصاره چغندر قرمز، دیققاً وجود و رنگ بنزانتیم و بیتا سانیسین را نشان داد. بنابراین، بنزانتیم در طی استخراج رنگ توسط سیستم رژیمی جذب نشده است. استخراج رنگ نهایی از چغندر قرمز، پودر بنزانتیم در روش استخراج و سیستم پرس ویلز در شرایط استخراجی توسط ای سیس حروفت 35 تا 50 درصد است. در بررسی استخراج دیفورژژیون با استفاده از دیفورژژون بای جریان متقابل و مداوم، بهتر استخراج بالاتری در استخراج دو سانتی‌متر 80 درصد 73 و در استخراج چهار سانتی‌متر 80 درصد 62 درصد بود. در حالت که این جرم هر روش استخراج با سیستم رژیمی رنگ تولیدی دارای خلوت حس و 100% بیننی سنگی بود، نسبت به سایر روش‌ها در خلوت بیشتر برخوردار بود.

نتایج و بحث

مقدار خاکستر و قند رنگ تولیدی از استخراج گل و سرد، در مقایسه با مقدار خاکستر و قند عصاره چغندر قرمز، براساس اندازه گیری توسط بیلور کم (کمتر از 200/0) درصد برودر رنگ تولیدی، شده نشان دهنده این است که استخراج توسط سیستم جذب شده، پودر رنگ تولیدی در این نظر از خلوت و پاپیداری خویی در بیخوردار است. پایین بودن معیار قند در پودر

1. Thin Layer Chromatography (TLC)
2. Single Stimulus
3. Panelist
4. Scanning
5. Willmes
6. Multiple 2 Columns
7. Multiple 4 Columns
روش سرد و گرم عصاره‌گیری شد و تنها حاصل نشان داد که
روش استخراج سرد از نظر بازده تولید رنگ مناسب‌تر است.
نتایج برسی اثر دما، نور و زمان نگهداری بر پایداری رنگ
تولید شده از استخراج گرم و سرد در زمان‌های مختلف و در
طول موج ۲۵۰۰۰ نانومتر، مطلق جداول ۱ و ۲ و شکل‌های ۱ و
۲، نشان می‌دهد که رنگ تولیدی از هر دو روش، در شرایط
تاریکی و دما چهار درجه سانتی‌گراد در بستر یک‌رنگ باید
برخورد است.
در مورد مقایسه اثر pH‌های مختلف بر پایداری رنگ تولید
شده، شکل ۳ می‌نماید شدت جذب در pH‌های مختلف
است و نشان می‌دهد که بیشترین شدت جذب در pH ۴
باید با ۵ باید.
نتایج آزمون‌های حسی برای رنگ بستی در جدول ۱ و ۴
نشان داده شده است.

\[
\text{L.S.D.}=\sqrt{\frac{q_{{0.05}}^{2}}{2T_{2}}} \sqrt{n}\text{تعداد فرمول/تعداد مشاهدات}
\]

<table>
<thead>
<tr>
<th>رنگ اصلی</th>
<th>فرمول</th>
<th>SX</th>
<th>N</th>
<th>S</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>خنثیات سیاه/سفید</td>
<td>۱۹</td>
<td>۰/۷۲</td>
<td>۱/۰۹</td>
<td>۰/۵۵</td>
<td></td>
</tr>
</tbody>
</table>

با توجه به اینکه قضاوت میکروکنیم که این دو فرمول اختلاف معنی‌داری
وجود دارد، در نتیجه:

\[
\Sigma X = 19 + 12 = 31
\]

\[
\text{C.F.} = \frac{(\Sigma X)^{2}}{n} = \frac{331}{22}
\]

\[
\text{واریانس کل} = \frac{\Sigma (X - \bar{X})^{2}}{n - 1} = 323 - 223 = 992 \approx 992
\]

\[
\text{واریانس فرمول} = \frac{\Sigma X^{2}}{n} - \frac{(\Sigma X)^{2}}{n} = 302 - 331 = 290
\]

\[
\text{واریانس بایق مانده} = F = \frac{290}{30} = \frac{9}{30} = 0.3
\]

با توجه به اینکه قضاوت میکروکنیم که این دو فرمول اختلاف معنی‌داری
وجود دارد، در نتیجه:
جدول ۱. اثر دما، تور و زمان نگهداری بر پایداری رنگ تولیدی از استخراج گرم

| روز | درجه سانتی‌گراد | حاویت مطلق | نرخ حاویت محاسبه‌شده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۲۷٩</td>
<td>۰/۲۷٩</td>
<td>۰/۲۷٩</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۲۴۷</td>
<td>۰/۲۵۵</td>
<td>۰/۲۵۱</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۱۸۱</td>
<td>۰/۲۲۱</td>
<td>۰/۱۹۰</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۱۶۹</td>
<td>۰/۲۱۲</td>
<td>۰/۱۸۳</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۱۳۱</td>
<td>۰/۱۷۱</td>
<td>۰/۱۴۷</td>
</tr>
<tr>
<td>۶</td>
<td>۰/۱۲۷</td>
<td>۰/۱۶۷</td>
<td>۰/۱۲۶</td>
</tr>
<tr>
<td>۷</td>
<td>۰/۱۹۹</td>
<td>۰/۱۶۳</td>
<td>۰/۱۰۹</td>
</tr>
</tbody>
</table>

جدول ۲. اثر دما، تور و زمان نگهداری بر پایداری رنگ تولیدی از استخراج گرم

| روز | درجه سانتی‌گراد | حاویت مطلق | نرخ حاویت محاسبه‌شده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۲۵۵</td>
<td>۰/۲۵۰</td>
<td>۰/۲۵۰</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۲۸۷</td>
<td>۰/۲۷۵</td>
<td>۰/۲۷۵</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۲۲۴</td>
<td>۰/۲۴۰</td>
<td>۰/۲۴۰</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۲۴۷</td>
<td>۰/۲۱۶</td>
<td>۰/۲۱۶</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۱۷۱</td>
<td>۰/۱۷۹</td>
<td>۰/۱۷۹</td>
</tr>
<tr>
<td>۶</td>
<td>۰/۱۵۳</td>
<td>۰/۱۷۱</td>
<td>۰/۱۷۱</td>
</tr>
<tr>
<td>۷</td>
<td>۰/۱۳۱</td>
<td>۰/۱۶۹</td>
<td>۰/۱۶۹</td>
</tr>
<tr>
<td>۸</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
</tr>
</tbody>
</table>

که سهم رنگ در هزینه‌های تولیدی محصولاتی مثل پستی و شریک خیز زده مطالعات انجام شده کمتر از یک درصد می‌باشد. بنابراین، تولید و مصرف این رنگ کاملاً اقتصادی خواهد بود.

تعمیم بازده و هزینه تولید رنگ از ظرف‌قیمت‌های ۱۲۵/۵ قیمت‌های حدود ۱۰/۵۰ قیمت رنگ تولیدی گردید. به این ترتیب، از هر کیلویی حجم‌داری قیمت‌های می‌توان حدود ۲/۷۰ قیمت پودر رنگ تولید نمود. شدت رنگ حاصل از پودر رنگ تولید شده برای شاخص با ۹/۰ دارد، چند برابر دستگاه موج ۵۴۰ نانومتر به ازای یک کیلویی ذرتی پودر درصد میلی لیتر محول،
شکل 1. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج سرد)

شکل 2. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج گرم)
جدول 3. بیست و دو پاسخ در مورد تأثیر pH بر رنگ تولیدی

<table>
<thead>
<tr>
<th>Hedonic Scale</th>
<th>(N.V.)</th>
<th>F</th>
<th>S</th>
<th>SxN.V.</th>
<th>F</th>
<th>S</th>
<th>SxN.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیلی دوست دارم</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>دوست دارم</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>بی تفاوت</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>دوست ندارم</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>اصلا دوست ندارم</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td>11</td>
<td>19</td>
<td>35</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

جدول 4. آنالیز واریانس 22 داو برای تأثیر pH بر رنگ تولیدی

<table>
<thead>
<tr>
<th>سطح واریانس</th>
<th>درجه آزادی</th>
<th>واریانس</th>
<th>واریانس میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>21</td>
<td>9/32</td>
<td>2/30 = 2/30</td>
</tr>
<tr>
<td>فرمول</td>
<td>1</td>
<td>2/30</td>
<td></td>
</tr>
<tr>
<td>پایین مانده</td>
<td>20</td>
<td>7/20</td>
<td>7/20 = 7/20</td>
</tr>
</tbody>
</table>

![گراف pH تأثیر pH بر رنگ تولیدی](https://example.com/graph.png)
سالم و بیضر شناخته شده است. به این منظور، مقداری از رنگ تولیدی برای انجام آزمایش‌های بهداشتی به‌دست ارائه می‌گردد. سایر رنگ‌های طبیعی و مصرف توسط این اداره صادر می‌گردد.

منابع مورد استفاده

1. استادنادار شماره ۱۳۷۷(۵۱۴۵). رنگ‌های مجاز خوراکی. مؤسسه استاندارد و تحقیقات صنعتی ایران.
2. پیروانه، و. ۱۳۷۷(۵۱). کتاب کنف. و آزمایش‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
3. حسینی، ز. ۱۳۷۱. روش‌های مناسب برای تجزیه مواد غذایی. انتشارات دانشگاه شیراز.

1. Food Safety