بررسی تغییرات اسیدهای آلی در طول دوره رسیدن پترهای سفید آب‌نرمی ایرانی با استفاده از مایه‌های مختلف لاکتیکی

چکیده

در تهیه پترهای سفید آب‌نرمی ایرانی از مایه‌های مختلف لاکتیک استفاده می‌گردد. که هر کدام آثار متغیرترین بر وزن‌گذاری فیزیک‌شیمیایی و ارگانولوژیکی پترهای گذارانه بررسی یافته‌ها، مخصوصاً تبعیضات در اسیدهای آلی برای تغییرات میزان فعالیت بین ماشه‌ها، بی‌دلایلی مختلف حاوی‌امید است. در این پژوهش پنج نمونه مختلف پتره با پنج قرومه مختلف از مایه‌های لاکتیک تهیه گردید، و به مدت سه ماه در آپ نمک هشتم در مدت 11-12 روز جاری می‌گردید. نتایج این آزمایش نشان داد که این دو عوامل مصرف پتره به نسبت برای افزایش نسبی کربوهیدرات‌گذرگی می‌باشد. ماورای نشان داده شده با استفاده از سه نوع مختلف اسیدهای آلی صورت پذیرفته برای مصرف زمین زیر زمینی انجام گردید. اسیدهای آلی پپتید در افزایش کربوهیدرات‌گذرگی و افزایش کندنیت و پرورش لاکتیکی، فعالیت آنزیم‌های گیاهی بهبودی و رشد پیوسته از یک دسته به ترتیب بیوگریدی و پتره‌ها در درک زمین زیر زمینی این مصرف‌های مصرف پتره به نسبت در جریان ادامه می‌رسد.

شماره دخانی، ر. س. ستاری و محمد باقر حسینی

واژه کلیدی: ماشه‌های لاکتیک، اسیدهای آلی، پتره‌های سفید آب‌نرمی
پیگیری اصلی در تولید نعید، تولید اسید لاکتیک توسط بакتری‌های مایه لاکتیک می‌باشد. کربوهیدرات موجود در شیر از طریق مصرف شناخته شده هگروژ دفع شده و ایجاد پیروکس کبدی شده، اسید پیروکس به عنوان گروه‌های الکترون عمل می‌کند. اسید پیروکس یک ترکیب واسطه است و می‌تواند به ترکیبات دیگر بدل شود. در بیوتورهای رشد لاکتیک کمتر مورد نظر است و لی اثرات لاکتیک می‌باشد.

مواد و روش‌ها

مواد

1- شیر خام با 23 درصد چربی از محل دامداری داشته‌کنده کشاورزی دانشگاه صنعتی اصفهان، واقع در مزرعه لوری به نهی گردید.

2- انواع مایه‌های لاکتیک استفاده شده در این طرح عبارتند از:

الف) ترموفسیل با کد-1، CH-1، Lactobacillus bulgaricus و

ب) استرتوسپورس سالیواریوس (Streptococcus salivarius spp thermophilus) که به نسبت یک به یک انتخاب شده و در صورتی که pH به نسبت 5-5 بررسی کرد، 54 مخلوط لاکتوکسیک لاکتیک زیبر گونه کروماسی (Lactococcus lactis spp. lactis) لاکتیک با نسبت 0-5 درصد و لاکتوکسیک لاکتیک زیبر گونه کروماسی (Lactococcus lactis spp. cremoris) 98-89 درصد مقدار و تغییرات تعدادی میکروفلورا ثانویه دارد. (۲۱)
میلی‌متر در دقیقه تنظیم گریف. برای محاسبه درصد بازیابی اسیدهای آلی روشن دخانی (11) به کار رفته.

روش‌ها

تهیه کشت‌های لاکتیک به ۵۰۰ میلی‌لیتر شیر تازه کم‌چربی، که در دما ۱۲۱ درجه سانتی‌گراد به مدت ۱۵ دقیقه استریل و خنک شده بود، حدود یک گرم از باکتری‌های مایه‌مواد نظر انزیم‌های گریف، و در انکوباسور به شرایط زیر نگهداری شدند: هر دقیقه/یک لیتر:

۱.۵۰۰ درصد اسید لاکتیک به یخچال منتقل گردید.

۳. آزمون لجستیک شیر با نام تجارتی همانا، در باسته‌های ۱۰۰ گرمی از کمپانی‌های دنمارک تهیه شد.

۴. به منظور تجزیه نمونه‌ها، کلیه مواد شیمیایی این طرح از کمپانی‌های مرک مالانیا زیگ‌رگیم انگلیس (با خلخل دابلر) و ۹/۵ درصد (تیه) تهیه گردید.

لوازم

HPLC

برای انتقال موادی اسیدهای آلی از دستگاه HPLC مدل Shimadzu استفاده گردید. این سیستم مجهز به شناساگر سیار LC-6A و CTO-5A چنگال سیار دارد. بخش مدل Shimadzu SPD-6AV چنگال سیار شیمیایی و کرومتوپیک تجزیه و تحلیل کنته کامپیوتری مدل C-R4A با پیک سیستم جدای سی‌آری معالج اینترون (Ion Exclusion) Shimadzu مدل SCR-10H به ابعاد ۲۵۰×۴ میلی‌متر، در داخل آون با دمای ۷۰ درجه سانتی‌گراد استفاده و در نمونه به یک پیک تزریق شد. شناساگار سیار به دقت ۱۱۴ نانومترینیم شد. سیستم فاز محور، ایزوتروپیک و براز تهیه فاز محور از محلول اسید سولفوریک رقیق به اتمالاته‌های ۰/۰۰۱۰۰ استفاده گردید. محلول مذکور از صاف‌های تحت خلا از میکرو ابرام داده شد و آن که عمل هوایی تحت خلا به مدت ۲۰ دقیقه انجام گرفت (۱۱).

سرعت حركت فاز محور را ۷ میلی‌لیتر در دقیقه حساب سیستم روز چهار و سرعت حشرات روز پن‌سی.
محلول EDTA پنج درصد بود. آن گاه این محلول رفیق شده با سانتریفژ مدل EBA-3 Hettich به مقدار 20 میلی‌لیتر عبور داده شد. هر میلی‌لیتر از هر نمونه به مقدار 20 میلی‌لیتر تزریق و تا زمان تبیه شده باشد. از این پهناوری 2.5 میکرومتر عبرت شد. هر میلی‌لیتر از هر نمونه به مقدار 20 میلی‌لیتر تزریق و تا زمان تبیه شده زمان تبیه شده. نوع غلظت (Retention time) آزمایش‌های آن موجود در نمونه، با توجه به منحنی‌های استاندارد و زمان پاپیاردی هر اسید خارجی، مسؤولیت و محاکیه

گردید.

میزان و رطوبت نمونه‌ها در دامنه 100 درجه سانتی‌گراد در آن، شایعه به وزن نیای شدن (5).

اندازه‌گیری میزان نمک در پنجه

برای تعیین میزان نمک از روش ولار (Volhard) استفاده و به صورت درصد نمک در نمونه مرطوب پنجه‌گزارش گردید.

تجزیه و تحلیل آماری در این پژوهش، عوامل مورد بررسی که به صورت متغیر تأثیر داشتند شامل نمای میزان مصرف استفاده در تولید پنجه فرمول مختلف و زمان نگهداری (زمانی مختل) بود. هدف مورد بررسی گرفتن ما آزمایش با سه تکرار انجام شد. در تمام آزمون‌ها از تجزیه واریانس و اثر مصالح میانگین‌ها استفاده شد. طرح آماری به صورت طرح یک‌کرسی SAS برای SAS جنبی و تحلیل آماری استفاده گردید. برای مقایسه میانگین‌ها برخی از سمات تحت بررسی از آزمون چند دامنی دانکن استفاده گردید.

تجزیه و تحلیل چند مرحله ای گرگاسون به نرم‌افزار SAS 11 استخراج استفاده‌های آن برای استرتوالعمل دخانی (11). با مقدار تغییر انجام گرفت. قابل‌های پنجه از خروج از سردهنامه داخل هوان به صورت عملیات یک‌پاپیاردی در 40 گرم از نمونه یک‌پاپیاردی شد و به یک بالانژولز میلی‌لیتر متخلل گردید. سپس به وسیله محلول بارف به حجم رسیدن شد (محلول بارف مخلوطی از 500 میلی‌لیتر استفاده کننده پنجه و پنج میلی‌لیتر سولفاتیک 0.9 نرم، 50 میلی‌لیتر آب مغز و پنج میلی‌لیتر آب مغز و پنج میلی‌لیتر

202
برابر دستورالعمل داخلی (11) نشان می‌دهد. همان گونه که در جدول 1 دیده می‌شود، درصد بازیابی اسیدهای فتوت بالال از رز سلولار، که مشابه روغنی است که در گزارش دخاتی (11) نشان داده شده است. شکل 4 مقدار کل اسیدهای آلی را در مراحل مختلف رشیدگی نشان می‌دهد. این شکل در بالا نشان می‌دهد: 90 درصد سلولار، که مشابه روغنی است که در گزارش دخاتی (11) نشان داده شده است.

نتایج و بحث

همانگونه که در شکل 1 مشخص است، میزان رطوبت در کلبه زمان مصرف 603 گرم (24 ساعت پس از تولید) مبتنی بر ترکیب پیشنهادی، آلوده کننده‌های مکروبوسی دانلند کلی در فریبا معمل کند (27).

همانطور که در شکل 5 بوده و این نتیجه نشان می‌دهد، این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه نشان می‌دهد که درصد این اسید رضایی در کل به شکل در بالا نشان می‌دهد. این نتیجه

شکل 3 یک کریماگرام از اسیدهای آلی موجود در یک زمان پنیر (فرمول چهارم) را در روز سیام از رسیدگی نشان می‌دهد. نوع اسیدهای آلی زمان مصرف مذکور با توجه به زمان پنیری اسیدهای آلی استاندارد موجود در کریماگرام شکل 2 شناسایی شده، و با توجه به درصد بازیابی هر کدام از اسیدهای آلی استاندارد، میزان هر اسید آلی بر حسب میکروبی در گرم ماده خشک محاسبه گردید (11).

جدول 2 درصد بازیابی اسیدهای آلی را در نمونه پنیر
جدول 1. درصد نمک در نمونه مرطوب پنیر در پنج فرمول پنیر تهیه شده با میکروگرم های مختلف لاکتیک در طی 10 روز رسیدن

درصد نمک در نمونه مرطوب پنیر	1	2	3	4	5	لخته
	4/23b	3/15d	2/17d	4/05c	4/83c	1
	0/48c	3/26g	3/48d	0/01b	0/01c	10
	0/10d	0/33d	0/50b	0/05c	0/16a	30
	0/20d	0/72d	0/91d	0/24d	0/33c	60

1. قبل از ورود به آب نمک میانگین هایی که دارای هر قرارهای در یک ستون نشان دهنده اختلاف معنی‌داری در سطح 0.01 دارد.

جدول 2. درصد بازیافت اسیدهای آلی در نمونه پنیر تهیه شده با دستگاه HPLC

<table>
<thead>
<tr>
<th>نوع اسید آلی</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسید لاکتیک</td>
<td>1600</td>
<td>1450</td>
<td>1000</td>
</tr>
<tr>
<td>اسید استبیک</td>
<td>1000</td>
<td>71</td>
<td>500</td>
</tr>
<tr>
<td>اسید پروپیونیک</td>
<td>1000</td>
<td>71</td>
<td>500</td>
</tr>
<tr>
<td>اسید بیریک</td>
<td>1000</td>
<td>71</td>
<td>500</td>
</tr>
<tr>
<td>اسید سیریک</td>
<td>1000</td>
<td>71</td>
<td>500</td>
</tr>
<tr>
<td>اسید اورتیک</td>
<td>1000</td>
<td>71</td>
<td>500</td>
</tr>
</tbody>
</table>

D = میکروگرم اسید موجود در یک گرم پنیر

C = کل میزان اسید اندوزه‌گیری شده

B = میکروگرم اسید اضافه شده به یک گرم پنیر

A = درصد بازیافت

1. میانگین سه توزیع برای هر نمونه

 pik 98/1 98/5 98/2 95 92 90 87 84 D = درصد بازیافت

C = کل میزان اسید اندوزه‌گیری شده

B = میکروگرم اسید موجود در یک گرم پنیر

A = میکروگرم اسید اضافه شده به یک گرم پنیر

شکل 1. درصد رطوبت نمونه‌های مختلف پنیر در طول 10 روز نگهداری

شکل 2. تغییرات در درصد رطوبت نمونه‌های حضور باکتری‌های سیترات و 2

شکل 3. تغییرات در درصد رطوبت نمونه‌های حضور باکتری‌های سیترات و 2
پرسی تغییرات اسیدهای آنی در طول دوره رسیدن پیشنهای سپید آمینمک ایرانی یا

شکل ۳: کروماتوگرام اسیدهای آنی یک نمونه پیتر HPLC

شکل ۲: کروماتوگرام اسیدهای آنی استاندارد HPLC

شکل ۴: تغییرات میزان کل اسیدهای آنی یک نمونه پیتر در طی رسیدگی

شکل ۵: تغییرات میزان کل اسیدهای آنی یک نمونه پیتر در طی رسیدگی

۲۰۵
شکل ۵. تغییرات میزان اسید لاکتیک (a) اسید سیریک (b) و اسید اورتویک (c) بر حسب میکروگرم در گرم ماده خشک پنیر در طی نگهداری.

شکل ۶. تغییرات میزان اسید بوتیرویک (a) اسید استیک (b) اسید پروپیونیک (c) و اسید پپتیک (d) بر حسب میکروگرم در گرم ماده خشک پنیر در طی نگهداری.
برویسی تغییرات اسیدهای آلی در طول دوره رشد پنیرهای سفید آینه‌ای ایرانی با...

می‌تواند لوکوئنستوك متروریپید زیرگونه کرموریس و لاکتوکورس لاتینسی برپارویتیا دی‌استی لاتینسی باشد.
گزارش‌های (10) و (16) نشان می‌دهد که با حضور لاکتوکورس لاکتوکورس برپارویتیا دی‌استی لاتینسی یا حضور این باکتری همراه با لوکوئنستوك متروریپید زیرگونه کرموریس، پس از سه ماه مقدار سیترین تیتر چدار به صفر کاهش یافته است.

در میاند نمونه بهترین بوده، کاهش مقدار اسید سیترینیک در نمونه 2 بیش از نمونه 1 است، که دلیل آن احتمالاً کاهش مصرف pH تر سریع‌تر مصرف و کاهش است. لاکتوکورس سیترینیک در طول دوره نکه‌هاری پنیر در تیمارهای فاقد باکتری‌های سیترینیک هر می‌توان به باکتری‌های دیگر مایه همچون لاکتوسیالسیز مورفیل و لاکتوکورسیز مناسب دارد. اگرچه برخی پژوهش‌ها گزارش شده است که برخی از سیترینیک لاکتوسیالسیز، لاکتوسیالسیز فاقد مقدار جزیی و سیترین تیتر در پنیر تولید کنن، نشان دهنده مایعات لاکتوسیالسیز است.

سیترین ممکن است به عنوان سوسترا نیز توسط مایه استفاده شود و به این پروریک و اسید سیترینیک تبدیل گردد.

دوتا و همکاران (11) گزارش کرده‌اند که کلیه سویه‌های لاکتوسیالسیز کاریک می‌توانند سیترین‌ها را مصرف کنند. ولی برخی از لاکتوسیالسیز‌ها با تخمیر ناهمگن (Heterofermentative) لاکتوسیالسیزیکند، تقریباً به مصرف سیترین‌ها نتیجه می‌دهند. در حالی که تعدادی از پژوهشگران خلاف این مطلب را نشان داده‌اند.

لاکتوسیالسیزها در مجاورت سیترین‌ها به آرامی رشد می‌کنند و سیترین‌ها در مرحله نکه‌هاری، رشد مصرف می‌کنند، ولی مقایسه کم اسید استیک (5) هر میلی‌گرم با استویی (14) استیل و استاتارد (16) تولید نمی‌شود.

روند تغییرات اسید اروتوئیکی در کلیه نمونه‌های پنیر نژادی است. این اسید به راحتی توسط باکتری‌ها مصرف می‌شود، و در مقایسه با شش اسید آلی مورد بررسی، به مقدار بسیار کمتری

207
لاکتوکسولوس‌ها. خصوصاً کونیا کازیلی، شدیدتر از لاکتوکسولوس‌ها لاق کننده این پژوهشگران در فرول کمینی‌ها و احتمالاً لاکتوکسولوس‌ها فقدان در آن درکیست، اسید استیکی و از تروپیونین اسید پروپیونیک تولید کنند.

با توجه به توصیف ذکر شده، افزایش پیشرفت تولید اسید پروپیونیک در ترکیبت اثر ویژه‌ای می‌تواند به دست آورد. این افزایش در نمونه‌های شامل کشت‌های تروپیونین و مخلوط مزونه و تروپیونین، به‌ویژه در کشت‌های مزونه تولید می‌شود. این افزایش شکل‌پذیری سلول‌ها و احتمالاً لاکتوکسولوس‌ها لاق کننده این پژوهشگران در فرول کمینی‌ها و احتمالاً لاکتوکسولوس‌ها فقدان در آن درکیست، اسید استیکی و از تروپیونین اسید پروپیونیک تولید کنند.

برای امکان‌پذیری این موضوع به سبب پژوهشگران مختلف از اورون لاکتوکسولوس بولگاریکوس به شیمی سویی تأثیر بیشتر بر فاکتور میکروبی و ویژگی‌های شیمیایی پنتر، مانند طعم و رنگ قنادی تولید اسید پروپیونیک، برخی از ترکیبات طبیعتی و سایر مواد باعث ارتباط بین شدت میکروبیگینیت‌های کارکوب‌کننده گزارش شد.
سسغزاري

از ناحيي اصبعان و دانشگاه فردوسی مشهد كه هرده انجام اين طرح را شرکت كرده‌اند، از پرسنل آزمایشگاه دو دانشگاه فوق به خاطر همکاری‌های اروزنه در انجام اين طرح سيسغزاري مي‌شود. همچنين، از خانم شهناز تيازي به خاطر تامپ مقاله تشكيك و قدردادي مي‌گردد.

معين نمود

که در این موارد:

$\tau = \frac{t}{4} \times 0.2$

$\eta = \frac{1}{4} [C] - \frac{2}{4} [L] - \frac{1}{4} [B]$

$\mu = \frac{1}{4} [A] - \frac{1}{4} [O] - \frac{1}{4} [P]$

نامه 4

نامه 5

