ارزیابی عملکرد بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

محمد جواد منم، محمد رضا علیرضایی و ابراهیم صالحی

چکیده
بررسی‌هایی به عمل آمده نشان داده است که عملکرد شبکه‌های آبیاری به دلیل مختلف کمتر از حد انتظار است. به همین دلیل توجه به ارتقای عملکرد این شبکه‌ها گوت شده است. تحقیقات گزارش‌های بهبود عملکرد شبکه‌های آبیاری، ارزیابی وضع موجود آنهاست. روش‌های ارائه شده برای ارزیابی عملکرد شبکه‌های آبیاری با هر یک‌یا هر سه روش‌های تجزیه و تحلیل تشخیصی، ارزیابی سریع (RA) و ارزیابی مجازی (DA) جایگزینی و غیر کمی است. و با مانند روش‌های کلاسیک آگر شاخص‌های کمی ارائه می‌کنند. استاندارد‌های برای عملکرد به دست نمی‌دهند. در این مقاله با استفاده از روش تحلیل پوششی داده‌ها (DEA) که یک روش تحلیل کمی بوده و استاندارد‌های واقعی‌تر عملکرد را ارائه می‌کند، هشتم شبکه آبیاری کشور ارزیابی و کارایی آنها تعیین شده است. با توجه به شمار واحدهای ارزیابی شده در مقایسه با شمار نهاده‌ها و سازمانهای به توان آمده در این مقاله مدل مقدار وابستگی آبیاری به سیستم شبکه و شرکت‌های بهره‌برداری به تفکیک فراهم گردید.

نتایج به دست آمده گویای آن است که شبکه‌های آبیاری زاینده‌رود و شرکت مراتب زاینده‌رود از میان هشت شبکه و شرکت مورد بررسی، بیشترین کارایی را دارند. و سیستم‌های آبیاری میانگین و ورودی از هر دو جنبه شبکه و شرکت ناکارا هستند. شبکه‌های آبیاری گلستان و برخی بهبودی‌های بهره‌برداری آنها ناکارا هستند. شبکه‌های آبیاری گلستان و بعضی بهبودی‌های بهره‌برداری آنها از این‌گونه ناکارا نیستند. ولی در مدل با توجه به مدل‌های روش DEA واقعی‌ترین و ارزش‌های مناسب بهبود عملکرد، می‌توان این روش را به عنوان یک روش کارآمد، که محدودیت‌های روش‌های موجود را ندارد، با موقيت در امر ارزیابی و بهبود عملکرد شبکه‌های آبیاری به کار برده.

واژه‌های کلیدی: ارزیابی عملکرد، شبکه‌های آبیاری، تحلیل پوششی داده‌ها

1. استدلال تأسیسات آبیاری، دانشکده کشاورزی، دانشگاه تربیت مدرس
2. مؤسسه بین‌المللی تحقیق در عملیات بهین‌کار
3. دانشجوی سابق کارشناسی ارشد تأسیسات آبیاری، دانشکده کشاورزی، دانشگاه تربیت مدرس
مقدمه
عملکرد بیمارستانی از شیکه‌های موجود با به دلایل مانند پیش‌بینی در طراحی و اجرای برنامه‌ریزی منابع، کمگی از حد مورد انتظار است (15 و 17). عملکرد ضعیف شیکه‌های موجود، حجم عملیات سرمایه‌گذاری‌های انجام شده در این بخش و محدودیت منابع مالی و آب و خاک موجب توجه بیش از پیش موئسات اعتباری بین‌مللی و مراکز تحقیقات ابزاری مانند HMI و وزارت نیرو (3) به ارزیابی و بهبود عملکرد شیکه‌های آبیاری شده است. روش‌هایی که تاکنون برای ارزیابی شیکه‌های آبیاری ارائه شده است مانند روش‌های تجزیه و تحلیل سخت‌کننده (Diagnostic Analysis) (16) ارزیابی (RA) سریع (8) و ارزیابی چدارچویی (Framework Appraisal) (18) بیشتر نظر و گفتمانی به شدت در مقدار می‌یابد، استانداردادهای برای مقایسه و بهبود عملکرد شیکه‌های آبیاری به شکلی که بهترین می‌باشد، مشکلات روش‌های شناخته‌شده از ارزیابی و بهبود عملکرد شیکه‌های آبیاری، موجب آن شده که بررسی‌های بهبود عملکرد آن‌ها چندان موفق نباشد (9).

Data Envelopment Analysis (DEA)
روش تحلیل پوششی داده‌ها (DEA) در سال 1978 توسط چارنرز و همکاران (11) (Analysis) ارائه شد، نخست برای ارزیابی اقتصادی و فنی وایده‌های تولیدی مورد استفاده گردید. امر روز این روش برای ارزیابی عملکرد و اقتصادی در دسته‌بندی، تعیین مدل‌های متعددی از دسته‌بندی و استفاده از آن‌ها در پژوهش‌های مختلف، در سال 1978 با استفاده از برنامه‌بری خطی، مرز کارایی و اقتصادی مختلف به عنوان استاندارد عملکرد تعیین و عملکرد واحدها نسبت به آن سنجیده و به صورت در جهای کارایی مشخص می‌شود.

نتایج بار (14) استفاده از روش‌های تایپوت‌بندی برای تعیین کارایی در یک سیستم در دو نهاد و یک سیستم در مدیریت کرد. چارنرز و همکاران (11) در سال 1978 با استفاده از برنامه‌بری رضایت، روش تایپوت‌بندی برای روش‌های سیستم‌هایی با نهادها و سابقه‌های چندگان تعیین دادند. که مدل تمام‌پوششی به‌هناکه (CCR) (Charnes, Cooper & Rhodes) تحلیل پوششی داده‌ها (DEA) معرف شد. در سال 1984 نیکو و همکاران (7) روش DEA برای حالت‌های دارای بازده به معیارهای صعودی، ثابت، و تولیدی به تعمیم دادند. که به مدل (BCC) معرفی گردید. در پی آن مدل‌های گوناگون (BCC)
ارزیابی عملکرد بهره‌برداری از شبکه‌های آیپی به روش تحلیل پوششی داده‌ها (DEA)

توانایی‌های مقادیر به‌عملکرد مدل‌های اصلی و مدل‌های اصلی DEA در مدل‌های اصلی استفاده شده و دست‌های آید.

با این حال ما نمی‌توانیم به‌عملکرد مدل‌های اصلی و مدل‌های اصلی DEA در مدل‌های اصلی استفاده شده و دست‌های آید.

اصول اساسي و مدل‌های اصلی

اصول اساسي

برای تشخیص مدل‌های اصلی و مدل‌های اصلی DEA در مدل‌های اصلی استفاده شده و دست‌های آید.

با این حال ما نمی‌توانیم به‌عملکرد مدل‌های اصلی و مدل‌های اصلی DEA در مدل‌های اصلی استفاده شده و دست‌های آید.

با این حال ما نمی‌توانیم به‌عملکرد مدل‌های اصلی و مدل‌های اصلی DEA در مدل‌های اصلی استفاده شده و دست‌های آید.
فرض کنید n واحد مورد ارزیابی وجود داشته باشد (Decision Making Unit) که در کل m از آنها یک نماده نشده است. s ستاده تولید کننده، اگر واحد ارزیابی شده از انتخاب به دردهای y_j به تولید ستاده‌های j می‌پردازد، می‌توان آن را مانند شکل 1 نمایش داد.

مجموعه امکان تولید به صورت T در فضای $m	imes n$ بعدها به نهادها و ستاده‌ها به یک مدل DEA با ماهیت نهادی و X_p برای ارزیابی واحد P با نهاد Y_p ثبت می‌شود. در نظر گرفتن X_p برای Y_p و تنظیم P روی X_p قرار می‌گیرد، مقدار حداقل می‌شود. برای یافتن نقطه نظر P روز کارایی، مقدار و Y_p به کمک معادله $0_{\mathcal{P}}$ از مجموعه امکان $0_{\mathcal{P}}X_p$ و Y_p به گونه‌ای به دست می‌آید که $0_{\mathcal{P}}X_p$ و Y_p به کمک معادله $0_{\mathcal{P}}X_p$ و Y_p با محاسبه تولید باید خارج شود. به این ترتیب روابط ریاضی مدل‌های CCR و BCC ماهیت نهادی به صورت زیر بیان می‌شود:

\mathcal{P} در مدل CCR

$0_{\mathcal{P}}^* = \min 0_{\mathcal{P}}$

$[4]$ مطرح می‌شود که: $0_{\mathcal{P}}X_p, Y_p \in \mathcal{T}_{\mathcal{CCR}}$

به عبارت دیگر

$0_{\mathcal{P}}^* = \min 0_{\mathcal{P}}$

$[5]$

مشخص می‌شود که: $\sum_{j=1}^{n} \lambda_j X_j \leq 0_{\mathcal{P}}X_p$

شکل 2، نمایش نهادها و ستاده‌های واحد [ژم] برای ارزیابی واحد P با نهاد Y_p ثبت می‌شود. در نظر گرفتن X_p برای Y_p و تنظیم P روی X_p قرار می‌گیرد، مقدار حداقل می‌شود. برای یافتن نقطه نظر P روز کارایی، مقدار و Y_p به کمک معادله $0_{\mathcal{P}}$ از مجموعه امکان $0_{\mathcal{P}}X_p$ و Y_p به گونه‌ای به دست می‌آید که $0_{\mathcal{P}}X_p$ و Y_p به کمک معادله $0_{\mathcal{P}}X_p$ و Y_p با محاسبه تولید باید خارج شود. به این ترتیب روابط ریاضی مدل‌های CCR و BCC ماهیت نهادی به صورت زیر بیان می‌شود:

$\mathcal{T}_{\mathcal{CCR}} = \left\{ (X_t, Y_t) \big| X_t \geq \sum_{j=1}^{n} \lambda_j X_j, Y_t \leq \sum_{j=1}^{n} \lambda_j Y_j, \lambda_j \geq 0 \right\}$

$[6]$ مطرح می‌شود که: $\sum_{j=1}^{n} \lambda_j X_j \leq 0_{\mathcal{P}}X_p$

$\mathcal{T}_{\mathcal{BCC}} = \left\{ (X_t, Y_t) \big| X_t \geq \sum_{j=1}^{n} \lambda_j X_j, Y_t \leq \sum_{j=1}^{n} \lambda_j Y_j, \sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 \right\}$

$[7]$ مطرح می‌شود که: $\sum_{j=1}^{n} \lambda_j X_j \leq 0_{\mathcal{P}}X_p$
ارزیابی عملکرد بهبودیادی از شیکه‌های آیپاری به روش تحلیل پوششی داده‌ها (DEA)

هنگامی که شمار واحدهای تهیه می‌گیرد کمتر از مجموع شمار نهادها و ستادهای بیشتر واحدهای کارا ارزیابی می‌شوند، و امکان ارزیابی مقایسه آنها از بین می‌روند. بازار و همکاران (۱۰) برای امکان استفاده از این روش به عنوان یک قاعده تجربی، شمار واحدها تهیه گیرد را حداقل سه با بررسی مجموع نهادها و ستادهای بینهایت کردن در شرایط که شمار واحدها کمتر از آن‌ها باشد، یکی از راه‌های رفع مشکل استفاده از مدل اندرسن-پیرسون (۵) است. در این مدل تغییر تغییر مرجع روز کارایی بدون استفاده از واحد مورد ارزیابی و صرف آن استفاده واحدهای دیگر صورت می‌گیرد.

بدین ترتیب، امکان مقایسه واحد‌های کارا که ممکن بود در مدل BCC یا مدل CCR به‌صورت دارای ضرب کارایی یک اضطراب‌های می‌شود. به عنوان نمونه، مدل استاندارد CCR با ماهیت نهادهای به صورت زیر تغییر می‌یابد:

\[
\min \left(\theta_0 - 1S^+ - 1S^- \right)
\]

\[\sum_{j=1}^{n} \lambda_j Y_j \geq Y_p \]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+, S^- \geq 0\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_0 X_p
\]

\[\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p\]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+, S^- \geq 0\]

برای امکان تحلیل در شرایط وجود مرزهای قوی و ضعیف و امکان تفکیک آنها، از مدل‌های DEA با متغیرهای کمکی کمک به و مدل‌های آن با ستادهای می‌شود. به عنوان مثال، در ارزیابی واحد با استفاده از مدل CCR در مورد کارایی به طرفی بالا و S^- به طرفی پایین حداکثر راسانه و دو برابر روابط ریاضی مدل BCC با ماهیت نهادهای و متغیرهای مورد کمک به صورت زیر بیان می‌شود:

\[
\min \left(\theta_0 - 1S^+ - 1S^- \right)
\]

\[\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_0 X_p
\]

\[\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p\]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+, S^- \geq 0\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_0 X_p
\]

\[\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p\]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+, S^- \geq 0\]
عملاً و فنون کشاورزی و منابع طبیعی / جلد ششم / پیشرفت در زمینه بازیابی و استفاده از مواد زیست‌محیطی / 1381

ورامین، گرمی، فزیک، گسترش کشاورزی، زایده‌رود، بهپناه، مغان، و

میناب.

عملاک‌زدگی و مدل‌سازی است. برخی از عملاک‌زدگی‌های ایجاد شده از طریق ساختار زبان، و

شرایط محیطی. عملاک زبان ایجاد مجموعه فعالیت‌های شرکت‌های بهره‌برداری در این شیوه و کشاورزی است.

شرکت‌های بهره‌برداری با کارگیری عملاکی جهان سرمایه، پرست، و مسیون آلایه و اینجای فعالیت‌های همچون توزیع، تعمیر و تجدی‌ولایه شیوه، جلب مشترک‌کاری، سعی

به بهبود عملاک یک شکوه در این پوشه به دلایل تأثیر و

تأثر توسط‌های آسیایی و شرکت‌های بهره‌برداری از آنها در

عملکرد یک‌گونه و ترکیب آنها به صورت یک سیستم در نظر

گرفته شده است. افزایش بر آن، به منظور امکان مقایسه عملکرد

کل سیستم و شرکت‌های بهره‌برداری و ارائه راه‌کارهای

مناسب، شرکت‌های بهره‌برداری نیز به طور جداگانه در نظر

گرفته شده است.

دیدگاه‌های مختلفی برای ارزیابی عملکرد می‌توان در نظر

گرفت، که در هر یک از این دیدگاهها از تعدادی از

شاخه‌های مربوط به آن دیدگاه استفاده می‌کنند. این دیدگاه‌ها

عبارتند از: دیدگاه‌های مدیریتی، فنی، اقتصادی، اجتماعی،

کشاورزی، مدیریت محیطی، در این پوشه با استفاده

گسترش زبان و شیوه‌ها (۷) به عمل آمد.

عملکرد باید به عملکرد شرکت‌های بهره‌برداری از بین

مجموعه عناصر در دیدگاه‌های مختلف مطرح شده، بر

اساس اندازه‌گیری‌های مختلف مانند از عملکرد شرکت‌های (صحاحین

سهام شرکت‌های بهره‌برداری، مشترک‌نامه شرکت، مداری شرکت،

و پرسنل شرکت‌های بهره‌برداری) موجودیت و کیفیت

اطلاعات مورد نیاز صورت گرفته است.

برای کمی نمودن ارزیابی از شاخه‌های عملکرد
جدول ۱. شاخص‌های ارزیابی عملکرد

<table>
<thead>
<tr>
<th>شاخص</th>
<th>پارامتر مشخصه</th>
<th>نوع شاخص</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$N = N_1 + N_2 + N_3 + N_4 + N_5 + N_6 + N_7 + N_8 + N_9$</td>
<td>نهایی</td>
<td>۱</td>
</tr>
<tr>
<td>C</td>
<td>$C = \frac{70C_1 + 30C_2}{100}$</td>
<td>هزینه</td>
<td>۲</td>
</tr>
<tr>
<td>P_e</td>
<td>$P_e = \frac{P_{el} + P_{e2}}{2}$</td>
<td>پرسنل</td>
<td>۳</td>
</tr>
<tr>
<td>M</td>
<td>$M = \frac{40M_1 + 25M_2 + 25M_3 + 10M_4}{100}$</td>
<td>ماشین‌الات</td>
<td>۴</td>
</tr>
<tr>
<td>A</td>
<td>$A = \frac{60A_1 + 20A_2 + 20A_3}{100}$</td>
<td>کلاژنویزی</td>
<td>۵</td>
</tr>
<tr>
<td>R</td>
<td>$R = \sum_{i=1}^{N} A_i C_i (W)$</td>
<td>درآمد</td>
<td>۶</td>
</tr>
<tr>
<td>S</td>
<td>$S = \frac{30S_1 + 70S_2}{100}$</td>
<td>مشترکین</td>
<td>۷</td>
</tr>
</tbody>
</table>

![نمودار ۳. مجموعه سیستم شیبکه آبیاری از دیدگاه سیستمی](image1)

![نمودار ۴. شرکت بهره‌برداری از دیدگاه سیستمی](image2)
جدول ۲: عوامل جزئی شاخص‌های ارزیابی

<table>
<thead>
<tr>
<th>شرح پارامترهای عامل جزئی</th>
<th>تعیین عامل جزئی</th>
<th>عامل جزئی مشخصه</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح تحت پوشش شبکه A</td>
<td>$N_1=0.22A$</td>
<td>سطح تحت پوشش شبکه</td>
<td>۱</td>
</tr>
<tr>
<td>حجم آب ورودی به شبکه V</td>
<td>$N_2=0.19V$</td>
<td>حجم آب ورودی به شبکه</td>
<td>۲</td>
</tr>
</tbody>
</table>

$$\sum Q_i L_i$$

| مجموع حملات در طول ۱ | $T_1=0.14\left(\sum Q_i L_i\right)$ | طول و ظرفیت کالال | ۳ |
| مجموع حملات در طول ۲ | $T_2=0.13\left(\sum Q_i L_i\right)$ | طول و ظرفیت کالال | ۴ |

$$\sum nQ$$

مجموع حملات بر ضرب	$S_1=0.1\sum nQ$	سازه‌های آبسیدن	۵
مجموع حملات بر ضرب	$S_2=0.08\left(\sum Q_i L_i\right)$	سازه‌های آبسیدن	۶
مجموع حملات بر ضرب	$S_3=0.08\left(\sum nQ\right)_1$	سازه‌های آبسیدن	۷
مجموع حملات بر ضرب	$S_4=0.05\left(\sum LQ\right)$	سیفون	۸
مجموع حملات بر ضرب	$S_5=0.05\left(\sum HQ\right)$	سیفون	۹

$$P_{el} = \frac{27P_1 + 25P_2 + 20P_3 + 15P_4 + 13P_5}{100}$$

$$P_{el} = \frac{75P_6 + 25P_7}{100}$$

شمار پرسرل نویز	P_{el}	پرسنل	۱۲
شمار پرسرل نویز	P_{el}	شاخص مسئولیت	۱۳
شمار پرسرل نویز	P_{el}	شمار پرسرل نویز	۱۴

$$\sum A_i P_i$$

شمار محصولات	$A_2 = \frac{\sum A_i P_i}{\sum A_i}$	میانگین عملکرد محصول	۱۹
شمار محصولات	$A_3 = \frac{\sum A_i C_i(y)}{\sum A_i}$	ارزش محصولات	۲۰
شمار محصولات	$A_4 = \frac{\sum A_i C_i(w)}{S_i=n}$	بهره‌وری مهارت محصول	۲۱
شمار محصولات	$A_5 = \frac{\sum A_i C_i(w)}{S_i=n}$	بهره‌وری مهارت محصول	۲۲
شمار محصولات	$A_6 = \frac{\sum A_i S_i}{n}$	بهره‌وری مهارت محصول	۲۳

| S_1 | شمار قرارداد منعقد | ۲۲ |
| S_2 | شمار قرارداد مشتری | ۲۳ |
ارزیابی عملکرد بهره‌برداری از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها

(DEA)

مصروف نهاده‌ای کمتر از نهاده‌ای این واحده مرجع بتوانند ستاده‌ای برای با استاد واحده زایندرود تولید کنند. نسبت نهاده‌های این واحده مرجع به نهاده‌های زایندرود 386/3 است. بدین معنی که یک مرجع به مصرف 386/3 درست می‌آید کارایی واحده زایندرود به صورت مجموعه واحده‌های مرجع را اجلاس خواهد کرد که ستاده‌ای این واحده مرجع به نهاده‌های واحده‌های مرجع برای 5/599 است، بدین معنی که این واحده مرجع به مصرف 5/599 برای نهاده‌های واحده مرجع قدر به تولید ستاده‌ای برای آن است. بدین ترتیب، کارایی واحده مینابه 5/599 به دست می‌آید. حال، واحده مینابه برای بهبود عملکرد خود از مصرف حذف سطح تولید مورد استفاده می‌باشد. این عملکرد به سطح مصرف نهاده‌ای خود را به مزار نهاده‌های واحده مرجع کاهش دهد. به سطح مصرف نهاده‌ای واحده مینابه 34/62 به شکل مینابه 138/6 برای نهاده‌های واحده زایندرود باشد تا کارایی آن به یک برآورد. هنگام ارزیابی مجموعه کل سیستم، شاخص شبکه به عنوان نهاده در نظر گرفته شده است. بنابراین، راهکار کاهش نهاده‌ای عملکرد برای نهاده‌ای شبکه بهره‌برداری (هزینه، پرسنل، و مالیات آنها) شامل شاخص شبکه نیز می‌شود.

در مورد شبکه مگان، که تنها یک واحده مرجع دارد (فذرین)، می‌توان اظهار داشت که واحده مرجع به مصرف 173/4 برای نهاده‌های واحد فذرین می‌تواند ستاده‌ای برای با ستاده‌ای واحد مگان تولید کند. نسبت نهاده‌ای واحده مرجع به نهاده‌های واحد مگان برای 173/419 / 373/91 به دست می‌آید. این نتایج به بهبود می‌رساند.

نتایج و بحث

نتایج به دست آمده از اجرای مدل DEA شامل درجه کارایی واحده‌های مورد ارزیابی، واحده‌های (های) مرجع، ضریب (ضرایب) نظیر واحده (های) مرجع برای ارزیابی مجموعه کل سیستم و شرکت‌های بهره‌برداری از شیکه‌ها به طور جدیدانه در جدول‌های 3 و 4 ارائه شده است. نتایج نشان می‌دهد مصرف و سبب نتایج مورد شرکت‌های بهره‌برداری و در پایان مقاله آن در بحث و بررسی می‌شود.

ارزیابی مجموعه کل سیستم

در ارزیابی مجموعه کل سیستم، شبکه آبیاری زایندرود با کارایی 383/2 بیشترین و شبکه مینابه با کارایی 5/5 داشته‌اند. در نتیجه دیگر واحده‌ها به ترتیب از پیشتازین کنترل کارایی، عیب‌اند و گردش در گیاه‌ها و گلستان، قروین، مخازن بهبود و درمانی.

در مورد شبکه آبیاری زایندرود واحده مرجع عبارتند از شبکه‌های آبیاری فرزین و ورامین، به ترتیب به ضرایب 1/7545 و 1/7542 به معنی که یک تکیب خسته از دو واحده فرزین و ورامین با ضرایب مربوط به واحده مرجع را اجلاس خواهد کرد که ستاده تولیدی آن با ستاده تولیدی واحده زایندرود برای با استاد تولیدی واحده زایندرود برای بهبود و در این جا شایان ذکر است که برای تایب بهبود سازی و برنامه‌ریزی خصی، هیچ گونه تکیب خصی دیگری از واحده‌های مورد ارزیابی نمی‌توان باشد که به
جدول ۳. نتایج حاصل از ارزیابی عملکرد مجموعه کل سیستم‌های آب‌داری با استفاده از مدل $\text{CCR}_{p-I}(8)$

<table>
<thead>
<tr>
<th>ضریب نظر واحد (های)</th>
<th>واحدهای مرجع</th>
<th>درجه کارایی</th>
<th>شکله مورد ارزیابی</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۵۴۵</td>
<td>قروین</td>
<td>۳/۳۸۰۳</td>
<td>زایندرود</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۸۵۷۲</td>
<td>ورامین</td>
<td>۲/۳۷۵۹</td>
<td>مغان</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۳۹۷۱</td>
<td>گلستان</td>
<td>۰/۸۴۷۶</td>
<td>میراب زایندرود</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۲۸۶۴</td>
<td>مغان</td>
<td>۰/۸۵۶۵</td>
<td>میراب زایندرود</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۱۰۸۴</td>
<td>گرمسار</td>
<td>۶/۶۵۵۰</td>
<td>میراب زایندرود</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۲۳۵۷</td>
<td>زایندرود</td>
<td>۰/۵۰۴۹</td>
<td>میراب زایندرود</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۸۴۱۰</td>
<td>گرمسار</td>
<td>۸/۵۴۶۹</td>
<td>میراب زایندرود</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۸۸۶۰</td>
<td>گلستان</td>
<td>۰/۶۲۶۹</td>
<td>میراب زایندرود</td>
<td>۸</td>
</tr>
<tr>
<td>۰/۷۹۴۸</td>
<td>ورامین</td>
<td>۰/۴۷۵۹</td>
<td>میراب زایندرود</td>
<td>۹</td>
</tr>
</tbody>
</table>

جدول ۴. نتایج حاصل از ارزیابی عملکرد شرکت‌های بهره‌برداری از شیک‌های آب‌داری با استفاده از مدل $\text{CCR}_{p-I}(8)$

<table>
<thead>
<tr>
<th>ضریب نظر واحد (های)</th>
<th>واحدهای مرجع</th>
<th>درجه کارایی</th>
<th>شکله مورد ارزیابی</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۵۴۵</td>
<td>قروین</td>
<td>۳/۳۸۰۳</td>
<td>زایندرود</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۸۵۷۲</td>
<td>ورامین</td>
<td>۲/۳۷۵۹</td>
<td>مغان</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۳۹۷۱</td>
<td>گلستان</td>
<td>۰/۸۴۷۶</td>
<td>میراب زایندرود</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۲۸۶۴</td>
<td>مغان</td>
<td>۰/۸۵۶۵</td>
<td>میراب زایندرود</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۱۰۸۴</td>
<td>گرمسار</td>
<td>۶/۶۵۵۰</td>
<td>میراب زایندرود</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۲۳۵۷</td>
<td>زایندرود</td>
<td>۰/۵۰۴۹</td>
<td>میراب زایندرود</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۸۴۱۰</td>
<td>گرمسار</td>
<td>۸/۵۴۶۹</td>
<td>میراب زایندرود</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۸۸۶۰</td>
<td>گلستان</td>
<td>۰/۶۲۶۹</td>
<td>میراب زایندرود</td>
<td>۸</td>
</tr>
<tr>
<td>۰/۷۹۴۸</td>
<td>ورامین</td>
<td>۰/۴۷۵۹</td>
<td>میراب زایندرود</td>
<td>۹</td>
</tr>
</tbody>
</table>
ارزیابی شرکت‌های بهره‌برداری

در ارزیابی شرکت‌های بهره‌برداری، شرکت بهره‌برداری می‌باشد که از ویژگی‌های بازاریابی، روش‌های عرضه و بازاریابی، فضاهای سازگاری و دیگر ویژگی‌های بین‌المللی، هماهنگی و سازگاری شرکت‌های بهره‌برداری، شاخص شیوه به عنوان شاخص در نظر گرفته شده است. بنابراین، راهکار کاهش نهاده‌های خود به شاخص‌های شرکت بهره‌برداری (بزرگ، پرستار و ماهی‌که) (آلاضی) است.

شرکت‌های بهره‌برداری منطقه، مباشته و ورامین دارای نهایی یک واحده مرجع است که نسبت نهاده‌های مصرف‌یابی واحدهای مرجع به نهاده‌های این شرکت‌ها به ترتیب است.

ابتاند از شرکت‌های بهره‌برداری قزوین و ورامین، به ترتیب با ضرایب 1/057 و 1/056، ترکیب خنثی این و شرکت با ضرایب مربوطه است. شرکت‌های پردازش میزبانی و راه‌برد شرکت‌های بهره‌برداری منطقه، مباشته و ورامین با ضرایب مربوطه است. شرکت‌های بهره‌برداری منطقه، مباشته و ورامین با ضرایب مربوطه است. شرکت‌های بهره‌برداری منطقه، مباشته و ورامین با ضرایب مربوطه است. شرکت‌های بهره‌برداری منطقه، مباشته و ورامین با ضرایب مربوطه است. شرکت‌های بهره‌برداری منطقه، مباشته و ورامین با ضرایب مربوطه است.

میزان محاسبه در نحوه قابل فاکتورپ‌زد و در ارزیابی مجموعه کل سیستم، و شرکت‌های بهره‌برداری همان گونه که قابل فاکتورپ‌زد و در ارزیابی مجموعه کل سیستم، شاخص شیوه به عنوان نهاده، و در ارزیابی شرکت‌های بهره‌برداری، شاخص شیوه به عنوان نهاده در نظر گرفته شده است. بنابراین، مقایسه کارایی واحدها در هر حالت، با شرکت‌های بهره‌برداری صنعت‌گذاری در شرکت بهره‌برداری یک شیوه برای کاهش کارایی می‌کند.

نتایج به دست آمده نشان می‌دهد که شرکت‌های ایبیرای زایندرود و شرکت بهره‌برداری آن نسبت به دیگر شیوه، شرکت‌ها و بیشترین کارایی را داشته و میزان کارایی واحدهای مرجع، و ضرایب واحدهای مرجع در هر حالت بسیار است. در هر حالت شرکت ایبیرای زایندرود و شرکت بهره‌برداری آن می‌تواند با عنوان، این گروه نمونه دیگر از این رقابتگر و میزان پتانسیل بهبود عمده در واحد با آن می‌تواند. درجه کارایی مجموعه کل سیستم، محبوب و شیوه، میزان و بهبود ناهنجاره‌ای که در دست ایبیرای آن به یک برد است. هنگام ارزیابی شرکت
قاسمی مجموعه کل سیستم شبکه میناباب و شرکت بهره‌برداری آن کمتر از یک است، و در هر دو حالت کارآمد، ولی درجه کارایی شرکت بهره‌برداری (50/100) کمتر از کارایی مجموعه کل سیستم (75/100) است. بنابراین، در صورت ضرورت بهبهان عملکرد، اولویت سرمایه‌گذاری در بهسازی شرکت بهره‌برداری است.

مجموعه کل سیستم شبکه گلستان دارای کارایی 1/8769/2 است. در حالی که کارایی شرکت بهره‌برداری آن 2/8676/1 است، که نشان می‌دهد اگرچه کل سیستم گلستان کارآمد، ولی شرکت بهره‌برداری آن ناکارآمد و برای بهبود عملکرد می‌باشد، به وضعیت شرکت بهره‌برداری توجه کرده.

کارایی مجموعه کل سیستم شبکه میناباب و شرکت بهره‌برداری آن کمتر از یک است، و در هر دو حالت کارآمد، ولی درجه کارایی شرکت بهره‌برداری (50/100) کمتر از کارایی مجموعه کل سیستم (75/100) است. بنابراین، در صورت ضرورت بهبهان عملکرد، اولویت سرمایه‌گذاری در بهسازی سیستم فیزیکی شبکه است.

کارایی مجموعه کل سیستم شبکه میناباب و شرکت بهره‌برداری آن بیش از یک است، و در هر دو حالت کارآمد و در صورت ضرورت بهبهان عملکرد، اولویت سرمایه‌گذاری در مهم‌تر است.

نتیجه گیری
تایبه دست آمده از این پژوهش را به شرح زیر می‌توان خلاصه کرد:

الف) برخی از سیستم‌های آبیاری به تریب از کارآمد تا ناکارآمد شرکت، عملکرد است. در موقعیت خاصی در سرمایه‌گذاری برای بهبود عملکرد وجود ندارد، ولی در مقایسه با واحدهای کارآمد، در هر دو زمینه بینالی بهبود وجود دارد.

ب) سیستم‌های آبیاری زاینده‌رود از هر دو جنبه شبکه و شرکت از میان هشت سیستم مورد ارزیابی بیشترین کارایی را نشان داده است.

(1) سیستم‌های آبیاری میناباب و رامین از هر دو جنبه شبکه و شرکت ناکارآمدند. بنابراین، برای بهبود عملکرد در این سیستم‌ها باید در هر دو جنبه شبکه و مدیریت سرمایه‌گذاری کرد.

(2) شبکه گلستان و بهبهان کارا و شرکت بهره‌برداری آنها ناکارآمدند. بنابراین، برای بهبود عملکرد، آخرین باید به بهبود شبکه و بهره‌برداری آنها پرداخت.

(3) شبکه کارا و شرکت بهره‌برداری آنها ناکارآمدند. بنابراین، برای بهبود عملکرد، باید شبکه و بهره‌برداری آنها قابلیت با کنترلی یا با شبکه زاینده‌رود و شرکت میزان تا حدود برابری را پاکسی بهبود هستند.

(4) شبکه‌های گلستان و بهبهان کارا و شرکت بهره‌برداری آنها ناکارآمدند. بنابراین، برای بهبود عملکرد، باید شبکه و بهره‌برداری آنها قابلیت با کنترلی یا با شبکه زاینده‌رود و شرکت میزان تا حدود برابری را پاکسی بهبود هستند.
ارزیابی عملکرد بهبودیاری از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

در تحلیل با ماهیت نهادی، واحد مورد ارزیابی با ترکیب نخستین پارامتر که صورت گرفته، برای دستیابی به نتایج دقیق تر پیشنهاد می‌شود.

1. ایجاد سیستم‌های اطلاعاتی مدیریتی (Information Systems, MIS) برای همگرایی سیستم‌های اطلاعاتی و مهیج جامعی و دسترسی به اطلاعات، تجهیز و تحلیل استمرار ارزیابی‌های ادواری

2. استفاده از شاخص‌هایی که معکوس کننده اهمیت ویژگی‌های واحدهای ارزیابی شده بوده و بيان کننده ویژگی‌های کیفی آنها نیز باشد.

3. تقسیم‌بندی کاملاً عوامل به صورت نهاده و ستاده.

4. کمیت مناسبی.

5. پژوهش در زمینه به‌فیس سیستم‌های آبیاری.

6. افزایش شمار شیکه‌های ارزیابی شده و دسته‌بندی آنها در گروه‌هایی که مشابه‌های پیشرفته‌تر.

7. انجام تحلیل حساسیت و ارزان راه‌های ارزیابی به‌همه عملکردها به صورت مشخص تر.

منابع مورد استفاده

1. علمدار، ن. 1373. ارزیابی عملکرد نیروگاه‌ها و تعیین میزان بهره‌وری به کمک تحلیل پوششی داده‌ها. پایان‌نامه کارشناسی ارشد، مدیریت عملیات و بهبودیاری، مؤسسه تحقیقات و آموزش مدیریت.

2. علی‌اصغری، م. و. علمدار. 1380. ارزیابی عملکرد نیروگاه‌های بهاری، گازی، و آبی و تعیین کارایی آنها به کمک تحلیل پوششی داده‌ها. سنجری، دی. بهبود انرژی بالاتر نسبت به معمول.

3. نیکو، م. م. و. علمدار. 1380. روش‌های ارزیابی عملکرد پروژه‌های آبیاری و زهکشی. مجموعه مقالات کارگاه فنی ارزیابی عملکردهای آبیاری و زهکشی ایران. چاپ 7-6.

23