بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن تا فرآیندهای غذایی

لalah مشری پروچنسی و جواد کرامت

چکیده

محدودیت مصرف رنگ‌های قرمز مصنوعی در مراکز غذایی، سبب توجه بهتر به تولید رنگ‌های طبیعی به عنوان افزودنی‌های مجزا گردیده است. یکی از منابع مهم تولید این گونه رنگ‌ها چغندر قرمز است که رنگ حاصل از آن به صورت بودر پاکسازه (Beta vulgaris L.) در فراورده‌های غذایی مورد استفاده قرار می‌گیرد. در این تحقیق نمونه‌های چغندر قرمز پس از عملیات آماده‌سازی، آنتی‌ژری شده و عصاره XAD-7 جامد و رنگ‌هایی نسبت به کمک کلیل اسیدی استخراج گردیده است. پس از تبخیر خلخلات سطحی شکلی‌گیری این رنگ جامد به صورت بودر پاکسازه شد. سپس رنگ‌هایی و رنگ تولیدی شامل گروه‌ها، دما و نور تعیین گردیدند. در مرحله بعد کاربرد رنگ تولیدی در محصولات سرد مثل پستی و شریت بی‌خزه مورد بررسی قرار گرفت. به منظور مقایسه کیفیت این رنگ با رنگ‌های مصنوعی، محصولات مشابه استفاده از رنگ طبیعی حاصل و رنگ مصنوعی کارمیزین ساخته شده در مصالح آزمایشگاهی، تولید شد و آزمایش‌هایی حسی بر روی آنها انجام گرفت.

در نتیجه نشان داده که رنگ تولیدی با کیفیت بالا و در مراحل مختلف تهیه و در انواع مختلف، بهتر از رنگ مصنوعی کارمیزین ساخته شده است. به مرحله بعد، به کاربرد این رنگ در مراکز غذایی و به طعم‌دهی بهتر و بهبود کیفیت طعم‌دهی بحث و بررسی گردید.

واژه‌های کلیدی: رنگ قرمز، چغندر قرمز، تولید رنگ، رنگ آنتی‌ژری

مقدمه

حقیقت مصرف کننده قبل از آنکه اطلاعی از سایر خصوصیات از قبیل طعم یا بو داشته باشد، به ظاهر خوراک توجه می‌نماید.

1. عضو هیئت علمی، بخش صنایع غذایی، مراکز تحقیقات کشاورزی استان
2. استاندارد صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
3. Appearance
با بایان، مشخصات ظاهری یک فراورده غذایی عامل مهمی است که مخصوصاً در اولین بروز خریدار نظر اساسی و تعمیم کننده ندارد. سیاست خصوصیات کیفی مانند عطر، بافت و غیره می‌تواند نشان دهد که یک فراورده غذایی، و احتمالاً پس از یک‌پاره خرد و تجربه کردن آن مورد توجه واقع می‌شود. در صورتی که مصرف غذایی عامل مهمشان مانند رنگ، شکل، نوع بسته‌بندی، اندازه، یک‌تایی و غیره است، این رنگ یکی از مهم‌ترین خواص کیفی ظاهری محسوس است. در نهایت، در جامعه فراورده غذایی مؤثر، که از طریق احساس دریافتی می‌گردد، و وجود آن در تشخیص سیر پدیداری نهایی فراورده غذایی مؤثر است، زیرا باعث تغییر ماده غذایی می‌گردد.

اگر ممکن است رابطه علمی بین رنگ و عطر و طعم مواد غذایی از نظر ترکیب در خصوصیات فیزیوکمپیوتری وجود داشته باشد، ولی آزمایش‌های چشایی نشان داده است که در اگر موارد رنگ مطلوب، بر اساس عطر و طعم ماده غذایی اثر مثبت و قابل ملاحظه‌ای دارد. لذا پس از خرید و مصرف یک فراورده غذایی نیز رنگ از اهمیت خاصی برخوردار است. طبق تعبیر اف. دی. ا. اصلح رنگ غذاها عبارت است از:

«رنگ‌های قهوه‌ای، سیاه و سیاه‌نوری در این صنایع، استخراج یا باعث شده جلوگیری از پدیده فوم‌زدایی و تغییر رنگ در مواد گیاهی، انسداد قهوه‌ای یا سیاه‌نوری در مواد گیاهی است.»

در زیر در نگاهی به رنگ‌های طبیعی و نحوه استفاده از آن‌ها در صنایع غذایی:

۱. U. S. FDA (United States Food and Drug Administration), 1986
2. Colorant
3. Certified
4. Uncertified
5. National Cancer Institute
6. P-Cresidine
7. Generally Recognized As Safe (GRAS)
8. Riboh
9. Roselle
10. Cranberry

نیم‌بند (۱۲) تهیه می‌شوید.
پرورش تولید رنگ خوراکی ترمرز از چندین قرمز و پایداری آن طی فرآیندهای غذایی

مواد و روش‌ها

نمونه‌های چندنقرمز در ایران محض‌ال Nullable از واریته‌های مختلف بودند، و غالباً از واریته دیورلوت قرمز پورپر ۴ می‌باشتند. نمونه‌های آماده‌کننده که از نظر نوع واریته و صل و چکش یکان بودند از مواد اطراف اصلی فرآیند بررسی می‌شدند. قرمز، در چندنقرمز اکتشاف بود و در درصد 93، در درصد رطوبی درصد 98 در درصد رطوبی و درصد صرف 93 درصد نتایج (حدود 90) می‌باشند.

در این تحقیق از چندنقرمز به دلیل شیوع بودن آن در رنگ‌های قرمز و این که محصول مورد نظر در ایران به راحتی قابل دسترس بوده و از نظر اقتصادی مقرون به صرفه است به عنوان ماده اولیه تولید رنگ قرمز خوراکی استفاده می‌شود.

روش‌های صنعتی استخراج رنگ‌های چندنقرمز، عالیاً استفاده از روش‌های پرس، سانتریف، خشکی، دیفیزیو، و یا تخمیر عصاره بوده است. استخراج رنگ‌های چندنقرمز از چندنقرمز بررسی شده است که در سال 1979 توسط انگلیسی چندنقرمز، فیلیپ ۳ برای استخراج رنگ قرمز از چندنقرمز، از روش‌های پرس کردن و سانتریف‌کردن استفاده کرده است. در سال 1985 وایلی و لی (۱۵) استخراج بلت‌بیتر از چندنقرمز را توسط استخراج دیفیزیونی به عنوان آن در غلاب و سه‌گاه دیفیزیون به جریان گیری و مداوم ۳ استفاده می‌کردند. در سال 1967 و همین طور سال 1993 تخمیر عصاره چندنقرمز توسط میکروگلاس هم‌بند تکنیک تخت‌جوت شرایط بر روی میکروگلاس توسط آدامز پیشنهاد شد (۱۶ و ۱۵).

در این بررسی سعی شده است با استفاده از یک سیستم رزینی، رنگ قرمز طبیعی خوراکی برای مصارف انسانی استخراج و تولید شود. در ضمن، بهترین شرایط استخراج رنگ و مطالعه پایداری آن در شرایط مختلف مورد بررسی قرار گرفته است. همچنین به منظور بررسی امکان صرف این رنگ در صنایع غذایی و پیشنهاد به صنایع برای تولید رنگ به صورت صنعتی، فراوری چند محصول با استفاده از رنگ قرمز تولیدی انجام شده است.

5. Maceretial 6. Aliphatic
روش استخراج سرد، پس از انزیم بروین نمونه‌ها، عملیات عصاره‌گیری انجام شد. آما در روش استخراج گرم، مدت‌ها باید توسط دستگاه خلاصی به صورت خلاصه‌ای نسبتاً درخشان و بالاصله به آب در حال جوش انتقال یافته. پس از گذشت حدود 30 تا 40 دقیقه که رنگ موجود بلافاصله گردن قرار نخواهد که فلور خلاصه خلاصه گردن و آب به روز صافی انتقال داده شد که این حاصل گردید که رنگ موجود از تغییرات گردن در pH و صاف کردن مطالعات آن شده که در مورد استخراج سرد انجام شد، در مورد این عصاره نیز انجام گرفت.

عملیات بعدی به شرح زیر بر روی آن انجام شد:

1. جذب رنگ از عصاره چندنقرمز به منظور جذب رنگ عصاره توسط رنگ، عصاره چندنقرمز قرار می‌گیرد در فلور چندنقرمز یک لیتری، با استفاده از اختلاف ملیت به سمت رژیم وارد شد. خلاصه چندنقرمز در هم و توسط 9 میلیولت در دقیقه توزیع گردید. عملیات جذب تا اشباع شدن از رنگ ادامه یافت.

2. استخراج رنگ از سلنیوم برای جدا سازی و استخراج رنگ جذب شده از سلنیوم رنگ، خلاصه چندنقرمز، و رنگ گیری، در سانتی‌متری و 9 میلیولت در دقیقه عملیات شست‌شو در جهت عکس انجام گرفت.

3. تغییر جدایی خلاصه در محلول استخراج شده به کمک دستگاه تبخیر دوار و تحت خلاء، جوف سدا مایه استخراج 10 تا 15 دقیقه. درجه سانتی‌گراد از محلول رنگ چندنقرمز که در محلول محلول رنگ به مدت‌ها باید توسط دستگاه خلاصه رنگ و محصول به کار برده شد.

4. خشک کردن تصفیه و تخلیه پودر رنگ به منظور تولید پودر رنگ و خشک کردن محلول رنگی به دست آمده از دستگاه خشک کردن تصفیه و تخلیه استفاده شد.
5. تعیین ویژگی‌های رنگ تولیدی ویژگی‌های رنگ تولیدی، شامل خاکستر به روش خاکستر

در نهایت، عملیات استخراج، تغییر عصاره و تولید پودر رنگ انجام شد و نیز رنگ در تولید صندوق محصول به کار برده شد.

سیستم رزینی مورد نظر شما دو قیف جداکننده بایا حجم‌های یک و دو لیتر، یک سولونژ و یک سولونژ کابل تنظیم بود. قیف‌های جداکننده، هک یک بی‌ای فرستنده عملارگ، یک بی‌ای فرستنده حجم‌های یک لیتری، و یک فرستنده حجم‌های دو لیتری مورد استفاده قرار گرفت. بازاری از سرنگ نصب گردید. اختلاف ارتقاء اعضا شده بود استفاده از ملمع محلول رنگ و حلال به داخل سلنیوم انجام شد. روی آمپرله در سلنیوم حاصل آب قرار داده شد و سرنگ آب در جهت عکس از پایین به بالا وارد گردید تا رنگ رنگ در سلنیوم به صورت لیزری اتفاق گیرد. عملیات شست‌شو و حلال به طرف بالا بجا گذاشت. طبقه‌بندی رنگ در مبنای اندازه ذرات، و در نتیجه به عنوان یک نواحی انجام در زین در طی عملیات بندی کمک می‌کند. در عمل شست‌شوی رنگ که در بالا سرعت حجم‌آب به ویژگی‌های توطن شده که اندازه حجم در سلنیوم حدود 5 درصد باشد. در ضمن، ذرات بسیار رنگ نیز از سرنگ خارج گردد.

در این سیستم، با استفاده از قیف جداکننده، و تنظیم آن عملیات جدا کننده با دی 1.5 میلیولت در دقیقه از طریق یک لوله شیشه‌ای، که از وسیع یک چوب پشه در بالای سرنگ می‌گردد به سرنگ رنگ وارد می‌شود، تا سطح مایع بالای رنگی همواره در طول مرحله جذب، ثابت باشد.

عصاره چندنقرمز یک آماده برای فرستنده روی سرنگ رنگ، به دو روش استخراج سرد و گرم می‌شود. در این روش‌ها، آماده‌سازی نمونه شما به صورت جابجایی انجام شده. میزان ویژگی‌های به ترتیب: انتخاب نمونه، تغییر عصاره و تولید. صاف کردن پودر، پس از شست و شوی جداکننده قیف‌ها، جداکننده سر و نه، خشک کردن و در نهایت توکار آنها انجام گرفت. سپس، در

بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن طی فرایندهای غذایی

رنگ تولید شده به طول زمان نگهداری آن کمک کرده و شرایط
نگهداری آن را تسهیل می‌کند. با توجه به فیلتری که چغندر قرمز و
یک تولید شده و
پودر رنگ نشان داد که طول موج ماکزیمم جذب یارای
عصاره چغندر دارای دو طول موج ماکزیمم جذب و برای بقیه
دارای یک طول موج ماکزیمم جذب به شرح زیر است:

\[\lambda_{\text{max}}(\text{عصاره چغندر}) = 287 \text{ nm} \]

\[\lambda_{\text{max}}(\text{پودر}) = 350 \text{ nm} \]

در مورد عصاره چغندر، طول موج ماکزیمم جذب 287 نانومتر
مربوط به بیانیاتین و طول موج ماکزیمم جذب 350 نانومتر
مربوط به بیانیاتین بود.

پس از آزمایش تعیین خلوص نمونه با استفاده از
کرومئورافی صفحه نازک، به است که تولیدی بیانیاتین
خالص بود و نتیجه‌گیری بیانیاتین می‌باشد. در حالی که
کرومئورافی صفحه نازک عصاره چغندر، فیلتر زرد دمای خالص بود و
رنگ بیانیاتین به نشان داد. قراردادی بین بیانیاتین
در طی استخراج رنگ توسط سیستم رژیمی جذب تشدید است.

بر اساس مطالعات انجام گرفته، از بین روش‌های استخراج رنگ
از چغندر قرمز، بازده بیانیاتین در روش استخراج به سیستم پرس
ویلمیس 2000 حدود 45% با 50 درصد استفاده بتانیان
تسلط این پرس حدود 50 درصد است (15). در روش استخراج
دیفزیوتروپی با استفاده از دیفزیوتروپی از جریان متقابل و
مدافو در استخراج بیانیاتین در سنوست 8
حدود 73% و در استخراج پایداری استخراج دو سنوست 1
حدود 62% گزارش شده است (6). در تحقیق انجام گرفته به روش استخراج با سیستم
زینی، رنگ تولیدی دارای خلوص حدود 100% بیانیاتین
پودر و نسبت به سایر روش‌ها از خلوص بیشتر برخوردار
است.

به منظور تعیین روش استخراج رنگ از چغندر، با دو

1. Thin Layer Chromatography (TLC)
2. Single Stimulus
3. Panelist
4. Scanning
5. Willmes
6. Multiple 2 Columns
7. Multiple 4 Columns
روش سرد و گرم عصاره‌گیری شده، و نتایج حاصل نشان داد که
روش استخراج سرد از نظر بازده تولید رنگ مناسب‌تر است.
نتایج بررسی اثر دما و زمان نگهداری بر پایداری رنگ
تولید شده از استخراج گرم و سرد در زمان‌های مختلف و در
طول موج ۲۵۰ نانومتر، مطلق جداول ۱ و ۲ و شکل‌های ۱ و
۲۳، نشان می‌دهد که رنگ تولیدی از هر دو روش، در شرایط
تاریکی و در اماسه‌های سانتی‌گراد از پایداری بیشترین برابر
برخوردی است.
در مورد مقایسه اثر pH مختلف بر پایداری رنگ تولید
شده، شکل ۳ می‌تواند نشان دهد که pH های مختلف
است و نشان می‌دهد که بیشترین شدت جذب در محدوده
برابر با ۵ و ۱ ناشد.
نتایج آزمون‌ها هیچ برای رنگ بستی در جدول ۲ و ۴
نشان داده شده است.

\[L.S.D. = t \sqrt{\frac{M.S.}{2}} \]

\[F = \frac{\sum X^2}{n} - \frac{(\sum X)^2}{n} \]

\[t = \frac{F \sqrt{\frac{5}{10}}}{0.05} \]

با توجه به اینکه F = ۴/۲۵ پایداری می‌توانست وامور
اقتصادی که بین این دو فرآیند اختلاف معنی‌داری
وجود دارد.

نتایج به اینکه F = ۴/۲۵ پایداری می‌توانست وامور
اقتصادی که بین این دو فرآیند اختلاف معنی‌داری
وجود دارد.
جدول ۱. اثر دما، نور و زمان نگهداری بر پایداری رنگ تولیدی از استخراج گرم

<table>
<thead>
<tr>
<th>مقدار جذب نمونه رنگ تولیدی</th>
<th>نور، حرارت محيط</th>
<th>تاریکی، حرارت محيط</th>
<th>۴ درجه سانتی‌گراد</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۳۷۹</td>
<td>۰/۳۳۷۹</td>
<td>۰/۳۳۷۹</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰/۳۱۸۷</td>
<td>۰/۳۱۸۷</td>
<td>۰/۳۱۸۷</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۰/۲۶۶۹</td>
<td>۰/۲۶۶۹</td>
<td>۰/۲۶۶۹</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۰/۱۸۱۲</td>
<td>۰/۱۸۱۲</td>
<td>۰/۱۸۱۲</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۰/۱۷۶۹</td>
<td>۰/۱۷۶۹</td>
<td>۰/۱۷۶۹</td>
<td>۱۳</td>
<td></td>
</tr>
<tr>
<td>۰/۱۶۷۲</td>
<td>۰/۱۶۷۲</td>
<td>۰/۱۶۷۲</td>
<td>۱۶</td>
<td></td>
</tr>
<tr>
<td>۰/۱۴۱۲</td>
<td>۰/۱۴۱۲</td>
<td>۰/۱۴۱۲</td>
<td>۱۹</td>
<td></td>
</tr>
<tr>
<td>۰/۱۲۴۴</td>
<td>۰/۱۲۴۴</td>
<td>۰/۱۲۴۴</td>
<td>۲۲</td>
<td></td>
</tr>
<tr>
<td>۰/۱۱۳۳</td>
<td>۰/۱۱۳۳</td>
<td>۰/۱۱۳۳</td>
<td>۲۵</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. اثر دما، نور و زمان نگهداری بر پایداری رنگ تولیدی از استخراج گرم

<table>
<thead>
<tr>
<th>مقدار جذب نمونه رنگ تولیدی</th>
<th>نور، حرارت محيط</th>
<th>تاریکی، حرارت محيط</th>
<th>۴ درجه سانتی‌گراد</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۵۰۰</td>
<td>۰/۲۵۰۰</td>
<td>۰/۲۵۰۰</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰/۲۸۵۰</td>
<td>۰/۲۸۵۰</td>
<td>۰/۲۸۵۰</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۰/۲۴۰۰</td>
<td>۰/۲۴۰۰</td>
<td>۰/۲۴۰۰</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۰/۲۱۶۹</td>
<td>۰/۲۱۶۹</td>
<td>۰/۲۱۶۹</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۰/۱۷۶۹</td>
<td>۰/۱۷۶۹</td>
<td>۰/۱۷۶۹</td>
<td>۱۳</td>
<td></td>
</tr>
<tr>
<td>۰/۱۶۷۲</td>
<td>۰/۱۶۷۲</td>
<td>۰/۱۶۷۲</td>
<td>۱۶</td>
<td></td>
</tr>
<tr>
<td>۰/۱۴۱۲</td>
<td>۰/۱۴۱۲</td>
<td>۰/۱۴۱۲</td>
<td>۱۹</td>
<td></td>
</tr>
<tr>
<td>۰/۱۱۳۳</td>
<td>۰/۱۱۳۳</td>
<td>۰/۱۱۳۳</td>
<td>۲۲</td>
<td></td>
</tr>
<tr>
<td>۰/۱۰۱۲</td>
<td>۰/۱۰۱۲</td>
<td>۰/۱۰۱۲</td>
<td>۲۵</td>
<td></td>
</tr>
</tbody>
</table>

که سهم رنگ در هزینه‌های تولیدی محصولاتی مثل بستنی و شریت بخش زد هزینه‌های محاسبات انجام شده کمتر از یک درصد می‌باشد. بنابراین، تولید و مصرف این رنگ کاملاً اقتصادی خواهد بود.

تمیمی بیاند و هزینه تولید رنگ از چهنددر قرمز‌ با مصرف به صورت ۱۴۵۰/۵ گرم چهنددر قرمز حذف ۲/۳ گرم پودر رنگ تولید گردید. هنگامی که کیفیت چهنددر قرمز می‌توان حدود ۷/۲ گرم پودر رنگ تولید نمود. شدت رنگ حاصل از پودر رنگ تولید شده در بررسی با ۱۰/۰۱ واحده جدا در طول موج ۵۲۰ نانومتر به ازای یک گرم پودر درصد میلی لیتر محلول
شکل 1. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج سرد)

شکل 2. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج گرم)
جدول ۳. بیست و دو پاسخ در مورد قابلیت تولید رنگ بستنی

<table>
<thead>
<tr>
<th>Hedonic Scale</th>
<th>ارزش عددی (N.V.)</th>
<th>تابعیت با رنگ طبیعی (N)</th>
<th>تابعیت با رنگ مصنوعی (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>S</td>
<td>SxN.V.</td>
</tr>
<tr>
<td>شیلی دوست دارم</td>
<td>۲</td>
<td>۸</td>
<td>۱۶</td>
</tr>
<tr>
<td>دوست دارم</td>
<td>۱</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>پی تفاوت</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>دوست ندارم</td>
<td>-۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>اصلاً دوست ندارم</td>
<td>-۲</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
<td>۱۱</td>
</tr>
</tbody>
</table>

جدول ۴. آنالیز واریانس ۲۲ داور برای دو تابعیت بستنی

<table>
<thead>
<tr>
<th>سطح واریانس</th>
<th>درجه آزادی</th>
<th>واریانس</th>
<th>واریانس میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>۲۲</td>
<td>۹/۳۲</td>
<td>۲/۳۰</td>
</tr>
<tr>
<td>فرمول</td>
<td>۱</td>
<td>۲/۳۰</td>
<td></td>
</tr>
<tr>
<td>بافت مانده</td>
<td>۲۰</td>
<td>۷/۰۲</td>
<td>۷/۰۲</td>
</tr>
</tbody>
</table>

شکل ۳. تأثیر pH بر شدت رنگ تولیدی

شکل ۳. تأثیر pH بر شدت رنگ تولیدی

۹۹
عنوان مورد استفاده

1. استنادگر، شماره ۶۴۰ ترجمه جامع خوکارکی. مؤسسه استاندارد و تحقیقات صنعتی ایران.
2. پروانه، و. ۱۳۷۱. کنترل کیفی و آزمایش‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
3. همسینی، ز. ۱۳۷۹. روش‌های دندانپزشکی در تجزیه مواد غذایی. انتشارات دانشگاه شیراز.
4. صبح، س. ۱۳۸۳. پرورش و روندهای قرمز پیش‌بینی غذا. مجموعه مقالات هفتمین کنگره ملی صنایع غذایی ایران، دانشگاه شیراز.
5. ناصری، م. ت و. ع. پروانه، و. ۱۳۷۲. ترجمه پذیرش خوکارکی (پرورش ترجمه). انتشارات جهاد دانشگاهی مشهد.

1. Food Safety