بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن طی فرایندهای غذایی

ل阿拉ه مشرف بروجئی، جواد کرمانی

چکیده
مقدومیت مصرف رنگ‌های قرمز مصنوعی در مراکز غذایی، سبب توجه بیشتری به تولید رنگ‌های طبیعی به عنوان افزودنی‌های مجاز گردیده است. یکی از منابع مهم تولید این گونه رنگ‌های قرمز چغندر است. برای این تحقیق نمونه‌های چغندر قرمز سپس از عملیات آماده‌سازی، آنتی‌بیوتیک، شید و حاره خوراکی قرمز XAD-7 و pH آن به صورت 7.5 و 9.5 است. برای تاکید آن به صورت 8.5 و 6.5 انجام شد. این تحقیق با توجه به حساسیت رنگ‌های قرمز از pH به تغییر به صورت حساسی این نمونه‌ها، رنگ‌های قرمز مصرف شد و رنگ‌های قرمز مصنوعی با استفاده از رنگ‌های طبیعی حاصل، و رنگ‌های مصنوعی کاربردهای مختلفی از آن در صنایع غذایی و دارویی مورد استفاده قرار گرفت. در مراحل بعدی به کاربرد رنگ‌های تولیدی در محصولات سرد مثل پیتزا و شیرینی‌های سرد و پیتزه‌های سرد بررسی قرار گرفت. به منظور مقایسه کیفیت این رنگ‌های با رنگ‌های

واژه‌های کلیدی: رنگ قرمز، چغندر قرمز، تولید رنگ، کاربردهای آن

مقدمه
تحقیقات مصرف گذشته با چگونگی مایع گذاری که توسط مصرف کننده از آن به اطلاعی از سایر خصوصیات

اورن و یزدی‌های کلی نهاد غذایی که توسط مصرف کننده

مورد توجه قرار می‌گیرد، خصوصیات ظاهری آن است. در

3. Appearance

1. عضو هیئت علمی، بخش صنایع غذایی، مرکز تحقیقات کشاورزی استان
2. استادیار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
بنابراین، مشخصات ظاهری یک فراورده‌غذایی عامل مهمی است که مخصوصاً در اولین برخورد خردان نقش اساسی و تمیز کننده دارد. سایر خصصیات کیفی مانند عطر، بافت و غیره می‌توانند هسته‌کننده کس پس از مصرف محصول غذایی، و احتمالاً پس از یک برخورد و تجربه کردن آن مورد توجه واقع می‌شوند. خصصیات ظاهری محصول شامل مشخصات مانند رنگ، شکل، نوع بسته‌بندی، اندازه، یکسانی، و غیره است.

رنگ یکی از مهم‌ترین خواص کیفی ظاهری محصول است، که در بدو امر توسط مصرف کننده مشاهده می‌شود. رنگ عامل مؤثر در جلب نظر و انتخاب ماده غذایی است که از طریق احساس دریافتی مصرف و وجود آن در تشخیص سریع پذیرش نهایی به فراورده‌غذایی مؤثر است، زیرا باعث جذابیت ماده غذایی می‌گردد.

اگرچه مانند رابطه علمی بین رنگ و غذای تغذیه‌ای مواد غذایی از نظر ترکیب در خصصیات رنگ‌شناسی بسیاری وجود داشته باشد، ولی آزمایش‌های چشمای نشان داده است که در اکثر موارد رنگ مطلوب بر اساس غذای عطر و طعم ماده غذایی اثر می‌شود و قابل ملاحظه‌ای دارد. لذا پس از خرید و مصرف یک فراورده غذایی نیاز به اهمیت خاصی برخورد است. طبق تعیین‌افد.۱.۱، اصلاح رنگ غذایی عبارت است از:

«رنگ‌یکی، رنگ مصنوعی یا سایر مواد ساختمانی قانون، سایر مواد ساخته شده توسط یک فایل، مستقیم استخراج چکرد و در مقدار مصرف، مواد دیگری و مصرف‌های دیگری که به منظور ایجاد رنگ در مواد خوراکی، آماده‌سازی، و آرایش، برای مصرف انسان به آنها اضافه می‌شود (۱۲). طبق این تعیین، رنگ‌های غذایی به دست رنگ‌های با مجوز مصرف (۱۲) برای مصرف نیاز به کسب مجوز می‌باشند، و رنگ‌های بدون مجوز مصرف نیاز به کسب مجوز می‌باشند تکمیل می‌شوند (۱۲).»

۸. Riboh ۹. Roselle ۱۰. Cranberry
بررسی تولید رنگ خوراکی قمرز از چغندر قمرز و یادداشت از طی فرایندهای غذایی

(boeta vulgaris L.) اشکاره کرده، چغندر قمرز گاهی است از تهیه β-چگندر (Chenopodiaceae) که گونه آن (Vulgaris) می‌باشد. چغندر گاهی گروه در کتاب‌های دریای آتالانتیک و محدودیت و وجود دارد و یکی از مهم‌ترین آنها است (5).

در این تحقیق از چغندر قمرز به دلیل خشک بودن آن از رنگ‌های قمرز و این که محصول مرود نظر در ایران به راحتی قابل دسترسی بوده و از نظر اقتصادی مقرون به صرفه است، به عنوان ماده اولیه تولید رنگ قمرز خوراکی استفاده شد.

روش‌های صنعتی استخراج رنگ‌های چغندر قمرز، غالباً ا استفاده از روش‌های رس، سئول، فشم، فیزیولوژی، و یا تخییر عصاره بوده است. استخراج چغندر یا قمرز از چغندر قمرز متوسط یک سه‌ست می‌باشد، در سال 1973 توسط ایلیا پیشتیاده شد. در سال 1972 فیلیپ یرای استخراج رنگ قمرز از چغندر قمرز از چغندر قمرز و سئول و فیزیولوژی استفاده کرد. در سال 1989 ویلیام و لی (15) استخراج با خریداری رزین نسبت به سه‌ست (14) استخراج با خریداری رزین از چغندر قمرز را توسط استخراج دیفیزیون، با استفاده از خریداری و دستگاه دیفیزیون با جریان طراحی و مراحل 3 بانک دانستند. در سال 1976 و هیملین طور سال 1993 تخییر عصاره چغندر قمرز توسط میکروگانیسم‌های تخیر کننده تحت شرایط بی‌هوایی توسط آدامز پیشتیاده شد (6).

در این بررسی سعی شده است با استفاده از یک سیستم رزین، رنگ قمرز طبیعی خوراکی برای مصرف انسانی استخراج و تولید شود. در ضمن، بهترین شرایط استخراج رنگ و مطالعه ریجیسی آن در شرایط مختلف مرود بررسی قرار گرفته است. همچنین، به مصرف قارچان انسان مصرف این رنگ در صنایع غذایی و پیشنهاد به صنایع برای تولید رنگ به صورت صنعتی فراوری چند محصول با استفاده از رنگ قمرز تولیدی انجام شده است.

5. Macorreticular 6. Aliphatic
روش استخراج سرد، پس از آنزیم‌پری نمونه‌ها، عملیات عصاره‌گیری انجام شد. اما در روش استخراج گرم، مقدارنی ابتدا توسط دستگاه از عصاره‌ها به صورت خلاصه‌ای ثبت شدند. درآمد و بالافصله به آب در حال جوش انقلاً پایافت. پس از گذشت حدود ۳۰ دقیقه که رنگ موجود باید گردید قرمز خارج شد، مخلوط خلاصه‌ای چند رنگ و آب به روی صفحه انتقال داده شد تا آب حاوی رنگ از تناقل چند گردید. پس از آن مرحله تنظیم pH و صاف کردن مطباق آنچه که در مورد استخراج سرد انجام شد، در مورد این عصاره نیز انجام گرفت.

عملیات بعدی به شرح زیر بر روی آن انجام شد:
1. جذب رنگ از عصاره چندنفر قرمز به منظور جذب زنگ عصاره توسط رنگ، عصاره چندنفر قرمز موجود در جفت چاکان‌ها یک لیتری، با استفاده از اختلاف سطح به سطح پهن وارد شد. در حوزه میلی‌لتر در دقیقه تنظیم گردید. عملیات جذب تا اشباع شدن استخراج در زنگ ادامه یافت.
2. استخراج چندنفر از سطح رنگ برای جداسازی و استخراج رنگ جذب شده از سطح رنگ، حلال در دو چاکان دیگر ریخته شد و با دیب ورودی زنگ میلی‌لتر در دقیقه عملیات شست‌شو در جهت عکس انجام گرفت.
3. تخلیه یا جداسازی حلال از محلول استخراج به کمک دستگاه تبخیر دور و تحت خلاء، حلال در دمای ۱۲۵ درجه سانتی‌گراد از محلول رنگ چاکان‌شده.
4. خشک کردن تصمیم‌گیری و تولید پودر رنگ به منظور تولید پودر رنگ خشک کردن محلول رنگی به دست آمده از دستگاه خشک کننده تصمیم‌گیری استفاده شد.
5. تعبیه ویژگی‌های رنگ لوله‌ای ویژگی‌های رنگ لوله‌ای، شامل خلاک‌سازی به روش خلاک‌سازی

در نهایت، عملیات استخراج تخلیه عصاره و تولید پودر رنگ انجام و تزیین رنگ در تولید جنس محصول به کار برده شد. عملیات فوق به شرح زیر گرفت:

سیستم رزینی مورد نظر شامل دو قسم چاکان‌ها بود: سیستم‌های یک و دو، یک سیستم رنگ و یک سیستم رنگ. تنظیم پودر، قیف‌های چاکان‌ها، که یکی برای فرضیدن عصاره چندنفر قرمز نشون برای فرضیدن عصاره چندنفر قرمز، سایر قیف‌های چاکان‌ها، چندنفر قرمز و دیگری برای فرضیدن حلال و شست‌شوی سیستم (دو لیتری) مورد استفاده قرار گرفت. با افزودن عصاره چندنفر جیر از سیستم نصب گردید. اختلاف ارتفاع باعث شد که بدن استفاده از چپ، انتقال محلول رنگ و حلال به داخل سیستم انجام شود. رنگ آمیخته در سیستم حلال داغ داده شد و رنگ رنگ به جهت عکس از پایین به بالا وارد سیستم تا رنگ در سیستم به بیانی آمیخته حجم یافته باشد. عملیات شست‌شوی در سیستم به طرف بالا، به طبقه‌بندی رنگ می‌باشد. اندازه‌گیری و در نتیجه به عبور پک‌های خیاط در حال در رنگ در طی عملیات بدیع کمک می‌کند. در عمل، شست‌شوی از پایین به بالا مرحله جریان آب به گونه‌ای تنظیم شد که اندازه حجم در سیستم حدود ۵ درصد باشد. در ضریم، با یک جریان چپ به رنگی از سیستم خارج گردید. در این سیستم، با یک جریان چپ به نوعی تعیین می‌شود که کاهش نرخ از سیستم خارج گردید. به شکل شیشه‌ای که از طبقه‌بندی چپ به پایین به بالا سیستم محوره از رنگ وارد می‌شود، تا سطح مایع بالایی رزین همواره در طول مرحله جذب، ثابت باشد. عصاره چندنفر از وارد آمده برای فرضیدن رنگ سیستم رنگی، به دو روش استخراج سرد و گرم می‌باشد. این روش‌ها، آماده‌سازی نمونه شامل پذیرش مرحله به ترتیب: انتخاب نمونه، آزمایش عصاره از نمونه، تنظیم pH و صاف کردن بود. پس از شست و شوی چندنفر مورد استخراج سرد و ته، خشک کردن و در نهایت توزیع آنها انجام گرفت. سپس، در

بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن طی فرایندهای غذایی

رنگ تولید شده طول زمان تغذیر آن کمک کرده و شرايط تغذیر آن را تسهیل مي كنند.
با تهیه طيف هاي جذب 3 عصره چغندر، رنگ توليد شده و پودر رنگ نشان داده که طول موج ماکزیموم جذب برای عصره چغندر داري و طول موج ماکزیموم جذب و برای بقيه داري یک طول موج ماکزیموم جذب به شرح زیر است:

\[\lambda_{\text{max}}(\text{عصره} \text{ چغندر}) = 378 \text{ nm} \]
\[\lambda_{\text{max}}(\text{رنگ توليد شده}) = 520 \text{ nm} \]
\[\lambda_{\text{max}}(\text{پودر}) = 530 \text{ nm} \]

در مورد عصره چغندر، طول موج ماکزیموم جذب 178 نانومتر مربوط به بنتانژین و طول موج ماکزیموم جذب 350 نانومتر مربوط به بنتانژین بود.
پس از آزمایش تعيبین خلوت نمونه با استفاده از كرومانتوگراف صفحه تازه يك پانيله باستفاده از بنتانژین و فاقد رنگ بنتانژین سمي باشي. در حالی که كرومانتوگراف صفحه تازه يك عصره چغندر قرمز، دقيقا و وجود در رنگبندی بنتانژین به تنشين را نشان داد. پنارباين برای در طول استخراج رنگ توسط سيستم رژيمي جذب تست اين مورد بررسی گردید. در طول اين ترسیم، به بهره ونی، آنار ميكنست بروي انرژي آماده شده و مورد بررسی گردید. برای انتخاب بهترین نمونه، از روش آماري سيگنال استثنای استفاده شد. به اين ترتيب كه در هزمان فقط یک نمونه به هر داير 3 داشت، با و ار در شرايط خيلی راحت و طبيعي نمونه مورد نظر زکاردي کرده.

نتایج و بحث
مقدار خاکستر و قند رنگ توليدی از استخراج قرمز و سرده، در مقایسه به مقدار خاکستر و قند و عصره چغندر قرمز، بسيار انگتي بود. وجود مقدار بسيار کم (کمتر از 0/02 درصد) در پودر رنگ توليد شده، نشان دهنده اين است که توسط سيستم جذب نشد، و پودر رنگ توليد شده از اين نظر از خلوت و پایداري خوراکي برخوردار است. پايتين بودن ميزان قند در پودر

1. Thin Layer Chromatography (TLC)
2. Single Stimulus
3. Panelist
4. Scanning
5. Willmes
6. Multiple 2 Columns
7. Multiple 4 Columns
روش سرد و گرم عصاره‌های گیاهی شد، و نتایج حاصل نشان داد که روش استخراج سرد از نظر بازده تولید رنگ مناسب‌تر است.

نتایج بررسی انرژی ثانیه‌ناموزی و زمان نگهداری بر پایداری رنگ تولید شده از استخراج گرم و سرد در زمان‌های مختلف و در طول موج ۴۲۵ نانومتر، مطلق جداول ۱ و ۲ و شکل‌های ۱ و ۲، نشان می‌دهد که رنگ تولیدی از هر دو روش در شرایط تازیکی و دمای چهار درجه سانتیگراد، از پایداری برخوردار است.

در مورد مقایسه اثر pH‌های مختلف بر پایداری رنگ تولید شده، شکل ۳ میان میانگین شدت جذب در pH‌های مختلف است و نشان می‌دهد که پایداری شدت جذب در محدوده pH‌های ۵/۵ تا ۷/۵ برابر با ۵/۵ بیان‌شده.

نتایج آزمون‌های حسی برای رنگ بستنی در جداول ۳ و ۴ نشان داده شده است.

{22 = 11 + 11 = ∑ \text{مجموع داورها}}

\[\sum X = 19 = 21 \]

\[\sum X^2 = 18 + 35 = 53 \]

\[n = 2 \]

\[\bar{X} = 19 \]

\[\sum X = 10 \]

\[\sum X^2 = 57 \]

\[\sum X^2 = 9/33 \]

\[\sum X^2 = v/33 \]
جدول ۱. اثر دما، تور و زمان نگهداری بر تولید رنگ تولیدی از استخراج گرم
مقدار جذب نمونه رنگ تولیدی

<table>
<thead>
<tr>
<th>نور، حراجت محيط</th>
<th>تاریکی، حراجت محيط</th>
<th>درجه سانتیگراد</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/137</td>
<td>0/137</td>
<td>0/265</td>
<td>1</td>
</tr>
<tr>
<td>0/134</td>
<td>0/134</td>
<td>0/275</td>
<td>4</td>
</tr>
<tr>
<td>0/130</td>
<td>0/130</td>
<td>0/279</td>
<td>7</td>
</tr>
<tr>
<td>0/127</td>
<td>0/127</td>
<td>0/285</td>
<td>10</td>
</tr>
<tr>
<td>0/124</td>
<td>0/124</td>
<td>0/292</td>
<td>13</td>
</tr>
<tr>
<td>0/121</td>
<td>0/121</td>
<td>0/297</td>
<td>16</td>
</tr>
<tr>
<td>0/118</td>
<td>0/118</td>
<td>0/302</td>
<td>19</td>
</tr>
<tr>
<td>0/115</td>
<td>0/115</td>
<td>0/307</td>
<td>22</td>
</tr>
<tr>
<td>0/113</td>
<td>0/113</td>
<td>0/313</td>
<td>25</td>
</tr>
</tbody>
</table>

جدول ۲. اثر دما، تور و زمان نگهداری بر تولید رنگ تولیدی از استخراج گرم
مقدار جذب نمونه رنگ تولیدی

<table>
<thead>
<tr>
<th>نور، حراجت محيط</th>
<th>تاریکی، حراجت محيط</th>
<th>درجه سانتیگراد</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/136</td>
<td>0/136</td>
<td>0/230</td>
<td>1</td>
</tr>
<tr>
<td>0/133</td>
<td>0/133</td>
<td>0/235</td>
<td>4</td>
</tr>
<tr>
<td>0/130</td>
<td>0/130</td>
<td>0/239</td>
<td>7</td>
</tr>
<tr>
<td>0/127</td>
<td>0/127</td>
<td>0/240</td>
<td>10</td>
</tr>
<tr>
<td>0/124</td>
<td>0/124</td>
<td>0/244</td>
<td>13</td>
</tr>
<tr>
<td>0/121</td>
<td>0/121</td>
<td>0/247</td>
<td>16</td>
</tr>
<tr>
<td>0/118</td>
<td>0/118</td>
<td>0/254</td>
<td>19</td>
</tr>
<tr>
<td>0/115</td>
<td>0/115</td>
<td>0/252</td>
<td>22</td>
</tr>
<tr>
<td>0/112</td>
<td>0/112</td>
<td>0/257</td>
<td>25</td>
</tr>
</tbody>
</table>

که سهم رنگ در هزینه‌های تولیدی محصولاتی مثل استیی و شریک‌های زه‌های محاسبات انجام شده کمتر از یک درصد می‌باشد. بنابراین، تولید و شرک‌های این رنگ کمال‌الاقتصادی خواهد بود.

تمدین بازده و هزینه تولید رنگ از چنگفر قرمز
با مصرف ۱۴۵۵/۲/۸ گرم چنگفر قرمز، حدود ۱/۲/۳ گرم پودر رنگ تولید گردید. به این ترتیب، از هر کیلو چنگفر قرمز می‌توان حدود ۲/۷ گرم پودر رنگ تولید نمود. شدت رنگ حاصل از پودر رنگ تولید شده برای استفاده ۱۰۰/۱/۱۰ و ۱/۱/۱۱ واحد جعبه در طول موج ۵۴۰ نانومتر به ازای یک گرم پودر درصد میلی لیتر محلول.
شکل 1. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج سرد)

شکل 2. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج گرم)
جدول ۳ بیست و دو پاسخ در مورد قابلیت تیپول دو رنگ یستنی

<table>
<thead>
<tr>
<th>Hedonic Scale</th>
<th>ارزش عددی (N.V.)</th>
<th>نموده با رنگ طبیعی (N)</th>
<th>نموده با رنگ مصنوعی (S)</th>
<th>SxN.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>خیلی دوست دارم</td>
<td>۲</td>
<td>۸</td>
<td>۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>دوست دارم</td>
<td>۱</td>
<td>۴</td>
<td>۴</td>
<td>۶۸</td>
</tr>
<tr>
<td>به تفاوت</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۶۸</td>
</tr>
<tr>
<td>دوست ندارم</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷۷</td>
</tr>
<tr>
<td>اصلاً دوست ندارم</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۷۷</td>
</tr>
<tr>
<td>جمع</td>
<td>11</td>
<td>55</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

جدول ۴ آنالیز واریانس ۲۲ داور برای دو نموده یستنی

<table>
<thead>
<tr>
<th>سطح واریانس</th>
<th>درجه آزادی</th>
<th>واریانس</th>
<th>واریانس میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>۲۲</td>
<td>۹/۳۲</td>
<td>۲/۳۰</td>
</tr>
<tr>
<td>فرمول</td>
<td>۱</td>
<td>۲/۳۰</td>
<td></td>
</tr>
<tr>
<td>باقی مانده</td>
<td>۲۱</td>
<td>۷/۶۱</td>
<td>۷/۶۱</td>
</tr>
</tbody>
</table>

شکل ۳ تأثیر pH بر شدت رنگ یستنی
بزرگ‌پزشکی رنگ تولیدی
رنگ چگنگر قرمز تولیدی مانند سایر رنگ‌های طبیعی و
مصنوعی از نظر ایمنی غذایی ۱۹ قابل بررسی می‌باشد. استفاده از
رنگ چگنگر قرمز از دهه سال پیش به عنوان یک ماده افزودنی
بزرگ‌پزشکی رنگ تولیدی

منابع مورد استفاده

1. استاداندارد شماره ۱۳۷۷. رنگ‌های مجاز خوراکی، مؤسسه استاندارد و تحقیقات صنعتی ایران.
2. پروانه، و. ۱۳۷۱. کنترل کیفی و آزمایش‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
3. چادی، ز. ۱۳۷۲. مواد غذایی متناوب در تجزیه مواد غذایی. انتشارات دانشگاه شیراز.
4. صفحه، ص. ۱۳۷۲. بررسی رنگ‌های قرمز مصنوعی خوراکی. مجموعه مقالات هفتمین کنگره ملی صنایع غذایی ایران، دانشگاه شهید چمران، ماهی‌پردازی، تهران، ص ۵۷۹-۶۰۲.
5. ناصری، م. ت و. ز. ۱۳۷۲. تولید بذر سیب زمینی (ترجمه). انتشارات جهاد دانشگاهی مشهد.

1. Food Safety