تخمين ظرفیت زراعی و نقطه پژمردگی دایم از روی برخی خصوصیات فیزیکی و شیمیایی خاک

فرشید نوربخش و مجید افیوی

چکیده
اطلاع از وضعیت حدود دو روشی طرفیت زراعی و نقطه پژمردگی دایم، در برنامه‌ریزی آبیاری و مدیریت زراعی بسیار مهم است. تعیین دقیق این حدود با استفاده از دستگاه صفحه‌شماری صوتی می‌گردد. لیکن این کار معمولاً غیرممکن و فشکستگی بوده و در این حالت اماکن موردی آن در همه آزمایشگاه‌ها پایت نمی‌شود. بنابراین، با تخمین این حدود از روی برخی ویژگی‌های فیزیکی و شیمیایی خاک، می‌توان اطلاعات مهم‌تر را در این مورد به دست آورد. در این مطالعه 22 نمونه خاک از نقاط مختلف استان‌های اصفهان و چهارمحال و بختیاری تهیه گردید. بر اساس نمونه‌هایی به شیوه وسیعی از انواع خاک‌های موجود در گردشگردهای ایرانی و PWP و FC درصد افزایش دیده تا درصدد مایه آ/{\textstyle {\sqrt {x}}}, طرفیت تئوری تئوری روش‌های FC و PWP و FC با سایر خصوصیات خاک نسبت گردید.

نتایج نشان داد که FC با درصد شن، درصد ماده آتی و طرفیت تئوری تئوری خاک را به شدت دارد. به طوری که این سه در مقداری بالا و طرفیت تئوری PWP نیز با درصد سیلیت، ماده آتی و طرفیت تئوری تئوری کانونی را می‌کند. در حالت این سه متفاوت آب و ماده آتی (AWC)، نتایج حاصله کوئی این خاک‌ها از سیار و رگسیون‌های خاک استفاده نمود.

واژه‌های کلیدی: طرفیت زراعی، نقطه پژمردگی دایم، آب‌قابل‌استفاده، روش‌های رگسیونی

مقدمه
خاک معکوس نگه‌داری رطوبت برای گیاه است. خاک‌های مختلف مقدار متقابل آب در خود نگه می‌دارند، که بافت و توزیع اندازه خشک و فروب خاک بستگی دارد (20، 21، 22 و 23) برای

1. بهترین روش و استفاده خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
علم و فنون کشاورزی و منابع طبیعی/جلد چهارم/شماره اول/بهار ۱۳۷۹

ظرفیت زراعی (FC) حد بالای آب قابل استفاده بوده و مقدار آبی است که پس از خروج آب نفلی در خاک نگهداری می‌شود.

ظرفیت پذیرگی دایم (PWP) نتیجه پذیرگی دائم است و اعتماد بیان است که گیاه در آن به طور غیرقابل برگشت دچار خشکی و پذیرگی می‌گردد. حد اغلب تنها به ویژگی‌های خاک، بلکه به نوع گیاه، تراکم سیستم‌های ریشه و وضعیت آبی تأثیر می‌گذارد. اگر همه این عوامل درنظر گرفته شود، برآورد PWP سیستم‌های مشکل و وقت‌گیر خواهد بود.

باید تعیین حداکثر حد از روش‌های چگونه روش مزمعه، روش سانتیفیک و روش صفحه فشاری (11) و برای تعیین حد از روش‌های مانند استفاده از آیه آستنگیان و روش صفحه فشاری (11) نیاز است. مدل روش‌ها باعث می‌شود طراحی و تجهیزات مشخص و گرانی نیاز دارد و با اصولاً نیاز به پژوهشگر مبتنی بر تجربیات خصوصی و گزارش‌های مختلف FC و PWP را با استفاده از مدل‌های مختلف

tخیم یزنده (12, 13, 14, 15, 16 و 17) و (18) باید منظور از این نوع

مدل‌سی‌تول استفاده کنند. این مدل‌ها همانند از

مدل‌های فیزیکی، رگرسیونی و فیزیکی تجاری. مدل‌های

رگرسیونی برای تعیین قدرت نگهداری رطوبت کاربرد پیش‌تری

دارند. (12).

گوییا و لارسون (9) الگو و دسترسی به این طرح

می‌تواند به معنی مقدار آبی خاک را در پتانسیل ماتریک مختلف، از طریق رگرسیونی چند

مقاومت و استفاده از مقدار پذیرگی و PWP، مواد آلی و وزن

مخصوص ظاهری خاک تخمین دهند که همیشه مقدار

واضح رطوبت و مقادیر پذیرگی شده آن زیاد بود. مدل به

دست آمده از آن با این خاک، برای 61 خاک گیاه می‌تواند

مواد آزمون قرار گرفت، که پذیرگی خوبی از مقدار آب نمود.

ایبیتو و نامدار (7) با استفاده از ۲۰ نمونه خاک از سه

منطقه نیجریه، از طریق رگرسیونی چند متغیری رطوبت قابل

1. Field Capacity 2. Permanent Wilting Point

امورسون (5) افزایش ماده آلی در ظرفیت

و PWP و FC مقدار و رطوبت در فاصله می‌یابد. افزایش

مقاومت و رطوبت در فاصله می‌یابد. افزایش

مقدار کردن آلی، الگو و دسترسی به این طرح

تحت تکیهٔ جزئی درآمدها به همکاران (13) و FC

درصد سیل‌بندی، ورود درصد رس موجود است، به‌نتیجه، درصد شن با درصد

FC و رابطه معکوس داشته.

امورسون (5) کردن آلی به‌کار آمده ماده آلی در

ظرفیت زراعی (FC) حد بالای آب قابل استفاده بوده و مقدار

ظرفیت پذیرگی دائم (PWP) نتیجه پذیرگی دائم است و اعتماد بیان است که گیاه در آن به طور غیرقابل برگشت دچار خشکی و پذیرگی می‌گردد. حد اغلب تنها به ویژگی‌های خاک، بلکه به نوع گیاه، تراکم سیستم‌های ریشه و وضعیت آبی تأثیر می‌گذارد. اگر همه این عوامل درنظر گرفته شود، برآورد PWP سیستم‌های مشکل و وقت‌گیر خواهد بود.

باید تعیین حداکثر حد از روش‌های چگونه روش مزمعه، روش سانتیفیک و روش صفحه فشاری (11) و برای تعیین حد از روش‌های مانند استفاده از آیه آستنگیان و روش صفحه فشاری (11) نیاز است. مدل روش‌ها باعث می‌شود طراحی و تجهیزات مشخص و گرانی نیاز دارد و با اصولاً نیاز به پژوهشگر مبتنی بر تجربیات خصوصی و گزارش‌های مختلف FC و PWP را با استفاده از مدل‌های مختلف

tخیم یزنده (12, 13, 14, 15, 16 و 17) و (18) باید منظور از این نوع

مدل‌سی‌تول استفاده کنند. این مدل‌ها همانند از مدل‌های فیزیکی، رگرسیونی و فیزیکی تجاری. مدل‌های رگرسیونی برای تعیین قدرت نگهداری رطوبت کاربرد پیش‌تری دارند. (12).

گوییا و لارسون (9) الگو و دسترسی به این طرح

می‌تواند به معنی مقدار آبی خاک را در پتانسیل ماتریک مختلف، از طریق رگرسیونی چند

مقاومت و استفاده از مقدار پذیرگی و PWP، مواد آلی و وزن

مخصوص ظاهری خاک تخمین دهند که همیشه مقدار

واضح رطوبت و مقادیر پذیرگی شده آن زیاد بود. مدل به

دست آمده از آن با این خاک، برای 61 خاک گیاه می‌تواند

مواد آزمون قرار گرفت، که پذیرگی خوبی از مقدار آب نمود.

ایبیتو و نامدار (7) با استفاده از ۲۰ نمونه خاک از سه

منطقه نیجریه، از طریق رگرسیونی چند متغیری رطوبت قابل

1. Field Capacity 2. Permanent Wilting Point
تخمین توزیع ناهنجار و تغییر پیوستگی دامی از روی برخی

تویزیب اندازه ذرات، توزیع اندازه خلخ و فرم، و توزیع اندازه خاکدانها مربوط داشتند. این پوشه‌گران بزرگ، داندند نسبت
تویزیب اندازه ذرات به توزیع اندازه روزنه‌ها و خاکدان‌ها در
تعیین قدرت نگهداری و میزان بهره است. بررسی
متغیر مختلف نشان می‌دهد یک مدل وحداد برای

یک رابطه خواص فیزیکی و شیمیایی خاک با توزیع ناهنجاری
نقطه پوشه‌گری دیام و آب قابل استفاده وجود دارد و این
ارتباط همان گونه که در مطالعه فوق نشان داده است به نظر
می‌رسد مطالعه بستری دارند. در این مطالعه نمونه‌گیری برای تعیین
مدلهای تخمین حس وقیاب قابل استفاده یگ مفسر نگرفته
است. سیاست‌گذاری یک (1) منحنی کامل مشخصه آب خاک از
روی خصوصیات خاک‌های فیزیکی و شیمیایی خاک را تعیین نموده‌اند.

هدیه این تحقیق، تعیین مدل‌های برای بیشترین پیشگیری

از هزینه‌های بایر و بیشترین پیشگیری

از موزه نبات (PC) و آب قابل استفاده

گیاهی (PWP) و آخرین خصوصیات فیزیکی و

شیمیایی خاک در مناطقی است که اسکاف و چهارمحال و

بختیاری است. شایان ذکر است که انداره‌گری حس وقیاب

زراعی و نقطه پوشه‌گری دیام به لبیل دسترسی به

مدلهای مورد نیاز از قبیل دستگاه صفحه نشان و همچنین

پیچیده بودن انداره‌گری موزه‌های، به طور روزمره، صورت

نمی‌گیرد. از طرف دیگر، خواصی چون درصد اندازه ذرات

درصد مواد آلی، وزن مخصوص طاویر و طرفی نباید

کانونی خاک، به طور روزمره در اغلب آزمایشگاه‌های

خاکشناسی، اندازه گرفته می‌شود. بنا براین، وجود مدل‌های

برای تخمین حس وقیاب، نقطه پوشه‌گری دیام و طرفی آب

قابل استفاده ضروری است.

مواد و روش‌ها

33 نمونه خاک از نقاط مختلف استان‌های اصفهان و چهارمحال

بختیاری مشابه شد. نمونه‌های خاک از اعماق 0–30 و 30–60

سانتی‌متری مناطق درجه، شهرداران، نجف‌آباد، سمنور،

1. Cation Exchange Capacity

3
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شماره محل‌نمایش</th>
<th>شیمیایی (درصد)</th>
<th>(درصد)</th>
<th>موادآمیزی</th>
<th>رس</th>
<th>پایتخت</th>
<th>سیلن</th>
<th>نیتروژن</th>
<th>(cmol/kg)(%)</th>
<th>(dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12/2</td>
<td>26/6</td>
<td>0/1</td>
<td>2/7</td>
<td>CL</td>
<td>32</td>
<td>48</td>
<td>38</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>11/7</td>
<td>22/1</td>
<td>0/8</td>
<td>1/3</td>
<td>CL</td>
<td>29</td>
<td>41</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>14/0</td>
<td>25/3</td>
<td>0/4</td>
<td>1/7</td>
<td>CL</td>
<td>30</td>
<td>43</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15/0</td>
<td>21/1</td>
<td>0/8</td>
<td>1/3</td>
<td>CL</td>
<td>41</td>
<td>37</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>18/0</td>
<td>27/0</td>
<td>0/9</td>
<td>2/4</td>
<td>CL</td>
<td>32</td>
<td>40</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>10/5</td>
<td>19/2</td>
<td>0/9</td>
<td>1/2</td>
<td>CL</td>
<td>33</td>
<td>33</td>
<td>34</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>18/5</td>
<td>22/2</td>
<td>1/3</td>
<td>2/9</td>
<td>SiC</td>
<td>53</td>
<td>44</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>18/9</td>
<td>33/0</td>
<td>0/9</td>
<td>2/5</td>
<td>SiC</td>
<td>24</td>
<td>42</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10/5</td>
<td>33/3</td>
<td>1/7</td>
<td>2/2</td>
<td>L</td>
<td>26</td>
<td>55</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>9/9</td>
<td>21/7</td>
<td>0/8</td>
<td>1/4</td>
<td>CL</td>
<td>28</td>
<td>38</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>14/6</td>
<td>23/5</td>
<td>2/3</td>
<td>2/9</td>
<td>L</td>
<td>11</td>
<td>42</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>18/4</td>
<td>29/9</td>
<td>0/4</td>
<td>3/9</td>
<td>SiC</td>
<td>46</td>
<td>45</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>17/2</td>
<td>27/6</td>
<td>0/3</td>
<td>2/8</td>
<td>SiC</td>
<td>24</td>
<td>44</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>18/9</td>
<td>30/7</td>
<td>0/5</td>
<td>4/6</td>
<td>SiC</td>
<td>36</td>
<td>44</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>20/5</td>
<td>31/5</td>
<td>0/4</td>
<td>4/9</td>
<td>SiC</td>
<td>40</td>
<td>43</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>11/6</td>
<td>35/0</td>
<td>0/5</td>
<td>4/2</td>
<td>SiC</td>
<td>48</td>
<td>46</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>9/0</td>
<td>15/5</td>
<td>0/3</td>
<td>3/6</td>
<td>SCL</td>
<td>25</td>
<td>46</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>8/3</td>
<td>15/2</td>
<td>0/2</td>
<td>3/0</td>
<td>SCL</td>
<td>28</td>
<td>58</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>16/8</td>
<td>28/6</td>
<td>0/5</td>
<td>4/2</td>
<td>SL</td>
<td>26</td>
<td>53</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>25/9</td>
<td>32/0</td>
<td>0/3</td>
<td>3/5</td>
<td>SiC</td>
<td>30</td>
<td>56</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>31/7</td>
<td>35/0</td>
<td>0/6</td>
<td>3/0</td>
<td>SL</td>
<td>16</td>
<td>44</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>13/4</td>
<td>27/2</td>
<td>0/7</td>
<td>3/4</td>
<td>L</td>
<td>22</td>
<td>57</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>11/1</td>
<td>27/8</td>
<td>1/4</td>
<td>1/1</td>
<td>CL</td>
<td>28</td>
<td>58</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>16/2</td>
<td>27/6</td>
<td>0/6</td>
<td>2/4</td>
<td>CL</td>
<td>22/1</td>
<td>33/8</td>
<td>24/5</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>5/5</td>
<td>6/5</td>
<td>0/0</td>
<td>1/1</td>
<td>SL</td>
<td>11/2</td>
<td>11/7</td>
<td>15/9</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>4/2</td>
<td>0/8</td>
<td>0/0</td>
<td>1/1</td>
<td>L</td>
<td>0/0</td>
<td>0/0</td>
<td>0/2</td>
<td>26</td>
</tr>
</tbody>
</table>

میانگین و انحراف معیار ضریب تغییرات.
جدول ۲: نتایج رگرسیون خطی ساده بین درصد رطوبت در ظرفیت زراعی، نقطه پیمرددگی دایم و آب قابل استفاده با برگی از پیمرددگی خاک

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>نقطه پیمرددگی دایم</th>
<th>طرفیت مزروعه</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد شن</td>
<td>۰/۹۴</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>درصد سیلت</td>
<td>۰/۹۵</td>
<td>۰/۹۳</td>
</tr>
<tr>
<td>درصد رس</td>
<td>۰/۵۸</td>
<td>۰/۵۷</td>
</tr>
<tr>
<td>درصد مواد آلی</td>
<td>۰/۸۲</td>
<td>۰/۸۲</td>
</tr>
<tr>
<td>CEC</td>
<td>۰/۹۴</td>
<td>۰/۹۹</td>
</tr>
</tbody>
</table>

* و ** به ترتیب غیرمعنی‌دار و معنی‌دار در سطح ۰/۰۵ و ۰/۰۱ است.
جدول 3. تناوب رگرسیون چند متغیره بین درصد رطوبت در ظرفیت زراعی (FC) و برخی ویژگی‌های خاک

<table>
<thead>
<tr>
<th>ضریب محاسبه‌ی همبستگی</th>
<th>ضریب اجزای معادله</th>
<th>یکمتراژ</th>
<th>درصد شن</th>
<th>0/85</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/94</td>
<td>2/32</td>
<td>0/72</td>
<td>22 Sand%</td>
<td>+/33 CEC</td>
</tr>
<tr>
<td>0/87</td>
<td>2/60</td>
<td>0/75</td>
<td>22 Sand%+/11 CEC+/4 OM%</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. تناوب تجزیه واریانس مدل نهایی رگرسیون چند متغیره

<table>
<thead>
<tr>
<th>F</th>
<th>MS</th>
<th>SS</th>
<th>df</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>116/83**</td>
<td>306/24</td>
<td>671</td>
<td>3</td>
<td>مدل</td>
</tr>
<tr>
<td>4/60</td>
<td>24/94</td>
<td>19</td>
<td>خطا</td>
<td></td>
</tr>
</tbody>
</table>

** معنی‌دار در سطح 0/01

PWP

مدل تخمین

در جدول 2 نتایج همبستگی های ساده خطي بین درصد رطوبت جرمی در نقطه پروره‌گذاری (PWP) با هر یک از پارامترهای فیزیکی و شیمیایی اراضی شده است. چنان که ملاحظه می‌شود، با درصد شن درصد سيلت، درصد مواد آلی و ظرفیت PWP تبادل کاتیونی همبستگی معنی‌داری (در سطح 0/01) دارد. درصد رس با درصد رطوبت در نیز مانند FC ارتباط معنی‌داری ندارد، که با تأثیر فیلیپسون و دراسبان (18) مشابه‌ت‌داده. بیشترین ضریب همبستگی مربوط به ظرفیت تبادل کاتیونی است.

در خورده نقطه پروره‌گذاری دایم مانند ظرفیت زراعی، بیش از یک متغیر دایم همبستگی معنی‌دار بوده و بنابراین، استفاده از رگرسیون چند متغیره مرحله به مرحله اجتناب‌ناپذیر است، تا تخمین دقیق‌تری از PWP به دست آید. در جدول 5 مراحل مختلف ورود متغیره‌ی به مدل تخمین PWP مختلف ورود متغیره‌ی به مدل تخمین PWP مانند داده شده است. چنان که ملاحظه می‌شود، به ترتیب با ورود ظرفیت تبادل کاتیونی، درصد سیلت و درصد مواد آلی به مدل، میزان همبستگی مدل چند متغیره افزایش می‌یابد. مدل چند متغیره نهایی برای تخمین PWP که پس از ورود سه متغیر به دست می‌آید، به صورت زیر است:

AWC=٠/١ Sand%

به طور خلاصه می‌توان گفت، اگر چه پاسخ‌های پایداری حد زمان‌گذاری دایم نام‌گذاری است، لیکن این حد، علاوه بر چک، به نوع گیاهی، و اقلیت نیز سباستاده، و برای یک خاک مشخص، نمی‌توان یک عدد واقعی (FC ثابت آزاره‌ی نمود (١١). از طرف دیگر، حد ظرفیت زراعی (FC) در یک عدد واقعی است، که برای یک خاک مشخص تقریباً ثابت است.

1. Available Water Content
جدول ۵. نتایج رگرسیون چند متغیره بین درصد رطوت در تغطیه پوست‌رده‌گی دایم (PWP) و پریخطر از یوگریگ مای خاک

<table>
<thead>
<tr>
<th>ایmillion</th>
<th>MSE</th>
<th>ضریب اجزای معادله</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۷</td>
<td>۸/۰۱</td>
<td>۲/۴۲ CEC</td>
<td>CEC</td>
</tr>
<tr>
<td>۰/۹۳</td>
<td>۳/۲۲</td>
<td>۳/۳۲ CEC + ۰/۱۹ Silt</td>
<td>درصد سیلت</td>
</tr>
<tr>
<td>۰/۹۵</td>
<td>۳/۹۳</td>
<td>۳/۹۳ CEC + ۰/۱۳ Silt + ۰/۴۱ OM</td>
<td>درصد مواد آلی</td>
</tr>
</tbody>
</table>

جدول ۶. نتایج تجزیه وسایل مدل نهایی رگرسیون چند متغیره

<table>
<thead>
<tr>
<th>P</th>
<th>MS</th>
<th>SS</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۲۷/۷۱</td>
<td>۲/۰۹/۷۱</td>
</tr>
<tr>
<td>۰/۲۹</td>
<td>۰/۳۱</td>
<td>۰/۲۸/۷۱</td>
<td></td>
</tr>
</tbody>
</table>

منبع

** معتبر در سطح ۰/۰۵

است (با این پرداخت که پس از از میانه، مثلثا ۲ ۳ روز پس از آبیاری، میزان زه‌کشی به صورت کلیک می‌شد)، بی علاوه، در
سیستم‌های کشاورزی فلوراپ، آبیاری عملیات مناسب از نظری
روزیت خاک با PWP می‌شد، و گیاهان به طور طبیعی با
پیش‌تر روی یور هم‌چنین، محاسبه عمق آبیاری، بر
منای رساندن رطوت خاک بود حد ظرفیت زراعی ضرورت
می‌گرد. بنابراین، پیش‌نهاد می‌شود مدل اولانه شده بیان
تضمین

منابع مورد استفاده

۱. سیاسگزاری، و. ب. بنیاد. ۱۳۸۸. تعیین منحنی کامل مشخصه آب خاک توسط خصوصیات فیزیکی خاک. خلاصه مقالات ششمین
کنگره علوم خاک ایران، دانشگاه فردوسی. مشهد ص ۳۱۱.

