اثر تنش رطوبتی و تاریخ کاشت بر عملکرد و اجزای عملکرد دانه لوبیا چیتی

مهرداد مخلوچی، سید فرهاد موسوی و مهدی کریمی

چکیده

به منظور تعیین زمان آپاری و اثر تاریخ کاشت بر عملکرد و اجزای عملکرد دانه لوبیا چیتی، آزمایشی در سال ۱۳۷۳ در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان، انجام شد. در آزمایش، سه تریال در بخش‌هایی از مزارع کشور در حوزه‌های مختلف (شیراز، بروجرد، اصفهان) در ترسیم‌هایی با هر تریال ۴۰ ناحیه به کار گرفته شد. در نهایت، نتایج نشان داد که تریال اخیر در کاشت در پاییز به‌عنوان بهترین دوره کاشت در کشور برای کشت لوبیا چیتی نظر می‌رود.

واژه‌های کلیدی: حیوانات، زمان آپاری، طشت تبخیر کLAS, مراحل نمو، بازده مصرف آب

مقدمه

جریان، گوش و مرد فرم، دومین منبع غذایی پس از غلات و عمده‌های منبع پروتئین گیاهی است. مقدار پروتئین آن‌ها حدود ۱۲ تا ۲۵ درصد غلظت غذایی است. حیوانات ۲۰ درصد پروتئین و ۱۰ درصد انرژی جمعیت انسانی را تأمین می‌کنند. علل‌های جرم باعث می‌شود که دانه لوبیا چیتی

درصد پروتئینی، دارد انرژی بخش چهار از می‌باشد. سطح زیرکشت حیوانات در جهان، در سال ۱۹۸۸ برای ۶۸/۵ میلیون هکتار با تولید ۶۵ میلیون تن بوده و در ایران هزار هکتار با تولید ۲۸۸ هزار تن در سال می‌باشد (۹).

لوبیا محصول گیاهی پاک‌تر از دیگر پوده‌های بوده، می‌تواند برای کشاورزان حیاتی باشد.

۱. کارشناس ارشد زراعت، مرکز تحقیقات کشاورزی اصفهان
۲. استاد آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۳. دانشیار سابق زراعت، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
آموزشی جنبی است، لیوبیاچیتی از زیرگونه‌های لوبیای معمولی
می‌باشد. لیوبیاچیتی از دو قسمت است و بعضی از اطلاع‌رسانی آن نسبت
به طول روز نیترات و بعضی دیگر حساس بوده، رژیم کوتاه گسترش می‌یابد. اگر گوشتی راست است و سیستم رضایت نازک و باریک
دارد (۱۵). به طور کلی لوبیای معمولی نسبت به شکم مقاوم
نسبت به این نوع رضایت او وان و منفی، به شرایط
گرم و درک تازه کاری بیشتر (۱۶).

مواد و روش‌ها
به منظور تخمین زمان آبگرداری در لیوبیاچیتی (لاین آزمایشی
۱۸۱۸) در اصفهان، آزمایشی در سال ۱۳۷۲ در مزرعه
تحقیقات دانشکده کشاورزی دانشگاه صنعتی اصفهان، واقع در روستای شریان از توابع قارون‌رود انجام گرفت. متوسط
مقدمه در جدول حرارت در ماه‌های خرداد تا مهر بین ۲۰/۱۳ تا
۰/۲۶ درجه سانتیگراد هم‌گردد. بیشتر میزان تبخیر از
تمنی تبخیر در نیمه اول ماه با متوسط ۱۲/۳ میلی‌متر و حاصل در
مهمه، با متوسط ۵ میلی‌متر در روز بود. با محاسبه آزمایش
در عمق توسه ریشه (۵ سانتی‌متر) از سری خاک‌های لنجان
با درصد شن، ۴۳ درصد سیلیت و ۴۳ درصد رس، دارای
بافای لوم رس؛ جرم مخصوص ظاهری حدود ۱/۶ گرم بر
سانتی‌متر مکعب، ظرفیت زراعی خاک حدود ۲۴ درصد واتیک،
اسیدیت حداکثر ۰/۶۳ میلی‌متر، فسفر و پتاسیم قابل دسترس به
تراپی ۴۵ و ۳۰۰ کیلوگرم در هکتار و هدایت الکتریکی
عصاره اشباع ۰/۱۷۸ دسی‌پنومتر بر متر بود.

محل اجرای آزمایش در سال زراعی قبل از آزمایشی
زارع بوته قابل ملاحظه بود و بنابراین آزمایشی
زاین در ابتدا نشان داد که با دو سیستم عمده برمی‌توان دو
استفاده از دستگاه جوی و پشت‌هایش، پشت‌هایش به فاصل
سانتی‌متر ایجاد شد. سبیل دان که هفت اقدام به ابعاد
۵ و ۱۴ متر و شاخص
تیره و با دست، در پاتاهای بی‌های ۵ بود.
همه ریفکشت گردید. فاصله بین پوشه پنجه سانتی‌متر،
تراک مطلب ۴۰۰ هزار بوته در هکتار و فاصله کاشت
به‌طور متوسط ۱۳۷۹.
حرارت رطوبتی و تاریخ کاشت بر عملکرد و اجراهای...

\[W_{24}=\frac{556}{\sqrt[1/4]{k}} \]

\[k = \text{وزن آبی که نمونه خاک پس از 24 ساعت فراگرفتن در آن جا به‌دست می‌آید} \]

\[W_{24} = \text{وزن آب از دست رفته پس از 9 ساعت} \]

\[Q = \frac{b}{\text{دهج سانتی‌متر}} \]

\[d = \text{درصد وزنی رطوبت خاک در حد گنجشک زراعی} \]

\[FC = \text{درصد وزنی رطوبت خاک در موقعیت نمونه‌گیری} \]

\[SM = \text{وزن مخصوص ظاهری‌سازی خاک (گرم بر سانتی‌متر مکعب)} \]

\[A = \text{مساحت کرت (متر مربع)} \]

\[d = \text{عمق توسه مولر ریشه (متر)} \]

\[
\text{برای آب‌کشی خاک} \quad B = \text{عمق توسه ریشه} \\
\text{افزوده شد و برای تعیین درجه روز رشد 1 در طول دوره رشد،} \\
\text{از رابطه زیر استفاده گردید:} \\
\text{GDD=([Tmax + Tmin]/2) - T_b} \]

1- Growing Degree-Days
نتایج و بحث

اثر تیمارهای آزمایشی بر مراحل نمو در این آزمایش، مراحل نمو لوبیاچنی که تحت تأثیر تیمارهای آبیاری قرار گرفتند و روند معینی نیز بین تیمارهای مشاهده نگردید. درجه‌روز رشد تجمعی و تعداد روز تا هر یک از مراحل نمو روشی و راهی گیاه لوبیاچنی، تحت تأثیر تیمار کاشت در طول دوره رسیدن به مرحله گل‌دهی کاکش پایه (جدول 1). این میزان در تاریخ هفت هفته و هفت روز پس از سبز شدن و پس از 328 و 327 ساعت رشد مربوط به 180 روز در روش درمان گروه R

در تاریخ یا کاشت عالی، طول دوره رسیدن به مرحله (تکیهگاه و پرکودن دانه) برابر 58 و 80 روز پس از سبز شدن و پس از درمان 369 و 581 روز درجه‌روز رشد بود. در تاریخ کاشت اول، لوبیاچنی به 103 و 107 روز در دو روش 617 و 606 درجه‌روز رشد در تاریخ کاشت دوم، پس از 100 روز و 950 روز درجه‌روز رشد به نسبتی فیزیولوژیک رسید. آن‌اندازه (1)

کل درجه‌روز رشد لامرا را برای رشدگی این ژنوتیپ به بل加固

فیزیولوژیک، در تراکم مشابه 1100 در روش 4.17

این مقدار را 19 124 روز درجه‌روز در تاریخ کاشت 31 روز زودتر از تاریخ کاشت اول این آزمایش به دست آورد. همان طور که مشاهده می‌شد با تاخیر در کاشت طول دوره رسیدن به گل کاکش باقی مانده، مراحل نمو کاکش شده، زمان رسیدگی تسریع شده است. می‌توان این نمودار روش (19) را ارتباط بین نسبت‌های درجه‌روز رشد و مراحل 1/1، با مقدار میلی‌بیلی (DAE) در جهت درجه‌روز رشد (GDD) و درجه‌روز رشد از سبز شدن 1. Days After Emergence

[5]

که:

شاخچ برداشت

عملکرد اقتصادی (عملکرد دانه) = Gy

عملکرد بیولوژیکی = By

برای تعیین سهم اجزاء عملکرد (عبارتی غلاف در متر مربع،

تعادل دانه در غلاف و وزن صد دانه در عملکرد دانه، ز روی

رگرسیون به گام جلو روندن در نرم‌افزار SAS استفاده شد. هم

چنین با داشتن مقدار کل آب مصری، بازده مصرف آب محاسبه

پایه لوبیاچنی در درجه‌روز بیش از 15 جدول 1 ارائه شده است.

GDD = درجه‌روز رشد پس از سبز شدن

Tmax = حداقل درجه حرارت روزانه (سانتی‌گراد)

Tmin = حداقل درجه حرارت روزانه (سانتی‌گراد)

Tb = درجه حرارت پایه (سانتی‌گراد)

1. Days After Emergence
جدول ۱: زمان وقوع مراحل نمروشی و رایش لوییچیتی (لاین آزمایشی ۱۸۱۶) تحت تأثیر تاریخ کاشت، بر حسب روز و درجه رژه رشد پیس از سیر شدن

<table>
<thead>
<tr>
<th>درجه-روز رشد پیس</th>
<th>روز پساز از ۹۰ درصد سپیدن</th>
<th>هشتم خرداد هشتم تیر</th>
<th>مرحله تک گروه‌ای (V₀)</th>
<th>مرحله دو گروه-های (V₁)</th>
<th>مرحله سه گروه‌های (V₂)</th>
<th>مرحله چهار گروه‌های (V₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۲</td>
<td>۸</td>
<td>۹</td>
<td>(R₁ - R₂)</td>
<td>(R₂ - R₃)</td>
<td>(R₃ - R₄)</td>
<td>(R₄)</td>
</tr>
<tr>
<td>۱۲۷</td>
<td>۱۲</td>
<td>۱۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۸۵</td>
<td>۱۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۴۲</td>
<td>۲۰</td>
<td>۲۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۴۸</td>
<td>۲۷</td>
<td>۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۲۶</td>
<td>۳۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۱۸</td>
<td>۴۳</td>
<td>۴۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۱۲</td>
<td>۴۸</td>
<td>۴۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶۹۲</td>
<td>۶۲</td>
<td>۶۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷۵۲</td>
<td>۷۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۸۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۹۸</td>
<td>۷۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۱۷۴</td>
<td>۱۰۰</td>
<td>۱۰۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

لوییچیتی را نشن می‌دهند.

اثر تاریخ کاشت بر عملکرد و اجزای عملکرد

اثر تاریخ کاشت بر عملکرد دانه و اجزای عملکرد (تعداد غلاف در متر مربع، تعداد دانه در غلاف، تعداد غلاف در بوته، تعداد دانه در بوته و وزنهصد دانه) عملکرد پیلولوژیک و شاخص برداشت در سطح یک درصد معنی‌دار بود. لر تاریخ کاشت نیز بر عملکرد دانه و بعضی از اجزای عملکرد (نظر تعادل) غلاف در متر مربع، تعداد غلاف در بوته و تعداد دانه در بوته) عملکرد پیلولوژیک و شاخص برداشت در سطح یک درصد معنی‌دار بود. مقایسه میانگین‌های عملکرد دانه، اجزای عملکرد دانه، عملکرد پیلولوژیک و شاخص برداشت در زمینه مختلف آبیاری و دور تاریخ کاشت، در جدول ۲ و ۳ آراش شده است.

یکی از اجزای عملکرد، تعداد غلاف در متر مربع است. به طور متوسط، تعداد غلاف در متر مربع نیز تا ۱۰۰ درصد کاهش در خلال این مدت مشاهده شده است. به طور متوسط، تعداد دانه در غلاف در تاریخ کاشت T₀ تا ۱۰۰ درصد کاهش در خلال این مدت مشاهده شده است. به طور متوسط، تعداد دانه در غلاف در تاریخ کاشت T₀ تا ۱۰۰ درصد کاهش در خلال این مدت مشاهده شده است.
نمودار 1. تغییرات درجه حرارت روزانه و زمان وقوع گل‌دهی (P₁) و رسیدگی نیتریژنی (R₁) در دو تاریخ کاشت (P₁ و P₂)

جهت بررسی عملکرد، وزن صد دانه است. وزن صد دانه تحت تأثیر تعدادهای آبیاری و تاریخ کاشت (P₁ و P₂) قرار گرفته است. میانگین وزن صد دانه در تیمارهای Q5/P₁ = T₁ به ترتیب 3/32432 و 3/32432 تعداد گرم بوده و با رزرو در تیمار وزن پیشتری پیدا کرده‌اند. وزن صد دانه تیمار P₁ توسط T₁ = T₁ وزن پیشتری پیدا کرده و تیمار P₁ = T₁ نسبت به T₁ تیمار آبیاری در اندام 8/331 درصد افزایش یافته است. همچنین تأخیر در کاشت باعث کاهش وزن صد دانه شده است و این میزان در تاریخ‌های کاشت هفت هفته و هفت تیر به ترتیب 3/32432 و 3/32432 میزان آبیاری، وزن نشان افزایش یافته و لی تعداد غلاف و درصد غلاف‌دهی کاهش می‌یابد. حسین زاده قورت ته (2) این کاشت عملکرد میانگین آب و افزایش در نسبت به T₁ و T₁ آبیاری می‌باشد. افزایش نسبت به کاشت را کاشت را کاهش غلاف، میزان کل گل‌دهی، تعداد گل‌ها و هزینه‌های با درجه حرارت آبیاری تشکیل دهنده بخشی خاک گزارش نموده است. تیمار (5) گزارش کرد که با تأخیر در کاشت، تعداد غلاف، تعداد دانه و عملکرد دانه در بونه سویا کاهش می‌یابد.

اثر تیمار‌های آبیاری و تاریخ کاشت بر عملکرد دانه، در سطح‌های

سکه‌ها در دوز 8/331 درصد معنی‌دار بود. میانگین عملکرد دانه در تیمارها

TA₁ = T₁ به ترتیب 35/1008 و 3/32432 کیلوگرم در
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>o</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
</tr>
</tbody>
</table>
جدول 4. روابط اجزای عملکرد و عملکرد دانه لوییچنتی به ترتیب اهمیت

<table>
<thead>
<tr>
<th>عاملات</th>
<th>ضریب تشخیص (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y = -0.8850</td>
<td></td>
</tr>
<tr>
<td>Y = 0.8570</td>
<td></td>
</tr>
<tr>
<td>Y = -0.8595</td>
<td></td>
</tr>
</tbody>
</table>

$Y = \text{عملکرد دانه}$, $P = \text{تعداد غلظ در متر مربع}$, $W_{1} = \text{تعداد دانه در غلاف}$, وزن صد دانه

از تغییرات عملکرد دانه تا توجهی می‌کنند. تعادل دانه در غلاف (SDP) در دو گروه اصلی قرار گرفته و 10 درصد تغییرات را توجه می‌کند. و همانطور با جزو آن، 95 درصد تغییرات عملکرد دانه را شامل می‌شود. از جمله 99 درصد ثابتی و 5 درصد ثابتی تشخیص نمی‌شود. واریانس وزن هزار دانه تغییرات را به حدود 99 درصد ثابتی واریانس وزن صد دانه تغییرات را به حدود 99 درصد ثابتی می‌کند. واریانس وزن صد دانه W_{1}، تأثیر معنی‌داری بر ضریب تشخیص مدل نشان می‌دهد و این امر نشان دهنده ثبات بیشتر آن در مقایسه با سایر اجزای عملکرد دانه می‌باشد.

در این بررسی، تعداد غلظ در متر مربع هم‌بینی بالایی با عملکرد دانه داشت، و احتمالاً اتصالات اساسی عملکرد دانه در تیمارهای مختلف آزمایشی را می‌توان به تفاوت تعداد غلظ در اکثر شمال نسبت داد. یافته‌های سایر پژوهشگران (11) نیز نشان می‌دهد که تعداد غلظ در متر مربع حساس است. گروه جزء عملکرد به نشانه‌های معنی‌دار است و اجزای عملکردی که در فاز رابی زودتر تشکیل شده‌اند و اکثر بیشتر به نشانه می‌دهند.

تأثیر تغییرات عملکرد دانه دچار کاهش داشته است (افت محصول 44/210 کیلوگرم در هکتار). با این حال، به تعداد حرفه ای تا زمان تأثیر T_{1} و T_{2} با تیمارهای T_{1} و T_{2} تفاوت معنی‌داری نشان نمی‌دهند. در اثر تغییرات آزمایشی بر عملکرد بیپولاریک و شاخه در تیمارهای T_{1} و T_{2} تفاوت معنی‌داری نشان نمی‌دهند.
جدول 5. مقایسه میانگین‌های باره مصرف آب (بر حسب کیلوگرم بر متر مکعب) برای عملکرد دانه و عملکرد بیولوژیک در تیمارهای مختلف آبیاری و دو تاریخ کاشت

<table>
<thead>
<tr>
<th>تاریخ کاشت</th>
<th>باره مصرف آب برای عملکرد دانه</th>
<th>باره مصرف آب برای عملکرد بیولوژیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۵۵۶۵A</td>
<td>۱/۱۴۲ب</td>
<td>۱/۳۵۵۶۵A</td>
</tr>
<tr>
<td>۱/۱۴۲ب</td>
<td>۱/۳۵۵۶۵A</td>
<td>۱/۳۵۵۶۵A</td>
</tr>
<tr>
<td>۱/۱۴۲ب</td>
<td>۰/۱۴۲ب</td>
<td>۰/۵۹۱ب</td>
</tr>
</tbody>
</table>

۱. میانگین‌ها روش آزمون چند دامنه دانک در مساحت‌های آبیاری، تاریخ کاشت، میانگین‌ها، و تفاوت بین میانگین‌ها را در مورد آماری معنی‌دار نیست.

اثر تیمارهای آزمایشی بر باره مصرف آب

از هم‌میانگین عوامل مؤثر در برنامه‌ریزی آبیاری، باره مصرف آب است. مقایسه باره مصرف آب در مدت ۱۰۲/۷۶ کیلوگرم دانه بیشتر به ترتیب تیمارهای ۱۰۱۵/۸۷ و ۱۵۱۶/۲۱ کیلوگرم مربوط به تیمارهای ۷۷۷۱۱/۶۷ و ۳۵۸۵/۱ کیلوگرم هستند. در حالی که باره مصرف آب در مدت ۶۳۹۹/۱۶ و ۱۰۲/۷۶ کیلوگرم ۵۷۷۱/۷۶ و ۵۷۷۱/۷۶ کیلوگرم است. نتایج باره مصرف آب از تاریخ کاشت، مقایسه باره مصرف آب، و همچنین تاریخ کاشت، مقایسه باره مصرف آب در مدت ۶۳۹۹/۱۶ و ۱۰۲/۷۶ کیلوگرم‌ها جدید، نشان می‌دهد که باره مصرف آب در تیمارهای آبیاری سطح احتمالی ۱/۸ خاموش می‌باشد.

در نهایت، باره مصرف آب در هر یک از تیمارهای آبیاری (۷۷۷۱۱/۶۷ ۱۵۱۶/۲۱ ۱۰۲/۷۶) می‌تواند یک ضعف جدی و مربوط به تیمارهای ۷۷۷۱۱/۶۷ و ۱۵۱۶/۲۱ کیلوگرم در مصرف آب باشد.

۶۷. هم چنین، تأثیر دو تاریخ کاشت، تولید ساقه های فرعی و توزیع محل شکر بیشتر در انتهای شاخه‌های راستی را در میانه و کاهش عملکرد بیولوژیک و افزایش شاخص بیماری‌ها را در سرب سبب کرده است (۲۶، ۱۲۴ و ۲۴).

اثر تیمارهای آزمایشی بر باره مصرف آب

از هم‌میانگین عوامل مؤثر در برنامه‌ریزی آبیاری، باره مصرف آب است. مقایسه باره مصرف آب در مدت ۱۰۲/۷۶ کیلوگرم دانه بیشتر به ترتیب تیمارهای ۱۰۱۵/۸۷ و ۱۵۱۶/۲۱ کیلوگرم مربوط به تیمارهای ۷۷۷۱۱/۶۷ و ۵۷۷۱/۷۶ کیلوگرم است. نتایج باره مصرف آب از تاریخ کاشت، مقایسه باره مصرف آب، و همچنین تاریخ کاشت، مقایسه باره مصرف آب در مدت ۶۳۹۹/۱۶ و ۱۰۲/۷۶ کیلوگرم‌ها جدید، نشان می‌دهد که باره مصرف آب در تیمارهای آبیاری سطح احتمالی ۱/۸ خاموش می‌باشد.

در نهایت، باره مصرف آب در هر یک از تیمارهای آبیاری (۷۷۷۱۱/۶۷ ۱۵۱۶/۲۱ ۱۰۲/۷۶) می‌تواند یک ضعف جدی و مربوط به تیمارهای ۷۷۷۱۱/۶۷ و ۱۵۱۶/۲۱ کیلوگرم در مصرف آب باشد.

۶۷. هم چنین، تأثیر دو تاریخ کاشت، تولید ساقه های فرعی و توزیع محل شکر بیشتر در انتهای شاخه‌های راستی را در میانه و کاهش عملکرد بیولوژیک و افزایش شاخص بیماری‌ها را در سرب سبب کرده است (۲۶، ۱۲۴ و ۲۴).

اثر تیمارهای آزمایشی بر باره مصرف آب

از هم‌میانگین عوامل مؤثر در برنامه‌ریزی آبیاری، باره مصرف آب است. مقایسه باره مصرف آب در مدت ۱۰۲/۷۶ کیلوگرم دانه بیشتر به ترتیب تیمارهای ۱۰۱۵/۸۷ و ۱۵۱۶/۲۱ کیلوگرم مربوط به تیمارهای ۷۷۷۱۱/۶۷ و ۵۷۷۱/۷۶ کیلوگرم است. نتایج باره مصرف آب از تاریخ کاشت، مقایسه باره مصرف آب، و همچنین تاریخ کاشت، مقایسه باره مصرف آب در مدت ۶۳۹۹/۱۶ و ۱۰۲/۷۶ کیلوگرم‌ها جدید، نشان می‌دهد که باره مصرف آب در تیمارهای آبیاری سطح احتمالی ۱/۸ خاموش می‌باشد.

در نهایت، باره مصرف آب در هر یک از تیمارهای آبیاری (۷۷۷۱۱/۶۷ ۱۵۱۶/۲۱ ۱۰۲/۷۶) می‌تواند یک ضعف جدی و مربوط به تیمارهای ۷۷۷۱۱/۶۷ و ۱۵۱۶/۲۱ کیلوگرم در مصرف آب باشد.

۶۷. هم چنین، تأثیر دو تاریخ کاشت، تولید ساقه های فرعی و توزیع محل شکر بیشتر در انتهای شاخه‌های راستی را در میانه و کاهش عملکرد بیولوژیک و افزایش شاخص بیماری‌ها را در سرب سبب کرده است (۲۶، ۱۲۴ و ۲۴).
منابع مورد استفاده

1. آقا میری، س. 1372. اثرات آنزیم کاوش بر خصوصیات فیزیولوژیکی لوپینی (لاین آزمایشی ۱۸۱۶). پایان‌نامه کارشناسی ارشد دانشگاه صنعتی اصفهان

2. حسین‌آبادی فریبرز، ت. 1373. اثرات زمان تریخت و تراکم کاشت بر درد پوست فیبری، عضله و اجزای عملکرد دانه ارقام، دانشگاه صنعتی اصفهان

3. خدام‌دایشی، م. 1363. اثرات زنده‌ماندن آبیاری بر رشد و وزن دانه، دانشگاه صنعتی اصفهان

4. کشاورزی، دانشگاه صنعتی اصفهان

5. ربی، ج، 1364. اثرات تاریخ کاشت بر عملکرد و اجزای عملکرد دانه آزمایشی (لاین 1816)

6. ژینی، م. 1370. اثرات زعفران کوهی در افزایش سرک و اجزای عملکرد دانه لوپینی (لاین آزمایشی ۱۸۱۶).

7. کرامر، پ. 1369. رابطه آب و غیاب و کاهش (ترجمه‌ی اصلی) انتشارات جامد مسجد

8. مهندس، ف. 1368. فیزیولوژی گیاهان زراعی (ترجمه‌ی استوانه) دانشگاه صنعتی اصفهان

9. مینه‌ی حسنی، ن. 1372. انتشارات جهاد دانشگاهی مشهد

