بررسی تغییر کمی و کیفی اسیدهای آلی طی فرآیند کنسرو زیتون، به وسیله روش کرومتوگرافی با کارابای بالا

صد صبوری هلستانی، شهردار دخانی، غلامحسین کیارستی، و رضا شکرآنی:

چکیده
چهار رقم زیتون کالاماتا، ماری، زرد و زعفرانی از شهرستان رودبار تهیه شدند. این ارقام با دو روش تخمیر طبیعی و تخییر هدایت شده با Lactobacillus plantarum در دمای 35 درجه سانتی‌گراد در حدود 100 روز فراهم شدند. و خصوصیات فیزیک‌شیمیایی محصول اندازه‌گیری شد. اندازه‌گیری اسیدهای آلی با روش HPLC انجام گرفت.

پیشترین اسیدهای آلی بر حسب اسیدالکیکی (8%1/2%) (حجم/وزن) در روش فیزیکی لوله شده. به طور متوسط تولید اسیدهای کل در تخییر طبیعی و در تخییر هدایت شده به ترتیب در حدود 8/001/2 و 0001/2 و 005/9 درصد از مقدار اصلی اسیدهای آلی وجود داشت. به وسیله روش کرومتوگرافی مانعی با کارابای بالا، نشان داد که در طی فرآیند تخییر تغییر اسیدهای آلی موردی مشاهده نموده و مقادیر ویژه اسیدهای آلی کمک می‌کرد. پیشترین اسیدالکیکی در رقم زرد (1/2%) تولید شده است. نوع تخییر در تولید اسیدالکیکی تفاوتی ایجاد نکرد. پیشترین اسیدهای آلی در رقم زرد و ماری تولید شده و بیشتر در تخییر هدایت شده اسیدهای آلی تولید گردیدند. دو اسیدهای آلی و سیریکی طی 50 روز اولیه فراهم تبدیل شدند.

تغییر اسیدتابیک در تخییر هدایت شده زودتر انجام گرفت ولی تغییر اسید مالیک به نوع تخییر بستگی نداشت.

واژه‌های کلیدی: زیتون، اسیدهای آلی، تخییر طبیعی، تخییر اسیدتابی، HPLC

مقدمه
زیتون یکی از موادهای مناطق نیمه‌گرمسیری است که با داشتن 20 درصد (حدود 425 هزار تن) این مقدار زیتون کنسروی تشکیل می‌دهد.

1. کارشناسی ارشد صنایع غذایی موسمه تحکیقات ترهی کشور، رشت
2. دانشگاه صنعتی اصفهان، دانشگاه کشاورزی، دانشگاه شیراز
3. استاندار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
برای تولید کسره زینون، روش‌های مختلفی وجود دارد، که طی این فرایندها تغییر عمده و مهمی در ترکیب محصول به وجود می‌آید. تغییرات آن در اتباعهای آلیم شیمیایی، تأثیر زیادی در کیفیت محصول، و زیر روند فرآیند دارد. (۱۰) میوه زینون شامل میوه پوست، گوشته و هسته پوست به ترتیب ۷/۱۵، ۳۰/۱۷، ۶۸ و ۶۷ درصد برکه میوه در ایران بر حسب میزان وجود از زینون سیاه ۴۵ درصد، زینون زرد ۲۷ درصد، زینون سبز ۱۲ درصد، زینون گرد ۶ درصد، زینون قهوه‌ای ۵/۱۵ درصد و زینون فیلمی ۱/۱۵ درصد. از میان اینها، ارزیابی سیاه و سبز نقطه برای روی زینونکننده، ارزیابی مالی و فیلمی برای کننده سیاه و ارزیابی مالی و فیلمی برای کننده سبز، عمده‌ترین عوامل تاخیر بهره‌برداری نیستند.

کننده در طول دوره رسیدن میوه زینون به تیم کریستال ذرات میوه می‌کند. در این فرآیند شروع‌دهنده میوه میوه مورد بررسی می‌گردد. تغییرات در ترکیب شیمیایی آن می‌باشد، و زیر روند فرآیند دارد. (۱۰) بر روی زینون رقم گرفته می‌گردد که اجزای ترکیبی میوه به ترتیب زیر تغییری می‌کند: مقدار زینون خارج به طور پوسته افزایش پیدا می‌کند; مقدار قنده احتمال کاهش بین آن در ابتدا، مقدار سیگنال کامپ کاهش بپیدا می‌کند: مقدار قطره خارج به طور در ابتدا، مقدار سیگنال کامپ کاهش بپیدا می‌کند: مقدار قطره خارج به طور در ابتدا، مقدار سیگنال کامپ کاهش بپیدا می‌کند: مقدار قطره خارج به طور

کند. در طول دوره رسیدن میوه زینون، که در نیم‌کریستال ذرات میوه می‌کند، زینون به شکل سه‌بعدی می‌گردد. (۱۰) در اینجا، ارزیابی سیاه و سبز نقطه برای روی زینونکننده، ارزیابی مالی و فیلمی برای کننده سیاه و ارزیابی مالی و فیلمی برای کننده سبز، عمده‌ترین عوامل تاخیر بهره‌برداری نیستند.
بررسی تغییرات کمی و کیفی استعدادهای آلی طی فراگند کنسرو زیتون

کلامانه: این رقم یک زیتون اصلاح شده است، میوهای آن درشت و گوشتی است و کیسه‌های زیتونی به کار گرفته می‌شود.

مکانی: این رقم از تقویم در ایران کشت می‌شود و ارتفاع اصلاح شده آن مشابه همه آن است و میوهای آن کم گردن و چسبندگی و کم سبزی است. این رقم زردسی بوده و جزو اولین میوه‌های است که وارد بازار می‌شود (2).

درصد نمک طعام مصرفی بر جیلوگیری از ازدحام گذشته‌ها از چپوگی‌های زیتون مواجهه می‌کنند.

طقی تحقیقات انجام شده (20 میلی‌گرم به که پهلوی روش برای تولید زیتون تخریب شده و ویژگی انزیم‌ها بعد از PH به این شکست ورودی اولیه در آب لوله‌کشی است که PH آن به وسیله استیک به 7-2/2 رسیده به. سپس بعد از 7-5 روز با ورود از اکتیواسیون پلاتناتوم تلقیح گردیده، و در خانه به ان نمک اضافه گردید، به طوری که غلظت نمک محلول در هر روز یک درصد افزایش می‌یابد. تا این که غلظت آن به 5/5 درصد پردد. این غلظت تا آخر تخمیر باقی می‌ماند. تخمیر دهنده می‌شود. در پس تخمیر به طور غیرفیزیکی درآمده، مقدار نمک به هشتم درصد افزایش داده می‌شود یا از فاصله شدن محسوب در اینجا زیتون گردید.

استفاده از استفاده‌های خاص باکتری‌های اکتیواسیون بر توزیع گروه در سال 1972 پیشنهاد شد، سپس در سال 1976 وسیله ویکی اصلاحات در آن انجام گرفت (به تقلیل از 6/67) در حال حاضر این روش به یکی از روش‌های تهیه زیتون تخریب شده به طور هدایت شده می‌باشد. در پس تخمیری، فنی شاهد اینکه توزیع میکروگانه‌های مصرف شده، تبدیل به اسید می‌گردد (17).

مواد و روش‌ها

زیتون‌های مورد استفاده در این تحقیق عبارت بودند از:

1. Lactobacillus plantarum
2. High Performance Liquid Chromatography

105
به کار برده شد. زیتونها تلخی زدائی شده، کنترل محلول pH در برگیرنده زیتونها و نیز pHگذشت زیتونها انجام گرفت. این آزمایش آب در محدوده pH آنها در دو میلی‌متر کمک به کهربیامی آزمایشی با آن تلقی شدند. در ادامه عمل، محلول آب نمک استریل هست درصد تهیه و پس از افزودن محصولات ارلن کشت ماده به 100 لیتر محلول مذکور، آب نمک تلقی شده اصلی به دست آمد. سپس شیمی‌های حاوی زیتون با این محلول پر شده، پس از غیرقابل تنظیم، عملیات تقلیل این چیز برای نوار شنو و نمای اکت و مایوساپالسیا به ترتیب آماده و این شیمی‌ها نیز برای انجام عمل تخمیر به اندازه‌های 5/200 درصد درصد شدند. پس از تخمیر با اضافه مقدار برابر ارزوآمایشی که با میوه نمانه دربرداری و انجام آزمایشی‌ها ازم، بر روی این نمونه‌ها دنیال و کنترل گردید.

اندازه‌گیری شیده‌سازی کل محلول در برگیرنده زیتون
برای این آزمایش اساسی 100 میلی لیتر از محلول در برگیرنده با محلول 1/30 نمرال سود سوزاران استفاده شد. در حضور مصرف بروموتیوم بلو اورزیا، pH مشخص شد.

HPLC

اندازه‌گیری اسیدهای آلی زیتون با دستگاه HPLC

اندازه‌گیری اسیدهای آلی در صندلی مرحله انجام شد: آماده سازی در محلول pH 10 درصد و درصد آلی، pH 110 درصد درصد و درصد روند اسید سولفوریک با 20 میکرون عبور pH 2/10. یک آب از صنایع های تحت خلا 2/10 میکرون عبور داده شد و آن در محلول هواگیری به مدت 20 دقیقه انجام گرفت.

آماده‌سازی ستوان‌های تجویز از تیون و برای نمونه برای جلوگیری از سبب عمل تلخی زدائی در سه مرحله انجام شد. در مرحله اول، زیتونها در دو محلول سود سوزار 2/3 درصد و وزن به وزن، به مدت دو ساعت گردنده شدند. پس از آن در محلول سود سوزار بیرون آورده شدند. یک با یک آب شست شوگرینان، و تا زود بعد از (22 ساعت) در آب معمولی تغییراتی شدند. و روز بعد زیتونها در محلول سود سوزار یک درصد وزن به وزن به مدت 8 ساعت گردنده شدند. و سپس از یک آبکشی با آب، تا روز بعد در محل سود نگهداری شدند. در روز زیتونها در سود سوزار 1/8 درصد وزن به وزن به مدت شش ساعت تغییراتی شدند. به مدت زمان منفی مدت تلخی زدائی کنترلی، سر در مرحله سوم، نفوذ آن به داخل زیتون کاملاً شده سود سوزار به هسته زیتون رسیده بود. در روز چهارم توسط شست زیتونها با آب معمولی، قلیایی میزان در آنها رفع گردید. برای این مقدار، نفر کلی در زیتون شده دادند. پس از وجود سود سوزار در زیتونها به وسیله معرف شیمی‌ای فلت‌نماتین منفی شد. معمولاً هنگام به چهار بار، شست زیتون با آب کافی یک چهارم مرحله یافتن برای نمای روش‌ها یکسان بود. از این به بعد برای تولید کنسانر به دو روش زیر اقدام گردید: در ابتدا روش شیمی‌ای ساده و تخمیر طبیعی (6). در این روش، پس از تهیه شده هادی آزمایشی به دست آمد. سپس با محلول هست درصد نمک در شیمی‌های به طرفه 300 گرم رسخه شده پس از غیرقابل تنظیم نمای شرایط خاص برای روش‌های مشابه به دست آمد. سپس با محلول pH 2/10 از تلخی دادن، زیتون‌ها به مدت یک هفته در سخن‌های پی‌ای اولینا برای کار برده شد. پس از تهیه زدائی، زیتون‌ها را به مدت زمانی در محلول pH 2/10 شست کرده‌های به دست آمد. سپس با محلول درصد اسید آمید، تغییراتی که دردید (11). سپس با محلول تخمیر به اندازه‌های 10 درصد درصد درصد و درصد از روند اسید سولفوریک با 20 میکرون عبور pH 2/10. یک آب از صنایع های تحت خلا 2/10 میکرون عبور داده شد و آن در محلول هواگیری به مدت 20 دقیقه انجام گرفت.

پس از تهیه کشتن زیتون با روش تخمیر هادیت شده (6) و (20): در این روش نیز چهار روش زیتون‌کالامان ماری، زرد و فیلمی
تغییر اسیدهای آنتی‌کسیکی

1. Attenuation
برسد، شرایط بیانی گذاری زیتون مناسب است (9). اسیدهای کلی با زمان کاهش می‌یابد و در پایان تخمیر به حدی می‌رسد که بیای گذاری یکند مناسب باشد (6).

اطلاعات مربوط به اسیدهای کل ارقام زیتون در فاز زمان تخمیر به دست آمده طبق جدول 1، تولید اسیدهای کل در هر رقم زیتون با نمونه تخمیر شده خود اختلاف معنی‌داری صورت نمی‌گیرد. این نتیجه نشان می‌دهد که تعداد اسیدهای کل تولید شده به ترتیب در کالیاستاتیک بیان می‌شود، و سپس به کالیاستاتیک تخمیر زده شده است. این دو از نظر تولید اسیدهای کل در دو گروه متوافقت قرار دارد. به دنبال آنها زیتونهای ارقام بی‌نمک و تخمیری در سطوح پایین تری قرار گرفته‌اند. بهترین تولید اسیدهای کل در دو رقم فیشیمی بی‌نمک و زرد تخمیری یکسان بوده و آنها نیز در یک گروه قرار می‌گیرند. بیشترین مقدار تولید اسیدهای کل در فیشیمی تخمیری دیده می‌گردد. تولید اسیدهای کل به ترتیب در کالیاستاتیک بی‌نمک و تخمیری یکسان بوده است. در روز 55 تخمیر بی‌نمک 85/50 درصد رسیده، در حالی که در تخمیر هدایت شده (اجباری)، در روز 20 روز یا بیش از فاصله زمانی استاندارد محسوب می‌شود، در تخمیر طبیعی از ابتدای فرآیند تولید اسیدهای کل گسترش قابل توجهی دارد. نتایج جدول 2 نشان می‌دهد که در سطح یک دارای کمی اسید لاکتیک دخالت غیر متناسب دارد. با توجه به دیده‌ها، بیان می‌شود به جدول 1، در میان ارقام زیتون، بیشترین اسید لاکتیک در رقم 35 تولید شده است. در رده دو رقم مجسمه و کالیاستاتیک قرار دارند، و چکیده مقدار تولید اسید لاکتیک در رقم ماری مشابه گردید.

همانطور که بیان شده تخمیر طبیعی و هدایت شده (اجباری) از نظر تولید اسید مشابه است، این تفاوت معنی‌داری

108
جدول 1. درصد بایضات اسیدهای آلی در نمونه زیتون به شده‌ای دستگاه HPLC

<table>
<thead>
<tr>
<th>درصد بایضات</th>
<th>میلی‌گرم اسید اضافه در نمونه</th>
<th>میلی‌گرم اسید موجود</th>
<th>اندازه‌گیری شده</th>
<th>شده به نمونه</th>
<th>اسمد آلی</th>
<th>اسمد لاگنک</th>
<th>اسمد استیک</th>
<th>اسمد سیریک</th>
<th>اسمد مالیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>99/9</td>
<td>235</td>
<td>135/1</td>
<td>100</td>
<td>اسید لاگنک</td>
<td>اسمد استیک</td>
<td>اسمد سیریک</td>
<td>اسمد مالیک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/5</td>
<td>188</td>
<td>88/5</td>
<td>100</td>
<td>اسمد استیک</td>
<td>اسمد لاگنک</td>
<td>اسمد سیریک</td>
<td>اسمد مالیک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85/0</td>
<td>148/5</td>
<td>83/5</td>
<td>100</td>
<td>اسمد استیک</td>
<td>اسمد لاگنک</td>
<td>اسمد سیریک</td>
<td>اسمد مالیک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/5</td>
<td>85/16</td>
<td>42/2</td>
<td>50</td>
<td>اسمد لاگنک</td>
<td>اسمد استیک</td>
<td>اسمد سیریک</td>
<td>اسمد مالیک</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. تجزیه و تحلیل اثر سطوح مختلف رقم، تلقیح و زمان بر میزان اسیدهای آلی موجود در کل میوه زیتون. در میوی زیتون، طی 100 روز تخمیر در دمای 25 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>F عدد</th>
<th>میانگین مربعات</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>متان تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>372/36</td>
<td>29/71</td>
<td>153/3</td>
<td>52</td>
<td>یازدهم</td>
</tr>
<tr>
<td>138/87</td>
<td>61/8</td>
<td>33/24</td>
<td>3</td>
<td>رقم</td>
</tr>
<tr>
<td>59/09</td>
<td>3/72</td>
<td>4/22</td>
<td>1</td>
<td>تلقیح</td>
</tr>
<tr>
<td>2035/42</td>
<td>142/46</td>
<td>146/16</td>
<td>9</td>
<td>زمان</td>
</tr>
<tr>
<td></td>
<td>8/54</td>
<td>159</td>
<td></td>
<td>خطای آزمایشی</td>
</tr>
</tbody>
</table>

جدول 3. تجربه واریانس اثر سطوح مختلف رقم، تلقیح و زمان بر میزان اسیدلاکتیک موجود در کل میوی زیتون. طی 100 روز تخمیر در دمای 25 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>F عدد</th>
<th>میانگین مربعات</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>متان تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/11</td>
<td>29/09</td>
<td>151/732</td>
<td>52</td>
<td>یازدهم</td>
</tr>
<tr>
<td>31/45</td>
<td>25/566</td>
<td>976/399</td>
<td>3</td>
<td>رقم</td>
</tr>
<tr>
<td>27/77</td>
<td>25/372</td>
<td>25/372</td>
<td>1</td>
<td>تلقیح</td>
</tr>
<tr>
<td>101/88</td>
<td>105/212</td>
<td>948/610/5</td>
<td>9</td>
<td>زمان</td>
</tr>
<tr>
<td></td>
<td>110/508</td>
<td>159</td>
<td></td>
<td>خطای آزمایشی</td>
</tr>
</tbody>
</table>

توجه: مSEN در سطح یک درصد

توجه: مSEN در سطح یک درصد
شکل 1. منحنی‌های استاندارد استیلدکتسیک (-----)، استیک (---)، مالیک (----) و ستریک (-----) تخمیری (580 میلی گرم در 100 گرم گوشت زیتون).

تخمیری (580 میلی گرم در 100 گرم گوشت زیتون) در شکلن‌های 5 و 6 که به ترتیب نشان دهنده تغییرات کمی تولید اسید لاکتیک در زیتون‌های تخمیری طبیعی (580-680 میلی گرم در 100 گرم گوشت زیتون) و تخمیری هدایت شده یا اجباری (580-1800 میلی گرم در 100 گرم گوشت زیتون) می‌باشدند، رقم شاخص در هر دو گروه، زیتون زرد است که نسبت به سایر گونه‌ها تولید اسید بیشتری داشته است. طبق پژوهش‌های قبلی معلوم می‌شود است که اسید اسیدیت تولید شده در حین تخمیر، اسید لاکتیک به‌روش 6 و 7)، و مقدار آن در مرحله رشد به طور لگاریتمی زیاد شده و در طول مرحله ثابت رشد به بیشترین مقدار خود می‌رسد.

تغییر اسید استیک؛ اگرچه مقادیر اسید استیک نسبت به اسید لاکتیک در سطح خیابی پایین تر است، ولی یک روند هماهنگ را در طول زمان تخمیری طریکه اندازه‌گیری می‌کند. در صورتی که تاخیر اسید استیک در روزهای 250-300 تخمیر به آنجا خود رسد است، اگر این مقادیر بین این جدول و در صورت این مقادیر بین این جدول و در صورت این تأخیر اسید استیک، یکی از اسید‌های غلیق می‌تواند هم این جدول 2 9 دهانه که در سطح یک درصد خطای مناسبی به یک مقادیر اسید استیک برای رقم فیزیکی تخمیری کردن تغییر و کالریات تخمیری بیشترین تغییر را

شکل 2. منحنی استیک آهی در زیتون کالریات تخمیری تهیه شده با سطح ایزوکراتیک سرعت تغییر ناز را در متحک 7/2 میلی لیتر در دلتای سنتی‌گز فراگده با شناسایی استیکترنری از نظر تخمیری، در تخمیر‌های هدایت شده (اجباری) استیک بیشتری (120-230 میلی گرم در 100 گرم گوشت زیتون) نسبت به تخمیر طبیعی (100-150 میلی گرم در 100 گرم گوشت زیتون) تولید گردیده است. شکل 1، 7 و 8 اختلاف تولید استیک را در نوع تخمیر طبیعی و هدایت شده نشان می‌دهند. طبق انتقال فعال در فرآیند ذوب، استیک تخفیف در هر دو نوع تخمیر با سرعت بیشتر، مقدار زیادتری است. استیک

ترولید که است. طبق مطالعات مانتانو و همکاران (16 و 20)، مولول شده که بعد از فرآیند طبیعی و قبل از سطح کوچک، مقادیر استیک بیشتری به صورت قابل توجهی زیاد می‌شود. در حال آن را تبدیل قبلاً به استیل‌های بیشتری، براثر فاقدان مقادیر استیل (کوک دان) است. در این تحقیق مقدار استیک در روزهای 250-300 تخمیر به آنجا خود رسد است.
پرسی تغییر کمی و کیفی اسیدهای آلی طی نشانه گزار

جدول ۳. تجزیه واریانس اثر سطوح مختلف رنگ تلفیق و زمان بر میزان اسیدهای موجود در میوه زیتون، طی ۱۰۰ روز تخمر در دما ۲۵ درجه سانتی‌گراد

| منابع تغییرات | درجه آزادی | مجموع مربعات | میانگین مربعات | عدد F | عدد F
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>۲</td>
<td>۰۰۹۶/۳</td>
<td>۹۶۳/۵</td>
<td>۲۲/۲۸***</td>
<td>۲۲/۲۸***</td>
</tr>
<tr>
<td>رقم</td>
<td>۳</td>
<td>۱۱۹۲/۵</td>
<td>۳۹۸/۱</td>
<td>۱۳۶/۲۸***</td>
<td>۱۳۶/۲۸***</td>
</tr>
<tr>
<td>تلفیق</td>
<td>۳</td>
<td>۸۵۰۰/۶</td>
<td>۸۵۰۰/۶</td>
<td>۲۹۵/۸۲***</td>
<td>۲۹۵/۸۲***</td>
</tr>
<tr>
<td>زمان</td>
<td>۵</td>
<td>۹۴۸۱/۵</td>
<td>۱۹۹۲۵/۵</td>
<td>۱۰۱/۶۸***</td>
<td>۱۰۱/۶۸***</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>۱۵۹</td>
<td>۱۱۰۵۰۸/۵</td>
<td>۶۳۴/۵</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول ۴. تجزیه واریانس اثر سطوح مختلف رنگ تلفیق و زمان بر میزان اسیدهای موجود در میوه زیتون، طی ۱۰۰ روز تخمر در دما ۲۵ درجه سانتی‌گراد

| منابع تغییرات | درجه آزادی | مجموع مربعات | میانگین مربعات | عدد F | عدد F
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>۲</td>
<td>۱۹۲۰/۷</td>
<td>۱۹۲۰/۷</td>
<td>۲۵/۰۱***</td>
<td>۲۵/۰۱***</td>
</tr>
<tr>
<td>رقم</td>
<td>۲</td>
<td>۸۰۸/۷</td>
<td>۴۰۴/۳</td>
<td>۴۱/۷۷***</td>
<td>۴۱/۷۷***</td>
</tr>
<tr>
<td>تلفیق</td>
<td>۳</td>
<td>۵۸۵/۵</td>
<td>۵۸۵/۵</td>
<td>۵۱/۷۷***</td>
<td>۵۱/۷۷***</td>
</tr>
<tr>
<td>زمان</td>
<td>۴</td>
<td>۱۴۹۱۳/۵</td>
<td>۱۴۹۱۳/۵</td>
<td>۱۰۳/۷۴***</td>
<td>۱۰۳/۷۴***</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>۱۵۹</td>
<td>۱۱۰۵۰۸/۵</td>
<td>۱۰۷/۵</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل ۳. تغییر اسیدهای کل طی تخمر طبیعی (علامه مطابق شکل ۱)

شکل ۴. تغییر اسیدهای کل طی تخمر اجباری (علامه مطابق شکل ۱)
شکل ۸. تغییر اسیدیتریک طی تخمیر اجباری

شکل ۵. تغییر اسیدلاکتیک طی تخمیر طبیعی

شکل ۹. تغییر اسیدیتریک طی تخمیر طبیعی

شکل ۶. تغییر اسیدلاکتیک طی تخمیر اجباری

شکل ۱۰. تغییر اسیدیتریک طی تخمیر اجباری

(علامت منحنی ها مطابق شکل ۱)
بررسی تغییر کمی و کیفی اسیدهای آلی در فرآیند کنرو زیتون

داشتند. از نظر مقایسه ارقام زیتون، با توجه به نتایج جدول ۷، بیشترین تغییرات را ارقام زرد و کالامانیا و در گروه بعد رکم ماری و مسیب رقم داشتند.

از نظر تغییرات و نوع تخمر، تخمر های داده شده (اجباری) نسبت به تخمیر طبیعی تغییرات بیشتر و شدیدتری را در اسید سیتریک زیتون‌ها به وجود آورده است. شکل‌های ۹ و ۱۰ به ترتیب تغییرات کمی اسید سیتریک را در ارقام زیتون در دوران تخمر طبیعی و هدایت شده (اجباری) نشان می‌دهند و حاصل تغییرات اسید سیتریک تخمر طبیعی محاسبه‌گر از تخمر هدایت شده (اجباری) بوده، در نهایت، سطح اسید سیتریک ارقام زیتون تخمر طبیعی هم به یک حد پایین آمده است (۵۵)، می‌گردد. تخمر ۱۰۰ رکم گوش گرده به سطح اسید سیتریک ۵۰۰ میلی گرم در ۱۵۰ گرم غشت زیتون، در حالی که در تخمر هدایت شده (اجباری)، آخرین سطح اسید سیتریک ۸۰ میلی گرم در ۱۰۰ گرم غشت زیتون (در ارقام مختلف با هم متفاوت است. طبق پژوهش مکتبرتی و همکارانش (۱۹)) اسیدهای غلیظ زیتون اسیدممالیک و اسید سیتریک تشخیص داده شده است، که به صورت ۱۰۰ درصد در طول تخمر از بین رفته‌اند. اما اسید مالیک خیلی سریعتر ناپید شده که این اسید به وسیله آنزیم‌ها و مالوکاتن به استبدال کرده و دیگر کسی در زنجیره تجزیه رکم دارد (۲۱).

در نتیجه در ۹۰ اسید شناسی، اسید سیتریک بر بیشترین بررسی شده است. تغییر اسیدممالیک و کربوهیدرات در دوره تخمر، از زرگر قابل مشاهده است. این تغییرات در دوره تخمر به صورت ۴/۷ درصد وزن به حجم بوده است (۱۳) و (۱۹).
جدول 6. تجزیه و اریب‌انس اثر سطوح مختلف رنگ، تلیف و زمان بر میزان اسیدمایلیک موجود در میوه زیتون، طی 100 روز تخمیر

<table>
<thead>
<tr>
<th>F عدد</th>
<th>میانگین مربوطات</th>
<th>مجموع مربوطات</th>
<th>درجه آزادی</th>
<th>درصد تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>77/33**</td>
<td>1643/38/4</td>
<td>917-198/9</td>
<td>52</td>
<td>تیمار</td>
</tr>
<tr>
<td>59/17**</td>
<td>1243/3/5</td>
<td>2047/0/5</td>
<td>2</td>
<td>رقم</td>
</tr>
<tr>
<td>73/31**</td>
<td>938/4/6</td>
<td>938/4/6</td>
<td>2</td>
<td>تلیف</td>
</tr>
<tr>
<td>31/14**</td>
<td>780/65/3</td>
<td>780/65/3</td>
<td>2</td>
<td>زمان</td>
</tr>
<tr>
<td>33/32**</td>
<td>228/11/2</td>
<td>228/11/2</td>
<td>3</td>
<td>خطای آزمایشی</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح 0.05 درصد

جدول 7. مقایسه میانگین تغییرات استدمایلیک آنار ارقام مختلف زیتون به وسیله آزمون درنک در سطح 0.05 درصد

<table>
<thead>
<tr>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسیدستریک</td>
<td>اسیدمایلیک</td>
<td>اسیدکل</td>
<td>اسید لاکتیک</td>
</tr>
<tr>
<td>89/82BA</td>
<td>64/4/6A</td>
<td>37/4/6DC</td>
<td>50/0/6A</td>
</tr>
<tr>
<td>59/1D</td>
<td>42/8/6B</td>
<td>42/8/6DC</td>
<td>42/8/6B</td>
</tr>
<tr>
<td>90/82BA</td>
<td>46/4/6C</td>
<td>36/8/6D</td>
<td>46/4/6CB</td>
</tr>
<tr>
<td>33/58C</td>
<td>12/3/6A</td>
<td>12/3/6D</td>
<td>12/3/6A</td>
</tr>
<tr>
<td>80/85C</td>
<td>91/6/6D</td>
<td>91/6/6D</td>
<td>91/6/6D</td>
</tr>
<tr>
<td>88/88D</td>
<td>61/6/6B</td>
<td>61/6/6B</td>
<td>61/6/6B</td>
</tr>
<tr>
<td>88/88D</td>
<td>53/4/6A</td>
<td>53/4/6A</td>
<td>53/4/6A</td>
</tr>
<tr>
<td>85/11B</td>
<td>43/8/6B</td>
<td>43/8/6B</td>
<td>43/8/6B</td>
</tr>
<tr>
<td>98/01A</td>
<td>12/9/6B</td>
<td>12/9/6B</td>
<td>12/9/6B</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه دارای اختلاف معنی‌داری می‌باشند.

شکل 12. تغییر اسیدمایلیک طی تخمیر اجباری

شکل 11. تغییرات اسیدمایلیک طی تخمیر طبیعی (علامت‌های مربوط به مقادیر شکل 1)
بررسی تغییر کمی و کیفی اسیدهای آلی طی فرازند کنسرو زیتون

سیاستهای

یکی از هزینه‌های انجام این تحقیق از طرف سازمان تحقیقات، آموخته و تربیت کشاورزی و بخش دیگر توسط دانشگاه کشاورزی دانشگاه صنعتی اصفهان تأمین گردیده است که بدين

متابع مورد استفاده

1. منبع، ج، 1273. چرا زیتون؟ مجله زیتون، 19: 14-17.
2. سیستم‌ناهید. 1378. بررسی و مقایسه خواص کیفی ارگان زیتون به منظور تعیین ارگان مناسب جهت تولید کنسرو زیتون. پژوهش مقالات اولین گردهم آمیزی سراسری پرسی مسائل زیتون در گردا، وزارت کشاورزی، ص325-329.
4. طبیعت‌بی‌م، 1377. زیتون و روغن آن. صد و مطالعات توسعه کشت زیتون، ص 259.
