تشخیص نژادهای فیزیولوژیکی Ascochyta rabiei عامل بیماری برق زدگی نخود، در چند منطقه کشور

خشنود نورالهی، ماهرخ فلاحیانی رستگار و بهروز جعفرپور

چکیده

تعداد ۱۰۰۰ نمونه قارچ از مزارع آلوده نخود کشور، از قبیل منطقه دریاچه زریارو مربیان در استان کردستان، شهریور و خزرشهر در استان آذربایجان شرقی، سرو برزان و شاهین‌دژ در استان آذربایجان غربی، مشهد و ایلام جمع‌آوری شد. این نمونه‌ها از نظر خصوصیات رشد کلی و استورازیای ریو محیط کشت و قدرت بیماری‌زا تفاوت می‌کنند. داده‌ها و براساس منطقه جمع‌آوری به ۱۷ گروه، نهایتاً بر اساس خصوصیات مورفولوژیک، کلیاً ریو محیط کشت مختلف، به ۱۱ گروه تقسیم شدند.

جامعه شماره ۱۶ از مشهد بهترین و جدایی شماره یک از استان کردستان کمترین میزان رشد را داشت. یک جدایی از هرگونه به عنوان نماینده انتخاب شد و بیماری‌یابی آن‌ها مورد آزمایش قرار گرفت. در این طرح نوع واکسن ۱۱ جدایی را انتخاب کرد و براساس عملکرد یک روش ایکاردا (ICARDA) دو نژاد فیزیولوژیکی شماره چهار و شماره شش تشخیص داده شد.

واژه‌های کلیدی: برق زدگی نخود، نژادهای فیزیولوژیک

مقدمه

اغلب کشته‌ها در پرداختن کار از جهان گزارش شده است (5).

تکثیر غیر جنسی این قارچ به وسیله پیکنید و پیکنید بور سرور می‌گردد. پیکنید تیوما فرورفتند. آمغی‌روم، کروی و یا نیمه کروی هستند و آنداده قطعه آنها از ۵۵ تا ۱۴۵ میکرومتر تغییر می‌کند (12). درجه‌حوارت به هنگام بیماری برق زدگی نخود، یکی از مهم‌ترین و مخرب‌ترین

بیماری‌های نخود است که عمیقاً به‌ềuمران از ما باشند. این بیماری اولین Ascochyta rabiei (Pass.) Lab. بار طی گزارش باتلر (1911) در شمار غربی هندوستان

که امروزه جزئی از پاکستان است می‌باشد. و به‌عمد استفاده شد و ۲ به ترتیب دانشیار و استاد گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

1. کارشناسی ارشد و تحقیقات کشاورزی ایلام
2. به ترتیب دانشیار و استاد گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3. Ascochyta blight
چرداول (استان ایلام) نمونه برداری شد.

چندرازی عامل بیماری

این دست پاتولوژیکی آورده‌ای از ماهی آب‌زی، باعث شادابی یا غلاف به قطعات
نیم یک سانتی‌متری تقسیم شد. پس از ضدعفونی سطحی با
محلول یوبیکرول سدیم ۱% مافعال به مدت ۴۵ دقیقه و
سپس با شستشو با آب مقدار سنتن، به محبوبه کشت

جوئنودن اسپور، تولید پپتیدیم و رشد فاصله ۲۰ درجه
ساتی‌گرد می‌باشد و حراست بالاتر از ۳۰ درجه سانتی‌گراد و
پایین تر از ۱۰ درجه سانتی‌گراد برای رشد فاصله نامطلوب است
(۷ و ۱۰). دوره نهفته‌گیری پاتوژن ۷–۵ روز می‌باشد که بعده درجه
حرارت و زودتپ گیاه مایه‌زی شده توق می‌کند (۱۰ و ۱۲).

مرحله جنی این فاصله در سال ۱۹۴۳ با تاواز علی پر به
وسله‌کوچکه‌کوچکی در بلغشتیان مشاهده شد. آن را
نامید. بعدا مرحله جنی این Mycosphaerella rabiei Kova
Dickholtia rabiei

فاصله توسط فیتو‌ارکس ۷ به

کوچک (۱۸). پایداری فاصله به فرم‌های پیک، گیاهی و یا
سودتوسیم، در بقایای گیاهی و پذیری آن به صورت
می‌گیرد (۱۹).

یک ترکیب آنتیسپور از این بیماری، استفاده از ارقم مقاوم
پلژن است، که اولین قدم در این مورد شناسایی نژادهای
فیژیولوژیک فاصله عامل بیماری باشند. این تحقیق را اصلاح
ارقام مقاوم با انگیزه پیشتر بر صورت گرفته. در پایه تاده‌های
فیژیولوژیک این فاصله مطالعاتی تنها انجام شده است (۱۵). لوئیس
و هم‌کاران (۱۲) شکر فرم بیماری‌زایی
Arabie را با نام‌های
و E . D. C. B. A
گزارش گردید. گروه (۶) در نواده
فیژیولوژیکی و یک بی‌تپا آرا از اندیشگان کرد. تحقیقات
بعدی در اوکراین نشان داد که احتمالاً شکر تاده در سوریه و ۱۲
تاده در جنوب مهدی‌کرمان وجود دارد (۱۶). در آمریکا، در منطقه
شمال آذربایجان و منطقه پالووس (شرق و اشکنک) ۱۱ درم
بیماری‌زایی مختلف توسط جان و ایزا (۸) شناسایی گردید.

مطالعات در زمینه تعیین عامل بیماری، بیماری‌زایی،
منطقه‌نوازی، تأثیر عوامل محیطی در تشکیل و معدوم کردن
اسپوره‌های فاصله می‌گذارد، مناسب برای کشت قاچیر

تشخیص نوزاده‌های فیزیولوژیکی 

مشخصات مورفولوژیک جدایی‌ها

از هر کدام از این 11 گروه، یک جدایی به عنوان نماینده‌گروه انتخاب گردید. از کشت نژاد هر جدایی، یک دسک پنج میلی‌متری انتخاب و در تخته‌های پری حرارت م喜欢吃 کردند. مخصوصاً مورفولوژیک آنها در 11 گروه کاهش یافت. در جدول 2 آمده است.

نتایج

از بافت‌های گیاهی آلوده نخود 200 چیدای خالص شده که ابتدا بر اساس محل جمع آوری و مشخصات کلی در 17 گروه قرار داده شدند. سپس این 17 گروه بر اساس خصوصیات ذکر شده‌ب به 11 گروه کاهش یافته بودند. که خصوصیات مورفولوژیک آنها در جدول 2 آمده است.

تعیین نژاد


روش ماژیزی گیاهان انتقایی

این الگو بر اساس دست از جمعیت است و قرار انتقایی و رقم غیرمباشتصورت و گرم در کلیه دسته‌شنده، در کلیه‌های حاوی خاک و ماسه به نسبت

1. Chickpea Seed Meal Dextrose Agar

139
جدول 1. مقایسه درجه‌ی شده رده و همکاران (17) برای تغییر شدت بیماری زایمانی (A. rabieti) (اعمال برخزگ‌گی نخود)

<table>
<thead>
<tr>
<th>شرح خصائص</th>
<th>عکس العمل</th>
<th>درجه</th>
<th>رده</th>
<th>آلودگی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>R</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>R</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>R</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>R</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>T</td>
<td>16-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>S</td>
<td>41-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>S</td>
<td>51-75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>S</td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>S</td>
<td>مروحیه</td>
</tr>
</tbody>
</table>

جایگاه دری سی در نزدیکی دیده شده، می‌تواند آن در جداول 1 و 2 آمده است.

هرمان طریقه که در جدول 1 مشخص است ارقام (R) و (T) و (S) هستند و ارقام (IC-1929, ICC-1927, ILC-1942, ILC-1942, ILC-1942, ILC-1942) و (S) و (T) و (S) هستند به جایهای شماره

و 17 مناطق شیستر در آذربایجان شرقی، سرو در آذربایجان
تشخیص نؤادهای قیزیولوژیک

جدول ۲. خصوصیات مورفولوژیک جدایه‌های Ascochyta rabiei
بعد از سه هفته در محیط گذاشتن

<table>
<thead>
<tr>
<th>رنگ کننده</th>
<th>قطر کلنی (میکرومتر)</th>
<th>عدد</th>
<th>شماره</th>
<th>رنگ کننده</th>
<th>قطر کلنی (میکرومتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۱۱/۲۷×۴/۲</td>
<td>۱</td>
<td>۱</td>
<td>سیاه متمایل به خاکستری</td>
<td>۱۱/۲۷×۴/۲</td>
</tr>
<tr>
<td>سیاه</td>
<td>۱۰/۵۴×۴/۱</td>
<td>۲</td>
<td>۲</td>
<td>سیاه</td>
<td>۱۰/۵۴×۴/۱</td>
</tr>
<tr>
<td>سیاه</td>
<td>۹/۸۵×۷/۷</td>
<td>۳</td>
<td>۳</td>
<td>سیاه</td>
<td>۹/۸۵×۷/۷</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۴</td>
<td>۴</td>
<td>سیاه</td>
<td>۹/۸۱×۳/۸</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۵</td>
<td>۵</td>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۶</td>
<td>۶</td>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۷</td>
<td>۷</td>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۸</td>
<td>۸</td>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۹</td>
<td>۹</td>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
</tr>
<tr>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
<td>۱۰</td>
<td>۱۰</td>
<td>سیاه متمایل به خاکستری</td>
<td>۹/۸۱×۳/۸</td>
</tr>
</tbody>
</table>

توضیح: قطر کلنی بین ۱۱/۲۷ و ۹/۸۱ میکرومتر بوده است.

جدول ۳. درجات آلوگری ۱۱ رتم انترنقی نخود و یک رتم غیرشناخت نسبت به ۱۱

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاه</td>
<td>۶</td>
</tr>
<tr>
<td>سیاه</td>
<td>۵</td>
</tr>
<tr>
<td>سیاه</td>
<td>۴</td>
</tr>
<tr>
<td>سیاه</td>
<td>۳</td>
</tr>
<tr>
<td>سیاه</td>
<td>۲</td>
</tr>
<tr>
<td>سیاه</td>
<td>۱</td>
</tr>
<tr>
<td>سیاه</td>
<td>۰</td>
</tr>
</tbody>
</table>

توضیح: برای استفاده از این جدول نسبت به ۱۱ به رنگ کننده باید در جدول ۲ از فهرست شماره ۱ رنج کننده که آن را می‌خواهید به کار بگیرید و سپس در جدول ۳ می‌توانید ارقام با رنگ کننده جدایه‌های آن را بیابید.

۱. براساس نوع واکنش ارقام شاخص نسبت به جدایه‌ها، طبق مقياسی برخورد نشده، به‌طور کلی ارقام یک درجه آلوگری داده شد.
جدول 4 عکس العمل ارتقائی نسبت به 11 جدایی نما یا به

<table>
<thead>
<tr>
<th>ارقام</th>
<th>هجم</th>
<th>F-8</th>
<th>ICC-IC</th>
<th>ILC-ILC</th>
<th>ILC-ILC</th>
<th>ILC-ILC</th>
<th>ILC-ILC</th>
<th>ILC-ILC</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۲</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۳</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>۴</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>۵</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>۶</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۷</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۸</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۹</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۰</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۱</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۲</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۳</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۴</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۵</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۶</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>۱۷</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

با استفاده از 400 جدایی، فقط دو نژاد به شماره‌های چهار و شش شناسایی گردید. نژاد شماره چهار فقط قادیر به درهم شکستن مقاومت چهار رقم افتراقی بود و در حالی که نژاد شماره شش توانست مقاومت کلی ارقام افتراقی مورد مطالعه را درهم بشکند. همچنین، این نژاد دارای پراکنش و سیستم و درجه تجارزگری بیشتری می‌باشد. با توجه به حساسیت بودن ارقام افتراقی مختلف نسبت به هر گونه از این دو نژاد، نتیجه می‌شود که این نژادها به‌عنوان از نظر وزنه بیماران زنده‌زنده باشند، که این خود می‌تواند دلیلی بر حساسیت بودن ارقام نخود مزروعی بود. ۱

بحث

نخود در این کشور سالانه در سطح و سیستم کشت می‌شود و افزایش ارقام مزروعی بیماری برخی‌گاه از نخود می‌شود. این موضوع نشانگر آن است که ارقام زراعی موجود از مقاومت زیاد یا پایدار برخوردار نیستند. لذا شناسایی نژادهای فیزیولوژیکی قارچ عامل بیماری، خاصه اصلاح نخود امری ضروری است. برای قارچ Ascochyta rabiei، دو راه از کشورهای مختلف گزارش شده است. مثلاً در سوئیس شش نژاد، در جردن می‌باشد. ۱۱ فرم بیماری‌زا شناسایی شده است (۱۰). در این پرسی،...
null
مطالب آن از طریق نشانه‌گذاری مربوط به این پیشرفت مورد نظر می‌باشد.

کوشش‌های اصلاح نخود در گذشته‌ها منجر به پیدایش ارقام مقاوم به این بیماری شده است، ولی این ارقام پس از مدتی مقاومت نخود را از دست داده و حساس می‌گردند، که به خاطر شکستند متقابل مقاومت و پیدایش ژنتیک جدید و بیماری زای قابل عامل بیماری یا به خاطر تغییر شرایط محیطی می‌باشد. حالات اول، یعنی شکسته شدن مقاومت به بیماری، بیشتر محتمل است (۲۰). از آن‌جایی که در مجموعه فعالیت حاضر، نزدیکی‌های فیزیولوژیک یا در ناحیه که بیماری در آن شیوع

منابع مورد استفاده

1- اخوت، م. ۱۳۵۲. بیماری برکزدگی نخود و راه‌های مبارزه با آن. طرح اصلاح و توسعه کشت حیوانات، دانشگاه کشاورزی، دانشگاه تهران.
2- اخوت، م. ۱۳۵۳. مطالعه در مورد جنگل روش مبارزه، علیه قارچ گزاری ایران: ۱۷-۱۳. ۲۰۰۱. بررسی بیماری برکزدگی نخود و مبارزه با آن در استان فارس. مجله بیماری‌های گیاهی: ۲۸۳-۲۷۳.
3- بیکه، م. پ. خ. ۱۳۵۷. بررسی بیماری برکزدگی نخود و مبارزه با آن در استان فارس. مجله بیماری‌های گیاهی: ۲۸۳-۲۷۳.
4- پوری، م. ن. ۱۳۵۵. درخواست. مجله بیماری برکزدگی نخود در استان کرمان‌شهر. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی، آمریکا میلکشا کشاورزی کرج.
5- Butler E. J. 1918. Fungi and Disease in Plants. Thaker, Sprink and Co., Calcutta, India.


