بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن طی فرآیندهای غذایی

چکیده
محدودیت مصرف نارگی قرمز مصنوعی در مراکز غذایی، سبب توجه بیشتری بود که تولید رنگ‌های طبیعی به عنوان افزودنی‌های مجاز در بی‌بی‌کروم (Beta vulgaris L.) است. یکی از منابع مهم تولید این نوع رنگ‌ها چغندر قرمز است. در این تحقیق به‌منظور تحت‌بردی این چغندر قرمز پس از عملیات آماده‌سازی، آنزیم‌بری شده و شیره محصولات از سطح رنگ‌های XAD-7 حاوی داده شده و محلول رنگ به کمک الکل اسیدی استخراج گردید. پس از بربری فاز نهایی محصولات آلکلی توسط pH به صورت برد پذیری شد سپس به‌طور یکسان رنگ‌های تولیدی شرایط خاصی تحت شرایط مختلف می‌گردند. در مراحل بعد کاربرد رنگ تولیدی در محصولات سرد مثل پاستیویت و شربیت یخ‌زده مورد بررسی قرار گرفت. به منظور مقایسه کیفیت این رنگ با رنگ‌های طبیعی مصرفی، محصولات با استفاده از رنگ‌های طبیعی حاصل، و رنگ مصنوعی کارموئیزین ساخته شده در سطح آزمایشگاه، تولید شد و آزمایش‌های حسی بر روی آنها انجام گرفت.

نتیجه‌گیری
نتیجه‌گیری داشته که رنگ تولیدی با استانداردهای شرایط خاص بوده و در دمای چهار درجه سانتی‌گراد، در تاریکی و pH برابر پنج به‌صورت پایداری را دارد. همچنین، محصولات تولیدی با رنگ طبیعی از مطلوبیت بیشتری برخوردار بودند. از هر جهت، چغندر قرمز در نظر گرفته شد و مقایسه کیفیت رنگ در تولید توسط pH به صورت برد پذیری شد. مورد توجه قرار می‌گیرد، خصوصیات ظاهری آن است. در واژه‌های کلیدی: رنگ قرمز، چغندر قرمز، تولید رنگ، رنگ آزمایش

مقدمه
حقیقت مصرف کننده قبل از آن که اطلاعی از سایر خصوصیات از قبل چهار یا به داشتن باشند، به ظاهر خوراکی توجه می‌نماید.

3. Appearance

1. عضو هیئت علمی، پنجم صنایع غذایی، مرکز تحقیقات کشاورزی اصفهان
2. استادیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
بیان‌بران، مشخصات ظاهری یک فواروده غذایی عامل مهمی است که مختصاً در اولین بروخورد چربیضو نقص اساسی و تضعیف کننده درد چربیضو به خوبی تصاویری نمایش گذاری کرده است. این علل در چربیضو توانایی افزودن آفروده‌گری بسیار بیشتر است. این سازمان‌ها حتی راجع به سرطان‌زاپا کرسیده‌اند (فاده اصلی رنگ قرمز در موارد صحیه‌ای و موش نیز) بوده‌اند. بسیاری از محققان معتقدند که در موارد فعالیت غذایی است، که از طریق غذاها چربی‌های آن در تنش و در تنش‌های زیادی را به وجود آورده‌اند. در نتیجه باید نوع رنگ رنگ‌دانه‌های خاکی‌زمین بر اساس فراورده غذایی مؤثر است، زیرا باعث بهبود ماده غذایی می‌گردد.

اگرچه مهم است رابطه علمی بین رنگ و غذای غذایی یک نظری تکنیکی در خصوصیات فیزیکی‌شیمیایی وجود داشته باشد، ولی آزمایش‌های چندین نشان داده است که در اثر موارد رنگ مطلوب، بر احتمال غذای غذایی اثر مثبت و ملاحظه‌ای دارد. این پس از خرید و مصرف یک فراورده غذایی از اهمیت خاصی برخوردار است. طبق تعريف اف. دی. عصاره رنگ غذایی

است از:

۱۹۹۷ گاه دندانه‌های کبدی معنی‌گذاری در این رنگ‌دانه‌های غذایی یک نوع زیادی است. همچنین این موضوع در موارد حساسیت به کربن‌های کبدی که به عنوان جانشین رنگ‌دانه‌های غذایی

و غیره را به عنوان سازنده رنگ‌دانه‌های غذایی

مخصوص کرده‌اند. برای مثال Vaccinium (Ribes salubraria) و غیره را به عنوان سازنده رنگ‌دانه‌های غذایی

Downloaded from jcpp.iut.ac.ir at 11:22 IRDT on Saturday August 17th 2019
مقدمه
نمونه‌های چندنفر قمر در ایران مخلوطی از آن‌ها و یا از نوع مختلف بوده و غالباً از چندنفرات قمری پرورگن می‌باشد. نمونه‌های آزمایشی که از نظر نوع وارد و قتل کشیده یکسان بوده و می‌تواند از مواردی اخلاقی خانه‌های کم‌دارند و یکی از مهم‌ترین آنها است (5).

در این تحقیق از چندنفر قمر به دلیل غنی بودن آن رنگ‌های قمر و این که محقق و مدارسی نظر ایران را برای قابل دسترس بوده و از نظر ادراکی نظریه به صورت شد.

روش‌های صنعتی استخراج و رنگ‌های چندنفر قمر خالی استفاده از روش‌های درمانی، پیش‌پرداز و تغییر عصاره بوده است. استخراج رنگ‌های زیستی از چندنفر قمر در سال 1992 توسط یافت. پیش‌پرداز 96 بار استخراج رنگ قمر از چندنفر قمر، از روش‌های پرس کردن و استخراج زیستی استفاده کرد. در سال 1988 و لی (15) استخراج بیش از چندنفر قمر را توسط استخراج دیفیوزیون، با استفاده از عصاره و دستگاه دیفیوزیون با جراحی میان‌دند و مداخله‌ای. در سال 1986 و همنی طور سال 1993 تغییر عمارة چندنفر قمر توسط میکروگلیتیهای تغییر کندن تحت شرایط پروازی توسط آماده پیش‌پرداز (3، 4، 5، 6، 7 و 8).

در این بررسی سه عوامل اصلی استفاده از یک سیستم رزین، رنگ قمر طبیعی خواصی برای مصرف انسانی استخراج و تولید شود. در ضمن، بهترین شرایط استخراج رنگ و مطالعات پیاداری آن در شرایط مختلف مورد بررسی قرار گرفته است. همچنین، به منظور بررسی امکان مصرف این رنگ در صنایع غذایی و پیش‌پرداز به منظور بررسی برای تولید رنگ به صورت صنعتی، برای چند محصول با استفاده از رنگ قمر تولیدی انجام شده است.

5. Macore tic 6. Aliphatic
در نهایت، عملیات استخراج، تغییر عصاره و تولید پودر رنگ انجام و نیز رنگ در تولید به کار رده شد. عملیات فوق به شرح زیر گرفته شد:

سیستم رنگی مورد نظر شامل دو قیف جداکننده با حجم‌های یک و دو لیتر و یک ستون رزین و یک ستون بهای قابل تنظیم بود. قیف‌های جداکننده، که یکی برای فرورسانه‌ی جداکننده چندندر (یک لیتری) و دیگری برای فرورسانه‌ی حلال و شست‌شوی ستون (دو لیتری) مورد استفاده قرار گرفت. با دقت از ستون نصب گردیدند. اتخاذ ارتفاع بنا به شکوه بدن استفاده از پیچ انتقال محلول رنگ و حلال به داخل ستون انجام شد. رنگ آمپریل در ستون حلال آپار داده شد و جریان آب در جهت عكس از پایین به بالا وارد ستون می‌شود و در جریان قبل از ستون نصب گردیدند. انتقال محلول و روغن به داخل ستون انجام شد. عمیقات پایین به شرح زیر می‌باشد:

1. جذب رنگ از عصاره چندندر، قرار می‌گیرد به منظور جذب رنگ عصاره توسط رنگ، حلال در جریان جداکننده یک لیتری، یا استفاده از انتقال محلول به ستون رزین وارد شد. در خروجی از ستون 1+4 میلی‌لیتر در دقیقه تنظیم گردید. عملیات جذب اشتباه، سریعاً از ستون به روغن ادامه یافت.

2. استخراج رنگ از ستون رزین، برای جداکننده و استخراج رنگ جذب شده از ستون رزین، حلال در جریان جداکننده دیگر ریخته شد و با دیسر وارد 4+1 میلی‌لیتر در دقیقه عملیات شست‌شوی در جهت عكس انجام گرفت.

3. تغییر عصاره جداکننده جریان از محلول استخراج شده به کمک دستگاه تبخیر دوار و تحت خلاء، حلال در دمای 35-45 درجه سانتی‌گراد از محلول رنگ جداکننده منجر شد.

4. شکر کردن تصفیه‌ی پودر و پودر رنگ به منظور تولید و پودر رنگ کردن محلول رنگ، به دست آمده از دستگاه شکرکردن تصفیه‌ی استفاده شد.

5. ترکیب ویژه‌ای رنگ تولیدی ویولوژی‌ها رنگ تولیدی، شامل خاکستر به روش خاکستر و یوگاها رنگ تولیدی.

بررسی تولید رنگ خوراکی قرومز از چغندر قرمز و پایداری آن طی فرایندهای غذایی

خشک (۲ و ۳) قند نمونه به روش سوموگی-نلسون (۹)، درجه خلوص نمونه با استفاده از کرومانتوگرافی صفحه‌ای نازک (۱۱) و طول موج حداکثر جذب با روش اسپکتروفوتومتری تعیین گردید.

۷. تغییر پایداری رنگ تولیدی آزمایش‌های پرسی اثر دمای نیرو و زمان نگهداری، و نیز اثر pH نمونه در صنایع غذایی.

برای بررسی کاربرد رنگ تولیدی در صنایع غذایی، چندین محصول صنعتی (سوسپس آلمانی، بستی و شریت یک‌خزه) با رنگ تولید شده و رنگ مصنوعی موجود در بازار (کارمونیز)، تهیه گردید. در طی حرارت پخت، رنگ انواع شده به سوسپس آلمانی تجزیه و ناپدید شد. لذا می‌توان این رنگ قابلیت استفاده در این گونه فاکتور‌ها را نداشت، فقط بستی و شریت یک‌خزه، مورد آزمون قرار گرفت.

در آزمایش‌های حساسی هم‌اکنون به هم‌طور نمونه‌ها مورد مقایسه قرار گرفته، در آزمون طعم، با آن که قند نمونه‌های تهیه شده و مشاهده نشده بود، اما اثر متقابل رنگ بر روی طعم به نحوی بود که مقدار مصرف غذایی کاهش یافت. برای انتخاب بهترین نمونه، از روش آماری سنجش استحکام ۳ استفاده شد. به این ترتیب که در هر زمان فقط یک نمونه به هر داروی داده شد و در شرایط خیلی راحت و طبیعی نمونه مورد نظر از آرزیابی کرد (۱۲).

نتایج و بحث

مقدار خاکسپر و قند رنگ تولیدی از استخراج گوم و سرد دارد. مقایسه با مقدار خاکسپر قند و عصاره چغندر قرمز، بسیار اندازه گرفته شده است. وجود مقدار بسیار کم (کمتر از ۵۰ درصد) در پودر رنگ تولید شده، نشان دهنده این است که قند توسط سیستم بینی بیشتر بخوردار است.

به منظور تعیین روش استخراج رنگ از چغندر، با دو

1. Thin Layer Chromatography (TLC)
2. Single Stimulus
3. Panelist
4. Scanning

5. Willmes
6. Multiple 2 Columns
7. Multiple 4 Columns
روش سرد و گرم عصاره‌گیری شد، و تناوب حاصل نشان داد که
روش استخراج سرد از نظر بازده تولید رنگ مناسب‌تر است.
نتایج بررسی اثر دما، تور و زمان نگهداری بر پایداری رنگ
تولید شده از استخراج گرم و سرد در زمان‌های مختلف و در
طول موج 250-700 نانومتر، مطلوب جداول 1 و 2 و شکل‌های 1 و
2، نشان می‌دهد که رنگ تولیدی از هر دو روش در شرایط
تاریکی و دمای چهار درجه سانتی‌گراد، از پیش‌ترین پایداری
برخوردار است.

در مورد مقایسه اثر pH های مختلف بر پایداری رنگ تولید
شده، سه گروه تغییر شدت یاد در pH های مختلف
است و نشان می‌دهد که بهترین نتیجه گیری شده در محدوده
مارپیمان 5-9.5 باشد.

نتایج آزمون های حساسیتی را در جداول 3 و 4
نشان داده است.

\[\text{L.S.D.} = t \cdot \sqrt{\frac{\text{MS}_{\text{Error}}}{\text{df}}} \]

با انجام مقایسه‌های لازم، استیزای میانگین نمونه‌های
پیشتر از نمونه مصنوعی به دست آمد، و چون اختلاف
استیزای میانگین این دو فرمول از
محاسبه شده نیز
پیشتر است، پایداری با 95 درصد اطمینان می‌توان گفت که
نمونه تهیه شده با رنگ طبیعی نسبت به نمونه تهیه شده با رنگ
مصنوعی از نظر تکرار در نرد مصرف کندنگان از مطلوبیت
پیشتر برخوردار بوده است.

\[
\begin{align*}
\bar{X} & = 11 + 11 + \cdots + 11 \\
\sum X & = 21 \\
\sum X^2 & = 18 + 35 + \cdots + 35 \\
\sum X^2 & = 93 \\
C.R. & = \left(\frac{\sum X}{n} \right)^2 = 2343/48 \\
\end{align*}
\]

با توجه به دست آمده از آزمون‌های حساسیت و همت
متوسط بین رنگ طبیعی و رنگ Mصنوعی 2343/48 گرد و
رنگ مصنوعی توسط رنگ طبیعی بر پایداری سنجی شریت بیان
مقدار مimony می‌تواند رنگ طبیعی را به جای رنگ مصنوعی
به کار برد.

\[\text{کاریانس باقی‌مانده} = \sum \frac{(X - \overline{X})^2}{nN} = \text{کاریانس فرمول} \]

\[\text{کاریانس فرمول} = \text{کاریانس کل} - \text{کاریانس باقی‌مانده} \]

با توجه به اینکه F=2/35 برای با 95 درصد اطمینان
افزایش می‌کنند که بین این دو فرمول اختلاف معنی‌داری
وجود دارد، در نتیجه:

96
جدول 1. اثر دما، نور و زمان نگهداری بر پایداری رنگ تولیدی از استخراج گرم

<table>
<thead>
<tr>
<th>روز</th>
<th>۴ درجه سانتی‌گراد تاریکی حارهت محدود</th>
<th>۰/۳۷۹</th>
<th>۰/۳۷۹</th>
<th>۰/۳۷۹</th>
<th>۰/۳۷۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td>۰/۲۸۷</td>
<td>۰/۲۸۷</td>
<td>۰/۲۸۷</td>
<td>۰/۲۸۷</td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۰/۲۶۵</td>
<td>۰/۲۶۵</td>
<td>۰/۲۶۵</td>
<td>۰/۲۶۵</td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td>۰/۱۸۱</td>
<td>۰/۱۸۱</td>
<td>۰/۱۸۱</td>
<td>۰/۱۸۱</td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td>۰/۱۷۶</td>
<td>۰/۱۷۶</td>
<td>۰/۱۷۶</td>
<td>۰/۱۷۶</td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td>۰/۱۶۷</td>
<td>۰/۱۶۷</td>
<td>۰/۱۶۷</td>
<td>۰/۱۶۷</td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td>۰/۱۴۲</td>
<td>۰/۱۴۲</td>
<td>۰/۱۴۲</td>
<td>۰/۱۴۲</td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td>۰/۱۲۳</td>
<td>۰/۱۲۳</td>
<td>۰/۱۲۳</td>
<td>۰/۱۲۳</td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
<td>۰/۱۱۲</td>
</tr>
</tbody>
</table>

جدول 2. اثر دما، نور و زمان نگهداری بر پایداری رنگ تولیدی از استخراج گرم

<table>
<thead>
<tr>
<th>روز</th>
<th>۴ درجه سانتی‌گراد تاریکی حارهت محدود</th>
<th>۰/۳۷۹</th>
<th>۰/۳۷۹</th>
<th>۰/۳۷۹</th>
<th>۰/۳۷۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td>۰/۲۸۷</td>
<td>۰/۲۸۷</td>
<td>۰/۲۸۷</td>
<td>۰/۲۸۷</td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۰/۲۲۷</td>
<td>۰/۲۲۷</td>
<td>۰/۲۲۷</td>
<td>۰/۲۲۷</td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
<td>۰/۲۱۷</td>
</tr>
</tbody>
</table>

که سهم رنگ در هزینه‌های تولیدی محصولاتی مثل بستنی و شریت بخشنده مطالب محاسبات انجام شده‌که از یک درصد می‌باشد. بنابراین، تولید و مصرف این رنگ‌ها کاملاً اقتصادی خواهد بود.

تماییز بازده و هزینه تولید رنگ از چندندر قرمز

با مصرف ۲/۴۵/۵/۵ گرم چندندر قرمز، حدود ۳/۳ گرم پودر رنگ تولید گردید. به این ترتیب، از هر کیلوی چندندر قرمز می‌توان حدود ۷/۲ گرم پودر رنگ تولید نمود. شدت رنگ حاصل از پودر رنگ تولید شده به برای است ۱۱/۱۸/۱۱ واحد جذب در طول موج ۵۳۰ نانومتر به ازار یک گرم پودر درصد میلی لیتر محصول.
شکل 1. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج سرد)

شکل 2. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج گرم)
جدول 3. پیش و دو پاسخ در مورد تقابل تیول در رنگ بستنی

<table>
<thead>
<tr>
<th>Hedonic Scale</th>
<th>توجه به رنگ طبیعی (N)</th>
<th>(N.V.)</th>
<th>F</th>
<th>S</th>
<th>SxN.V.</th>
<th>توجه به رنگ مصنوعی (S)</th>
<th>F</th>
<th>S</th>
<th>SxN.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیلی دوست دارم</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>دوست دارم</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>بی تفاوت</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>دوست ندارم</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>اصلاً دوست ندارم</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td>11</td>
<td>19</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

جدول 4. آنالیز واریانس 22 دارو برای دو توجهی بستنی

<table>
<thead>
<tr>
<th>سطح واریانس</th>
<th>درجه آزادی</th>
<th>واریانس</th>
<th>واریانس میانگین</th>
<th>$\frac{2/30}{7/20}$ = $\frac{2/30}{7/20}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>21</td>
<td>32/72</td>
<td>$\frac{2/30}{7/20}$ = $\frac{2/30}{7/20}$</td>
<td></td>
</tr>
<tr>
<td>فرمول</td>
<td>1</td>
<td>2/30</td>
<td>$\frac{2/30}{7/20}$ = $\frac{2/30}{7/20}$</td>
<td></td>
</tr>
<tr>
<td>پاتی مانده</td>
<td>20</td>
<td>7/20</td>
<td>$\frac{2/30}{7/20}$ = $\frac{2/30}{7/20}$</td>
<td></td>
</tr>
</tbody>
</table>

شکل 3. تأثیر pH بر شدت رنگ تولیدی

![Graph showing the effect of pH on dye production intensity](image-url)
بررسی بهداشتی رنگ تولیدی

رنگ چغندر قرمز تولیدی مانند سایر رنگ‌های طبیعی و مصنوعی از نظر ایمنی غذایی قابل بررسی می‌باشد. استفاده از رنگ چغندر قرمز از دهه سال پیش به عنوان یک ماده افزودنی

منابع مورد استفاده

1. استاندارد شماره ۴۷۳۶۷۴. رنگ‌های مجاز خوراکی. مؤسسه استاندارد و تحقیقات صنعتی ایران.
2. پرودوروقولو، و. ۱۳۷۱. کنترل کیفی و آزمایش‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
3. حسینی، ز. ۱۳۶۹. روش‌های متداول در تجزیه مواد غذایی. انتشارات دانشگاه شیراز.
4. صبحی، س. ۱۳۷۲. بررسی رنگ‌های قرمز مصنوعی خوراکی. مجموعه مقالات هفتمین کنگره ملی صنایع غذایی ایران. دانشگاه شیراز.
5. ناصری، م. ت. و. ت. تهرانی. قرمز ۱۳۶۷. تولید بذر سیب زمینی (یافته‌های ترمیمی). انتشارات جهاد دانشگاهی مشهد.

1. Food Safety