بررسی ریسک گریزی زارعین با استفاده از مدل‌های تجربی، اقتصاد سنجی

و برنامه ریزی ریسکی

عباس عید‌شاها و غلامرضا سلطانی

چکیده

درجه موفقیت طرح‌های اقتصادی - اجتماعی، به سخن آگاهی برنامه‌ریزان از نحوه بازآفرین اندو citas بپردازد. چون کشاورزی فعالیتی ریسکی است، با این آگاهی از ریسک کشاورزی در منطقه امروزی ضروری است. این مطالعه به بررسی ریسک کشاورزی زارعین در منطقه همیجان، از توابع شهرستان سیبیجان در استان فارس، پرداخته است. آمار و آمار دقیق مورد نیاز از طریق پرس‌نامه و مصاحبه حضوری با کشاورزان، و اطلاعات سیزی زمانی از سازمان کشاورزی استان فارس جمع‌آوری شده است. برای بررسی ریسک کشاورزی زارعین در منطقه مورد مطالعه، از مدل روش قاعده‌ای یک‌حلقه‌ای، نیای تولید تصاکی تعیین پایه و مدل برنامه‌ریزی ریسکی تارگت مودال استفاده شده است.

نتایج حاصل از مطالعه نشان داد که کشاورزان منطقه مورد مطالعه، در تولید محصول ریسک‌گریزند، اما در مصرف نهاده‌های نوین دارای ریسک‌گریزی پایین‌تر هستند. علاوه بر این، تحولات تولیدی تغییرات مقدماتی تعیین یافته، نشان داد که مصرف نهاده‌های نوین باعث کاهش ریسک می‌شود. مدل برنامه‌ریزی ریسکی تارگت مودال نیز ریسک گریزی زارعین در تولید محصول را افزایش‌دهد. به طوری که با افزایش ریسک، محصولات مثل گندم که از نتایج نسبی یکی از عامل‌های بخشنده بازار، دارای آگاهی شده و محصولاتی مثل بیانی که نوسان قیمت و عامل‌های نقاط دیگری، بالاتری دارند، از این نتیجه می‌گردند.

واژه‌های کلیدی: ریسک‌گریزی، مدل‌های تجربی، برنامه‌ریزی ریسکی، تارگت مودال، تغییر تولید

مقدمه

آن‌چه دربار (۱۹۸) تعیین سیاست‌ها و تدوین برنامه‌های مناسب برای تولید کشاورزی، نیاز به منابع آگاهی برنامه‌ریزی از عکس‌ العمل کشاورزان است. در فعالیت‌های کشاورزی، از زمانی که تصمیم به تولید گرفته می‌شود، تا زمان مشخص شدن نتایج این تصمیمات، چندین مقدمه

۱. به ترتیب دانشجوی ساین کارشناسی ارشد و استاد اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
روش استخراج تجربی، بدون این که برنامه بهینه‌ی برای مزایه‌ی تهیه نمایند، با استفاده از یک فرمول معنی وارد نمودن برخی متغیره‌ی در آن، ضرب ریسگرگری کشاورزی را به دست می‌دهد: (۲۳)

در این مطالعه، هدف تعمیمی درجه ریسگرگری زارعی بوده استفاده از مدل تجربی؛ تعمیم درجه ریسگرگری کشاورزی را منجر به اصول شده‌اند تا نهاده‌های تویین، نظیر سوم، بتواند از اصل اعمال تعمیم‌یافته‌های تویین بر رفتار ریسک کشاورزی؛ و تعمیم الگوی بهینه‌ی کشاورزان را بر رفتاری می‌باشد.

مواد و روش‌ها

آمار و اطلاعات موردی در این مطالعه، به دو صورت مقطعی و سری‌زمانی جمع‌آوری شده است. آمار مقطعی، با روشن نمودنگیری تصادفی دو مرحله‌ای، از ۳۲ کشاورز در منطقه همایانگان، از شهرستان سپیدان جمع‌آوری گردیده. پس از توجه به این که محور مطالعه در یک منطقه خاص دیدن‌گر فهم‌دهد، و این منطقه چندان هم وسیع نیست، به نظر می‌رسد تعداد ۲۵ کشاورز برای تجزیه و تحلیل مناسب باشد. به علاوه، از نظر آماری تعادل ماهیانه، بیشتر از ۳۰ فرض نمودن نیاز به روش‌های ساده، از سایر مطالعات استان فارس، هم چنین منابعی که در مورد ارزیابی شهره‌های سپیدان جمع‌آوری ارگی‌وردی (۱۴)

برای تعمیمی درجه ریسک کشاورزی کشاورزان در تولید محصول و مصرف نهاده‌ها، از روش تجربی قاعده‌ای اول اطمنان استفاده شد. در چهارچوب قاعده اول اطمنانی، با وجود دلایل و صفر ریسک که در مقیاس نهاده‌ها تخمین می‌شود، و تولید محصولات و مصرف نهاده‌ها ارائه‌کرده‌اند. این روش‌ها به دو دسته گازی قرار گرفته و گریزی در تولید محصولات و ریسک گریزی در محصولات نهاده‌ها تخمین می‌شود.

در چهارچوب قاعده اول اطمنانی، فرض کرد که هدف فرد به حداکثر سطحی اختلال و نوع فاصله معینی از بدآبی‌نگی است. که می‌توان آن را به صورت زیر نوشته: (۱۳)
سال اخیرش به دست می‌آید. با اشاره به این فرض، ریسک‌گرایی زاینده در R = Rj = (E_j - E_j)/Лj

به چه حاصل به دست آمده می‌تواند نشان دهند ریسک‌گرایی بالاتر است. زیرا در این حال، اکارشناری بیشتر
سعي می‌کند سطح معیارهای فیزیکی را به حداقل برساند. یا مقدار درآمد مورد انتظار (E) برای افزایش یک خطر بالاتر
است. این را نشان می‌دهد که سطح معیارهای فیزیکی برای افزایش یک خطر بالاتر
امتحان می‌کند. با اینحال با در داشتن ریسک‌گرایی در
تولید محصول استفاده شده است.

رویکردی در مصرف نهادها
mosasraki و دویک (16) در یک گزارش قباع واحد
اطمینان، فرض کردن درآمد خالص باید از تولید محصول در
هیچ چیز عدم حتمی است. پژوهشگران فوک پیشنهاد کرده که
چنانچه تابع تولیدی به شکل کاب - دگلاس باشد، به صورت
ریسک‌گرایی زاینده دارد. به دست می‌آید

\[Y = a \times X_i^2 \text{cm}^2 \]

که Y میزان تولید محصول، \(a \) ضریب ثابت تابع با پارامتر
تکنولوژی، Xی میزان مصرف نهادهای مختلف ثابت اجلاس
و a/2 آکاشک ن봉 نسبت به نهادهاست.

میزان بهینه مصرف نهادهای بدون دستگاهی گرفتاده
یک تساوی از توابع تولید نهایی با قیمت نهاده‌h به دست می‌آید

\[\text{MPX} = P_i \]

\[f_i Y / X_i = P_i \]

رابطه فوق به دستور حاصل شده است که اکنون \(P_i \) از تابع
کاب - دگلاس محاسبه می‌شود و سپس با ضرب در قیمت
محصول، در تساوی با قیمت نهاده گرفته \(P_i \) قیمت واحد
محصول می‌باشد. چنانچه در مصرف نهاده‌ها ریسک وجود دارد

\[\text{Min } P(E^* - E) \quad \text{یا } \quad \text{Min } F(E^*) \]

سطح پرداخت درآمد معیار E سطح درآمد مورد انتظار و
E تابع توزیع تجمع است. برای سادگی در مطالعات تجربی
می‌توان روابط فوق را صورت زیر ترکیب نمود:

\[\text{Minimize } (E^* - E) / \delta \]

پایهی و پراید (11) و راندهای (12) برای محاصره سطح
پرداخت درآمد معیار E و درآمد مورد انتظار، از روابط زیر
استفاده نمودند:

\[E = C_{min} + COG - LAS - NAI \]

\[C_{min} = APF(FAM - CHILR / 2) \]

در این معادلات COG ارزش حداقل نیاز مصرفی خانوار،
درده F به مؤسسات رسمی و غیر رسمی LAS دارای‌های
نقدی از محل مکانی‌زدایی، NAI دارای‌های نقدی از محل
غير مکانی‌زدایی FAM، CHILR تعداد فردزدان و
APF ارزش حداقل کالری مصرف‌زایی برای هر فرد می‌باشد.
عبارت داخل پرانتز، تعداد اعضای بالغ هر خانوار را نشان
می‌دهد. هر دو به معادل یک فرد باید دستگاه از
درآمد خاص مورد انتظار زاینده به رابطه زیر به دست می‌آید:

\[E = VP(1 + DMG) - S_c - L_c - F_c - B_c - L_c - P_c - L_c \]

در این معادله VP ارزش کل محصولات تولیدی، K1
میزان اثر نظر محصولات، S_c، L_c، F_c، B_c، L_c
وزن‌های آلاینده، L_c، F_c، B_c، L_c
کرده که هزینه سرمایه از هزینه نیروی کار
NIRO و کار باشد.

ارزش کل خسارت محصولات در اثر ضایعات و حوادث
طبیعی، به صورت میانگین وزنی براساس قیمت هر
محصول (DMGi) و میزان خسارت هر محصول که

\[\text{DMGi} = \sum K_i \text{DMGi} / \sum K_i \]

انحراف معیار درآمد سالانه خانوار کشاورز (\(\delta)\) از درآمد چند
روش تابع تولید تصادفی تعمیم یافته

این تابع برای اولین بار توسط جست و پاب (v) ارائه شده است. این
پژوهشگران نشان دادند که باید تابع تولید میانگین برای بررسی
عوامل مؤثر بر ریسک، باید 8 فرض اساسی را پایان دهد.
پیک از فرض سوم این است که اثر یک نهاده بر ریسک تولید
(وایربرینگ) ممکن است عصبی، نزولی با تابع باشد. با
توجه به این فرض، ثابت کردند که تابع تولید معقول با
فصل های کتاب - داگلاس، ترنسرنیتونال و ... فرض فوق بر اروره
پیک از فرض سوم، در صورت کاربرد این تواضع، اثر یک نهاده بر
وایربرینگ، مشابه اثر آن بر میانگین تولید پیوست و این دو اثر
به یک حجم وسیع ارجاع می‌گردد که تأثیر نهاده‌ها بر وایربرینگ تولید،
عمل می‌کند این اثر بر میانگین تولید تفاوت دارد. اگر تابع تولید بر
فرم زیر باشد:

\[Y = f(X \varepsilon) \quad \E(\varepsilon) = 0 \]

\[V(Y) = f'(X) \varepsilon \]

\[V(\varepsilon) = f'(X) \varepsilon \]

\[\varepsilon = \frac{\delta}{\nu^2} \]

\[\delta \] انحراف میانگین \(Y \) و \(\mu \) میانگین \(Y \) است. \(\delta \) مقدار با را
نسبت به \(K(s) \) حلق کیمی، رابطه زیر حاصل می‌شود (مثلا 1).

\[K(s) = \left(\frac{1}{\nu} \right) \left[1 - \left(P_{x_i} / P_x, P_Y \right) \right] \]

با توجه به \(K(s) \) کشاورزان با نسبت تخمین می‌شوند:

\[K(s) < K(s) < \frac{1}{10} \]

\[K(s) < K(s) < \frac{1}{10} \]

\[K(s) < K(s) < \frac{1}{10} \]

\[K(s) < K(s) < \frac{1}{10} \]
بررسی ریسک گرایی زارهین با استفاده از مدل های تجربی،...

نمرال بهبود دران و همچنین فرض وجود تابع مولتیپیابی درجه دوم موافقت است. برای اجتیاد از محاسبه ماتریس واریانس-کوواریانس درجه هیپرزه در مقدار اندک مقدار متغیرهای (MOTAD) در این روش به جای محاسبه ماتریس واریانس-کوواریانس انرژی (NLS) تخمین زده می شود و میزان α_0 برآورد می‌گردد. در مرحله دوم اجازه اخلاص از ربط زیر:

$$e^* = Y - f(X_i, \alpha)$$

محاسبه شده، تابع زیر که مقدار تابع مولتیپیابی برآورد می‌شود.

$$\ln | e^* | = \beta_1 + \beta_2 \ln (X_1) + \beta_3 \ln (X_2) + \ldots + \beta_n \ln (X_n) + \varepsilon$$

در این تابع ضرایب β نمایانگر نوع اثر نهایی بر ریسک تولید می‌باشند. سرانجام، در مرحله سوم برای برخی ساختن مشکل واریانس ناهمسانی اینترنت از تخمین زده شده در مرحله دوم میزان ε به دست می‌آید و سپس تمامی متغیرهای مستقل و متغیر واپیت به آن تخمین می‌گردد. مجدداً تابع تولید تخمین زده شده در مرحله اول، با کمک روش تحلیل مربعات غیرخطی برآورد می‌شود.

مدل‌های پیشنهادی برای

مدل‌های پیشنهادی برای ریسک مورد بررسی قرار می‌دهد، اگر بهبهان کشاورز را به ریسک مورد بررسی قرار می‌دهد، کشاورزان را به ریسک مورد بررسی قرار می‌دهد، کشاورزان را به ریسک مورد بررسی قرار می‌دهد، کشاورزان را به ریسک مورد بررسی Q(t) (U) تابع مولتیپیابی مفهومی است ($\leq (K)$) با به عبارت دیگر تابع مولتیپیابی یک کلاس داری که از مدل (15) است.

مدل تاکت موتاد

گفتگو که مدل موتاد دارای اشکال است، زیرا فرض برتری تصادفی درجه دوم را می‌گذارد. نمی‌سازد و همچنین انتظار کشاورز را برای یک درک با شایع در خود جای نمیدهد. برای رفتن این ناقص، ناپای 1(12) مدل تاکت موتاد را ارائه می‌نماید. در این مدل، ریسک به صورت مجموع مقدار ارائه شده.

1. Second-degree Stochastic Dominant (SSD)
2. First-degree Stochastic Dominant (FSD)
نتایج و بحث

آمار و اطلاعات کشاورزان ملیع در منطقه مورد پرسیده، به صورت میانگین در ۱۱ زمره ضریب تولید محصولات دارای تندی ۱۰۰ مورد بررسی چسبانده شد. تحلیل اطلاعات از نظر توزیعی همبستگی X و Y یک تیپ توزیع نمونه از محصولات، تغییرات ریسکگرایی است. در میانگین محصولات (Cj) باید یک واحد محصول از (Cj) محصولات متغیر تغییرات ریسکگرایی است. تغییرات ریسکگرایی است. در غربی می‌توان تمام زارعین را حکم در یک گروه بررسی کرد. میانگین درجه ریسک‌گرایی کشاورزان نیز ۱۲/۶- به دست آمده و نشان دهنده این است که تمامی کشاورزان مورد مطالعه در تولید محصولات ریسک‌گرایی هستند. این نتیجه با تبیجه مطالعه سیستمی (۲) که ریسک‌گرایی در تولید محصولات منجر کرده است. فرآیند تاریک انتخاب قرار داد، در همه موارد منفی به دست آمده است مطلوب است. در برابر ضریب ریسک‌گرایی، در مصرف نهادها، چون نیاز به چشم‌انداز تابع تولید است، تجربی و تحلیل این قسمت بر روی محصولات گدنده انجام گرفت. که تغییرات در برنامه کس دارای کشاورزان وجود داشت. تابعی حاصل از تغییرات ضریب ریسک‌گرایی کشاورزان مورد مطالعه در جدول ۱ آورده شده است. تابعی حاصل نشان می‌دهد که کشاورزان در مصرف نهادهای نمای انرژی کود شیمیایی، بذر و سموم شیمیایی، دارای ریسک‌آوری نبودند.

اختلاف بین ضریب ریسک‌گرایی در تولید محصولات و مصرف نهادها، نشان می‌دهد عواملی تصادفی از قبلی

\[
\text{Max } z = \sum C_j x_j
\]

\[
\begin{align*}
S_1: & \sum a_{ij} x_j \leq b_i \quad K = 1 \ldots n \\
\sum C_{ij} x_j + y_r & \geq T \quad r = 1 \ldots S \\
\sum P_r y_r & = \lambda \\
x_j, y_r & \geq 0 \\
\end{align*}
\]
پترس گروهی زارعی با استفاده از مدل های تجربی،...

پژوهان با سیاست‌هایی نظر به محصولات کشاورزی، ریسک ناشی از تولید محصول روکا کاشی داد کشاورزان بهتر از نهاده‌های تولید استفاده می‌نمایند.

نتایج حاصل از برآورد تابع تولید تصادفی تعیین یافته در مرحله اول، در جدول ۴، آورده شده است. یکی از روش‌های شده می‌تواند کلی مقیاس بینش را کد داشته باشد و به‌طور کلی تأثیر منفی داشته باشد. با در نظر گرفتن این مدل، بررسی نتایج می‌شود.

جدول ۱. خصوصیات اقتصادی - اجتماعی کشاورزان

<table>
<thead>
<tr>
<th>منطقه مورد بررسی</th>
<th>میانگین نمودار</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>مغرب</td>
<td>۳/۷۱</td>
<td>۲/۸۹</td>
</tr>
<tr>
<td>شمال</td>
<td>۳/۹۵</td>
<td>۲/۸۶</td>
</tr>
<tr>
<td>افراوان تحت تکل</td>
<td>۲/۸۵</td>
<td>۶/۴۹</td>
</tr>
<tr>
<td>فرزندن</td>
<td>۲/۲۹</td>
<td>۵/۳۱</td>
</tr>
<tr>
<td>قطعاً زمین</td>
<td>۲/۰۴</td>
<td>۳/۸۳</td>
</tr>
<tr>
<td>تولید</td>
<td>۱/۴۲</td>
<td>۹/۶۴</td>
</tr>
<tr>
<td>سطح زیرکشت</td>
<td>۲/۳۶</td>
<td>۳/۱۹</td>
</tr>
<tr>
<td>پژر</td>
<td>۶۶/۴۲</td>
<td>۲/۳۳</td>
</tr>
<tr>
<td>دوره آب‌داسی</td>
<td>۱/۱۲</td>
<td>۴/۶۲</td>
</tr>
<tr>
<td>سرم</td>
<td>۵/۲۵</td>
<td>۱/۸۲</td>
</tr>
<tr>
<td>کود</td>
<td>۵/۱۱</td>
<td>۱/۲۸</td>
</tr>
</tbody>
</table>

جدول ۲. نتایج ریسک‌گیری کشاورزان در تولید محصول SFR از روی نمودار

<table>
<thead>
<tr>
<th>طبقه</th>
<th>درصد فراوانی</th>
<th>فراوانی مطلق</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rj<۱۰</td>
<td>۱۲</td>
<td>۳۹/۳</td>
</tr>
<tr>
<td>۱۰≤Rj<۵</td>
<td>۴</td>
<td>۵۴/۲</td>
</tr>
<tr>
<td>۵≤Rj<۱۰</td>
<td>۴</td>
<td>۱۴/۴</td>
</tr>
<tr>
<td>Rj≥۱۰</td>
<td>۱</td>
<td>۰/۱</td>
</tr>
</tbody>
</table>

جدول ۳. ریسک‌گیری کشاورزان در مصرف نهاده‌ها از روی

<table>
<thead>
<tr>
<th>نهاده</th>
<th>K(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کود</td>
<td>۱/۰۷</td>
</tr>
<tr>
<td>پژر</td>
<td>۵/۱</td>
</tr>
<tr>
<td>سرم</td>
<td>۵/۱۷</td>
</tr>
</tbody>
</table>

خسارت‌های ناشی از بیماری‌ها و شرایط آب و هوا و باعث افزایش ریسک‌گیری کشاورزان می‌شود. بنابراین، چنانچه...
جدول 4. تابع حاصل از مرحله سوم تخمین تابع تولید تصادفی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضریب</th>
<th>رتبه تابع</th>
</tr>
</thead>
<tbody>
<tr>
<td>بذر</td>
<td>0/52</td>
<td>7/12</td>
</tr>
<tr>
<td>سطح زیرکشت</td>
<td>0/22</td>
<td>7/10</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>0/82</td>
<td>7/05</td>
</tr>
<tr>
<td>آب</td>
<td>0/11</td>
<td>7/05</td>
</tr>
<tr>
<td>سم</td>
<td>0/24</td>
<td>7/05</td>
</tr>
</tbody>
</table>

$R^2 = 0.99$ Sig F = 0/000

جدول 5. تابع حاصل از مرحله اول تابع تولید تصادفی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضریب</th>
<th>رتبه تابع</th>
</tr>
</thead>
<tbody>
<tr>
<td>بذر</td>
<td>0/52</td>
<td>7/12</td>
</tr>
<tr>
<td>سطح زیرکشت</td>
<td>0/22</td>
<td>7/10</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>0/82</td>
<td>7/05</td>
</tr>
<tr>
<td>آب</td>
<td>0/11</td>
<td>7/05</td>
</tr>
<tr>
<td>سم</td>
<td>0/24</td>
<td>7/05</td>
</tr>
</tbody>
</table>

$R^2 = 0.85$ Sig F = 0/000

حایل از مرحله اول متفاوت است، و نشان می‌دهد هنگامی که

از تابع تولید تصادفی تابعی پیشنهاد می‌باشیم به حتماً

جهان انسانی توجه نماییم. این بزرگ‌ترین اثری است که

باید نشان دهنده فرضیه بود. با توجه به چهار ماتریکس

معمومه در و در تابع دیگری الکتریک، چنان است، جای آن این

که در چهار مثالی نمونه یافته است، در حالی که در مقاله

در حاضر که در تابع تولید دوم و سوم، متغیر وابسته، میزان

جهج اخلاق بوده است. در رتبه سوم، واریانس ناهمسانی

رفع شده است، بنابراین، اگر علوم متغیری با سطح

معنی داری آنها را می‌توان۱ خورده داده‌اند، به روی نیست.

برای تخمین اینگونه به‌کلیش کاری، با بررسی طولانی

ریسک از مدل تارگت مورد استفاده شد. برای این منظور، ابتدا

تولید محتوای قابل کشیده شده، منظور بشری و گردید. سپس

ضریب گونه‌های مختلف محاسبه و میزان محدودیت

منابع مشخص شد. اینگونه نتایج می‌تواند مورد

بررسی برای ۸ سال اخیر نیز جمع آوری گردد.

تابع حاصل از حاصل مسیر برای دو مقدار

متغیر T در جدول ۷ و ۸ آورده شده است. می‌تواند به

بستر این مقدار به تدابیر افزایش باید. چون هدف

بررسی کاهش در مقاله نمایش داده شده‌است (۷)

۱۸
در تولید محصول، که ممکن است بیشتر به خاطر نوسان قیمت یا بازده، دولت تمهیداتی برای ثبت بیشتر قیمت‌ها سرمایه‌های ورودی است. تسهیلاتی در اختیار کشاورزان قرار داده شد. پیشینه نماید. همچنین، پیشنهاد می‌شود برای تعدادی از مجموعات مثل ذرت، که زراع در هنگام کاشت آنها، با کم‌بود

| جدول 7: گروه پهنه کشت برای ۴۰۰-۰۱۰ (میلیون) | |
| X1 | X9 | X12 | X1 | Z | λ |
| 859.1 409.1 564.1 0.1 945.1 0 |
| 952 350.2 784.1 1114 2575 10 |
| 952 350.2 784.1 1114 2575 10 |

| جدول 8: گروه پهنه کشت برای ۴۰۰-۰۱۰ (میلیون) | |
| X1 | X9 | X12 | X1 | Z | λ |
| 1053 609.1 5840 0 2300 300 |
| 961 510.8 5840 0 2300 300 |
| 961 510.8 5840 0 2300 300 |
منابع مورد استفاده

1. ترکمانی، ج. ۱۳۷۵. تصمیم‌گیری در شرایط عدم قطعیت. مجموعه مقالات اولین کنفرانس اقتصاد کشاورزی ایران، دانشگاه کشاورزی زابل.

2. حسن‌پور، ب. ۱۳۷۶. بررسی اقتصادی تویید و بازاریابی انجیر در استان فارس. پایان‌نامه کارشناسی ارشد اقتصاد کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز.

3. فردوسی، ر. ۱۳۷۲. بررسی منابع ریسک و عدم قطعیت در کشاورزی. اقتصاد کشاورزی و توسعه، شماره ۱۲، ص ۱۳۵-۱۴۳.

4. کهخا، ا. و. غ. سلطانی. ۱۳۷۵. تغییر ضریب ریسک‌گرایی زارعین: یک مطالعه موردی استان فارس. مجموعه مقالات اولین کنفرانس اقتصاد کشاورزی ایران، دانشگاه کشاورزی زابل.

5. مقدسی، ر. و. س. پردازی. ۱۳۷۵. ریسک در نیاب تولید و اثر عوامل. مجموعه مقالات اولین کنفرانس اقتصاد کشاورزی ایران، دانشگاه کشاورزی زابل.

