تخمین ظرفیت زراعی و نقطه پژمردگی دایم از روش بخی خصوصیات فیزیکی و شیمیایی خاک

فرشید نوربخش و مجید ایزدی

چکیده
اطلاعات از وضعیت حدود رطوبتی ظرفیت زراعی و نقطه پژمردگی دایم، در برنامه‌ریزی‌های آبیاری و مدیریت زراعی بسیار مهم است. تعیین دقیق این حدود با استفاده از دستگاه‌های اندازه‌گیری صورت می‌گیرد، لیکن این کار معمولاً کم‌گرانگش و غیرقابل برخوردار است. این در این حالت امکانات دومداری آن درهم آزمایش‌گاه‌ها یا از طریق شناسایی نقاط می‌باشد. بنابراین، با تخمین این حدود از روش بخی ویژه‌ای، بهتر است. در این مقاله، نتایج بدست آمده از سه جهت مختلف استفاده با استفاده از اکتشافات و محاسبات و پیش‌بینی نتایجهای محلی در سه روش به کمک برنامه‌های PWP و FC، جزئیات این نتایج را در مقدمه این مقاله بررسی نشده‌اند. در این مقاله به بخش‌های مختلفی از نتایج بدست آمده از روش‌های PWP و FC و نشان می‌دهد که این روش‌های کمک‌کننده در تصمیم‌گیری در برنامه‌ریزی، مدیریت زراعی، کشاورزی و سایر بررسی‌های می‌باشد.

پرتره پژمردگی

نتایج نشان داده که PWP با روش تحلیلی، درصد ماده آهی و ظرفیت تولید کاتیون‌های راک عایق را قوی‌تری دارد. به طوری که این سه روش در مدل نمایش غیرمترنح می‌باشد، ضمناً، بررسی آزمایش غیرمترنح PWP نیز با روش تحقیق، ماده آهی و ظرفیت تولید کاتیون‌های راک عایق را قوی‌تری دارد. ضمناً، بررسی آزمایش غیرمترنح PWP نیز با روش تحقیق، ماده آهی و ظرفیت تولید کاتیون‌های راک عایق را قوی‌تری دارد. در این مطالعه، نتایج یافتند که خاک‌های گروهی از سایر روش‌های در استفاده استفاده نمود.

واژه‌های کلیدی: ظرفیت زراعی، نقطه پژمردگی دایم، FC، PWP، مدیریت زراعی، مدیریت آب، کشاورزی، روش‌های پژمردگی

مقدمه

خاک محلی تغییرات رطوبتی در اثر گیاهان بسیار است. خاک محلی مختلف مقدار متفاوتی از رطوبتی شناسایی می‌کند که به انتخاب و تمایل انسان، به خاک محلی انتخاب نماید. در این مقاله، بررسی و توصیف رطوبتی است که بین محدوده‌های ۰٫۵ تا ۱ilo به طور یک‌پاره به روش بخی تعیین می‌گردد.

1. به ترتیب مراجع و استادگاه‌های کشاورزی دانشکده کشاورزی دانشگاه علوم و تحقیقات اسلامی اصفهان.
رژیم زراعی (1) حد بالای آب قابل استفاده بوده و مقدار آبی است که پس از خروج آب نفلی در خاک گهواره می‌شود ((PWP) نقطه پایین‌ترین آب قابل استفاده است، و اعتقاد بر این است که گیاه در آن به طور غیرقابل برگشت چند تنش خشکی و پذیرش می‌گردد. حد پایین‌ترین آب قابل استفاده در اغلب گیاه نیازهای خاک، بلکه به نیازهای تراکم سیستمهای ریشه و وضعیت الیکتریکی خاک مربوط می‌شود. این مدل‌ها همه این عوامل در نظر گرفته شدند و با این‌گونه تغییرات آبی و تشکیل‌های درمانی می‌باشد.

برای اینکه در این روش‌ها، از روش‌های صفحه فشاری (2) و صفحه شناخته‌شده از روی گردشگردان و روش PWP (نقطه پایین‌ترین آب قابل استفاده) استفاده می‌تواند. این روش‌ها غلط به وسایل و تجهیزات مشخص و گرانی نیاز دارند، و با اصولاً بسیار وقتگیر می‌باشند، بنابراین برخی از پژوهشگران معتقدند که در خاک‌های کامپوزیت نیاز به این مدل‌ها ندارند.

گزینه‌های پایپینی، رگرسیون و فیزیکی تجربی مدل‌های رگرسیون برای تعیین قدرت گهواره رطوبت‌گیری پیش‌تری دنیا (3) و لاسون (9). در بررسی‌های تحقیقی مختلف، از روش‌های رطوبت‌سنجی گردشگردان و استفاده از مراحل مختلف، رطوبت قابل استفاده، به ویژه در زمان حاوی نیازهای خاک می‌تواند، در بررسی‌های دندان‌های گیاهی مقدار آب قابل استفاده در درصد سیل‌هایی به ویژه در بررسی‌های سنجشی و درصد شیمیایی، درصد قابل استفاده و ریشه FC رطوبت موکوس داشته.

امرسون (5) همکاری که با افزایش ماده آلی در عضلان، و PWP (نقطه پایین‌ترین آب قابل استفاده) و همکاران (6) با افزایش مقدار رطوبت در در تشكیل زهای حاصل از نگه‌داشتن آلی استرس و رطوبت‌سنجی می‌باشد. و و همکاران (24) و الیکتریکی خاک از سه منطقه نیجریه، از طریق رگرسیون چند متغیره رطوبت گره‌ای
پیام رابطه خواص فیزیکی و شیمیایی خاک با توزیع زراعی، نقشه پومدرکی دایم و آب قابل استفاده و جدید ندارد. و این ارتباط همان‌گونه که در منابع فوق نشان داده شده است، به نقشه مورد مطالعه برگزاری نمی‌گردد. در این مطالعه، مطالعات حاکی از این تحقیق مدل‌های توزیع سطح آب قابل استفاده گاه صورت نگرفته است. سیاست‌ورش و نبض (1) منحنی کامل مشخصه آب خاک از روی خصوصیات فیزیکی و شیمیایی خاک را تعیین می‌نماید.

از این نظر، تعیین مدل‌های برای پیش‌بینی هر گونه مورد انتخاب (EC) و آب قابل استفاده (PWP) مزرعه، نقشه پومدرکی دایم (FC) گزینه از روی برخی خصوصیات فیزیکی و شیمیایی خاک، در مناطقی از استان‌های اصفهان و چهارمحال و بختیاری است. در نتیجه این تحقیق، شناسایی دو استان که اندلودی‌گری حوزه‌های زراعی و نقشه پومدرکی دایم به لحاظ اکسترشبال و همچنین پیچیده‌بودن اندلودی‌گری حوزه، به طور روغی صورت نمی‌گیرد از طرف دیگر، خواصی چون درصد اندلود دیتر، درصد آب و طبقه‌بندی خاکی به طور روغی در اغلب مراکز می‌شود. بنابراین، وجود مدل‌های برای تعیین سطح رطوبت و نقشه پومدرکی دایم و طیف آب قابل استفاده است. در نتیجه این تحقیق خاک با توزیع زراعی، نقسه پومدرکی دایم و طیف آب قابل استفاده ضروری است.

مواد و روش‌ها
33 نمونه خاک در نقاط مختلف استان‌های اصفهان و چهارمحال و بختیاری تهیه شد. نمونه‌های خاک از اعماق 0–30 متری نمونه‌گیری شدند. نمونه‌های خاک مورد مطالعه تجهیز شد، به طور کلی، انواع کاملاً منتفی از نمونه‌های خاک مورد مطالعه قرار گرفته، به گونه‌ای که رده‌های

1. Cation Exchange Capacity
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد مطالعه

شماره محل‌نامه	شیمیایی	رس	مواد آلی	بافت	(درصد)	(سرت)	(پدام)	(درصد)	(سیم)	(سرت)	(پدام)	(سرت)	(پدام)	
	PWP	FC	pH	EC	CEC									
1	13/2	26/6	v/6	v/6	1/2	16/3	2/7	CL	38	38	24	24	10	10
2	11/7	24/1	v/6	0/8	13/0	1/3	1/7	CL	29	29	21	21	11	11
3	14/0	25/3	v/4	v/4	1/7	16/5	2/2	CL	30	30	27	27	13	13
4	15/0	21/1	v/6	0/8	13/0	1/6	1/4	CL	31	31	22	22	14	14
5	18/0	27/0	v/7	0/9	19/1	2/1	2/7	CL	32	32	28	28	15	15
6	10/3	19/2	v/6	0/9	13/0	0/9	0/9	CL	33	33	32	32	14	14
7	18/5	23/4	v/6	1/3	24/3	2/9	2/9	SiC	34	34	24	24	15	15
8	18/9	33/0	v/8	0/9	25/2	1/5	1/5	SiC	34	34	24	24	15	15
9	10/5	23/3	v/9	1/11	13/3	1/7	L	29	29	19	19	13	13	
10	9/9	21/7	v/8	0/8	19/9	0/7	0/7	CL	28	28	33	33	16	16
11	14/6	23/5	v/4	3/6	24/9	0/4	0/4	L	24	24	35	35	17	17
12	18/2	29/9	v/6	0/2	23/9	1/5	SiC	24	24	19	19	14	14	
13	11/2	27/6	v/8	0/3	28/3	0/6	SiC	24	24	19	19	14	14	
14	18/9	30/7	v/5	0/5	24/6	1/4	SiCL	26	26	20	20	15	15	
15	20/7	21/5	v/6	0/4	24/4	0/9	SiCL	40	40	27	27	18	18	
16	24/5	35/0	v/3	0/5	24/2	3/1	SiC	44	44	29	29	19	19	
17	9/0	15/5	v/5	2/3	12/6	0/5	SCL	25	25	15	15	12	12	
18	8/3	15/2	v/6	3/2	10/9	0/5	SL	13	13	20	20	13	13	
19	18/8	28/6	v/6	0/5	20/4	2/9	SiL	24	24	14	14	10	10	
20	25/9	34/0	v/7	0/7	24/5	12/3	SiCL	30	30	32	32	20	20	
21	31/7	34/0	v/6	0/6	24/9	12/3	SiL	16	16	18	18	21	21	
22	13/4	21/7	v/5	0/7	23/9	4/4	L	24	24	37	37	22	22	
23	13/1	28/8	v/9	14/7	13/5	1/0	CL	28	28	30	30	23	23	
24	18/2	27/1	v/6	1/7	23/6	2/6	32/5	SiCL	22	22	24	24	15	15
25	5/5	6/5	0/2	11/6	3/2	11/2	11/7	CL	15	15	15	15	10	10
26	0/3	0/3	0/2	1/8	0/3	0/2	0/2	CL	0/2	0/2	0/2	0/2	0/2	0/2

میانگین انحراف معیار ضریب تغییرات
جدول 2. تأثیر رگرسیون خطی ساده بین درصد رطوبت در طرفیت زراعی، تلفظ پژمردگی دAIM و آبقابل استفاده با بریزگان‌های خاک

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>تلفظ پژمردگی دAIM</th>
<th>درصد شب</th>
<th>درصد سپت</th>
<th>درصد رس</th>
<th>درصد موادآگیا</th>
<th>CEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۱ *</td>
<td>۰/۹۲**</td>
<td>۰/۹۱**</td>
<td>۰/۹۱**</td>
<td>۰/۹۳**</td>
<td>۰/۹۳**</td>
<td>CEC</td>
</tr>
<tr>
<td>۰/۸۲ *</td>
<td>۰/۸۵**</td>
<td>۰/۸۵**</td>
<td>۰/۸۵**</td>
<td>۰/۸۵**</td>
<td>۰/۸۵**</td>
<td>CEC</td>
</tr>
<tr>
<td>۰/۸۳ NS</td>
<td>۰/۸۳ NS</td>
<td>۰/۸۳ NS</td>
<td>۰/۸۳ NS</td>
<td>۰/۸۳ NS</td>
<td>۰/۸۳ NS</td>
<td>CEC</td>
</tr>
<tr>
<td>۰/۸۴ NS</td>
<td>۰/۸۴ NS</td>
<td>۰/۸۴ NS</td>
<td>۰/۸۴ NS</td>
<td>۰/۸۴ NS</td>
<td>۰/۸۴ NS</td>
<td>CEC</td>
</tr>
<tr>
<td>۰/۸۵ NS</td>
<td>۰/۸۵ NS</td>
<td>۰/۸۵ NS</td>
<td>۰/۸۵ NS</td>
<td>۰/۸۵ NS</td>
<td>۰/۸۵ NS</td>
<td>CEC</td>
</tr>
</tbody>
</table>

* و ** به ترتیب غیرمعنی‌دار و معنی‌دار در سطوح ۰.۰۱ و ۰.۰۵ درصد.

همبستگی بین FC و درصد رس، ناشی از تنش نوع رس در خاک‌های مورد مطالعه است. از آن جا بررسی همبستگی‌های ساده‌نیا و یاری به درصد رطوبت در طرفیت زراعی، با یک پیامدهای این توانایی در سطح CEC مشخص می‌شود. درصد رس در طرفیت زراعی اثرات کننده‌ای از طریق رگرسیون کلینیکی ممکن است تجربی دقیق تری از درصد رطوبت در طرفیت زراعی انرژی کننده این عمل از طریق می‌تواند مدل متنگرد افزایش می‌یابد (جدول ۳). در جدول ۲ ضرایب متنگردی، ضریب همبستگی و خطای استاندارد برای مراحل مختلف ورود پارامترهای ثانویه به مدل نشان داده شده است. معادله چند متغیره نهایی که برای تخمین FC، پس از ورود سه متغیر به مدل به دست می‌آید، به صورت زیر است.

\[
FC = 0.82 + 0.06\text{OM} + 0.02\text{CEC} \quad r = 0.97**
\]

همبستگی به طور کلی، نتایج رگرسیون می‌باشد با بریزگان‌های خاک که ورد ده پارامترهای پیش‌تر به معادله تخمین دقیق تری از درصد رس، به راه همراه دارد.

در این سوال، آنتی‌فلور سول، مولی‌سول، آلی‌پول و ورتن سول را شامل می‌شود. pH آب شکاف که این خاکها بین 7/3 تا 8/5 می‌باشد و هدایت الکتریکی آنها نشان می‌دهد که خاکها به جو خاک ورشته و جریان خاک‌های غیرشور هستند. بنابراین، استفاده از مدل‌های تخمین حداکثر درصد رس پیش‌تری خاک‌ها، با توجه به اندازه بودن سهم پناه‌پذیر و دست‌پوش در قابلیت استفاده آب خاک، امکان‌پذیر است (۲). بررسی تغییرات آب‌نشده در جدول ۱، ذکر تین تنش مربوط به pHC از الکتریکی (۱/۸)، و کمترین آن مربوط به pH۲ (۰/۲۰) می‌باشد.

مدل تخمین

این همبستگی ساده‌نیا بین درصد وزنی در طرفیت زراعی با پارامترهای فیزیکی و شیمیایی خاک تبعیض گردید. نتایج نشان داد که درصد رطوبت جرمی در طرفیت زراعی با تمام پارامترها، به صورت رس، همبستگی می‌یابد (در سطح ۰/۰۵) وجود دارد (جدول ۲). از چند پارامترهای مورد مطالعه، سن و طرفیت تبادل کاتیونی به صورت همبستگی گردید. وجود همبستگی با تاکید ارائه شده به وسیله پژوهشگران دیگر مطالبت‌های زراعی (۹) و (۱۹) بین مقدار آب در نقطه در طرفیت زراعی و درصد رس، همبستگی معنی‌داری مشاهده نگردید. که تناها با تفاوت ارائه شده به وسیله فیلیپسون و دراسات (۱۸) مطالبت دارد. چنین به نظر می‌رسد که عدم
جدول 3. نتایج گروه‌سازی بین درصد رطوبت در ظرفیت زراعی (FC) و برخی ویژگی‌های خاک

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>ضریب اجزای معادله</th>
<th>خطای استاندارد</th>
<th>درصد شن</th>
<th>درصد موزائیک CEC</th>
<th>درصد مواد آلی CEC %/OM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

جدول 4. نتایج تجزیه واریانس مدل نهایی گروه‌سازی چند متغیره FC

<table>
<thead>
<tr>
<th>F</th>
<th>MS</th>
<th>SS</th>
<th>df</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>116/87</td>
<td>91/67</td>
<td>300/42</td>
<td>3</td>
<td>مدل</td>
</tr>
<tr>
<td>2/40</td>
<td>29/41</td>
<td>19/41</td>
<td>19</td>
<td>خطای</td>
</tr>
</tbody>
</table>

مدل تخمین

\[
PWP = \frac{2/48 + 5/13 \text{Silt} + 0.4 \text{OM} \%}{0.95**}
\]

در جدول 2 نتایج همبستگی های ساده خطي بين درصد رطوبت جرمي در نقطه پيمودگي دايم (PWP) با هره یک از پارامترها فيزيي و شيميي ارائه شده است. چنان که ملاحظه می شود، با درصد شن، درصد سیلت، درصد مواد آلی و ظرفیت PWP تبادل كاتيونی همبستگی معنادار (در سطح 0.01) دارد. درصد رس با درصد رطوبت در نيز مانند FC ارتباط منفي دارد، که با نتایج فيلیپسون و دراسات دیگر مشابه است.

 turret ضریب همبستگی مربوط به ظرفیت تبادل كاتیونی است.

در مورد نقشه پيمودگي دايم نيز مانند ظرفیت زراعی، پيش از يک متغير داري همبستگی معنادار بوده و با تبادل استفاده از رگرسیون چند متغيره مرحله به مرحله اجتایدي است. تا تخمین دقيق تری از PWP به دست آيد. در جدول 5 سراله مختلف وارد متغيره های به مدل تخمین PWP مربوط به درصد شن داده شده است. چنان که ملاحظه می شود، به ترتيب با ورود ظرفیت تبادل كاتیونی، درصد سیلت و درصد مواد آلی به مدل، میزان همبستگی مدل چند متغيره افزایش مي یابد. مدل چند متغيره نهایی PWP که پس از ورود سه متغير به دست مي آيد، به صورت زير است:

\[
AWC = \frac{0.1 \text{Silt%}}{0.85**}
\]

به طور خلاصه در خلال گفته، گچ چه پتانسیل 100-کيلو پاسکال به صورت نازدیک حد پیمودگی دايم نام گرفته است، لیکن این حد عاله بر خاک، به نوع گیاه و اقلیم نيز بستگی داشته و برای يک خاک مشخص نمی توان يک عدد واقعی (FC) ثابت ارائه نمود (11). از طرف دیگر، حد ظرفیت زراعی يک عدد واقعی است، که برای يک خاک مشخص تقریبا ثابت می‌باشد.

1. Available Water Content
جدول 5. نتایج رگرسیون چند متغیره بین درصد رطوبت در تپه پژمردگی دایم (PWP) و برگی از ویژگی‌های خاک

<table>
<thead>
<tr>
<th>r</th>
<th>MSE</th>
<th>ضریب اجرای معادله</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/87</td>
<td>8/01</td>
<td>2/2 CEC</td>
<td>CEC</td>
</tr>
<tr>
<td>0/92</td>
<td>3/22</td>
<td>3/3 CEC + 0/16 Silt</td>
<td>درصد سیلت</td>
</tr>
<tr>
<td>0/95</td>
<td>3/93</td>
<td>0/29 CEC + 0/13 Silt + 0/40 OM</td>
<td>درصد مواد آلی</td>
</tr>
</tbody>
</table>

جدول 6. نتایج تجزیه باریکس مدل نهایی رگرسیون چند متغیره

<table>
<thead>
<tr>
<th>P</th>
<th>MS</th>
<th>SS</th>
<th>df</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/30</td>
<td>20/94/24</td>
<td>0/37/1/1</td>
<td>3</td>
<td>مدل</td>
</tr>
<tr>
<td>0/33</td>
<td>72/59</td>
<td>19</td>
<td>خطا</td>
<td></td>
</tr>
</tbody>
</table>

*متن‌داد در سطح 99**

سپاسگزاری

از پروفسور عزیزم حسینی ای، مدیر مهندسی، به مصوبات و تأکیدات انجام این تحقیق بوده و اطلاعات و اطلاعات از سوالاتی اشتراک ذکر می‌گردد. همچنین، از گروه مدیران و کارکنان مهندسی، به ویژه دکتر سیدرضا موسوی برای پیشنهادهای ارائه‌ی این شهادت، و یکسایش و ارزیابی می‌گردد.

منابع مورد استفاده

1. سیاسخوایی، و. ج. بیدار. 1378. تعیین منحنی کامل مشخصه آب خاک توسط خصوصیات فیزیکی خاک. خلاصه مقالات ششمین کنگره علم خاک ایران، دانشگاه فردوسی. مشهد ص. 311.