(DEA)

ارزیابی عملکرد بهره‌برداری از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها

محمد جواد منم ۱، محمد رضا علیرضایی ۲ و ابراهیم صالحی ۲

چکیده

بررسی‌های مربوط به عمل آنده نشان داده است که عملکرد شیکه‌های آبیاری به‌دلیل مختلفی کمتر از حد انتظار است. گزارش‌های ارائه شده برای ارزیابی عملکرد شیکه‌های آبیاری یا مانند روش‌های تجزیه‌توان و تحلیل‌تحصیل (DEA) جارچی‌پای، (RA) نظری یا غیر نظری هستند. و یا مانند روش‌های آلیاسیک آگر شاخص‌های کمی ارائه می‌کند. استانداردهای بای عاملکرد به یک روش تحلیل کمی بوده و استانداردهای وضعیت‌های عملکرد را ارائه می‌کند. هشت شیکه‌آبیاری کشور ارزیابی و کارآیی آنها تعیین شده است. با توجه به شمار واحدهای ارزیابی شده در مقیاس به شمار نهاده و سانده، ارزیابی مجموعه کل سیستم شیکه و شرکت‌های پنجم‌داری به تفکیک فراهم گردید.

نتایج به دست‌آمده‌گویی آن است که شیکه آبیاری زاپیستگی و شرکت مرکز زاپیستگی از میان هشت شیکه و شرکت مورد بررسی، بیشترین کاراکتر را دارند، و سیستم‌های آبیاری یا مبانی و ورای از هر دو جبهه شیکه و شرکت ناکارا هستند. شیکه‌های آبیاری گستسپت و بهره‌برداری آنها ناکارا هستند. شیکه‌های آبیاری گستسپت و بهره‌برداری آنها گرچه ناکارا نیستند ولی دارای پتانسیل بهره‌برداری می‌باشند. در مجموع با توجه به نتایج تعیین شده و تحلیل‌تحصیل، واقعیت‌های و ایرادهای مختلف بهره‌برداری و شیکه‌های آبیاری مناسب بهره‌برداری، می‌توان این را به عنوان یک روش کارآمد، که محدودیت‌های شرکت‌های موجود را تفکیک فراهم گردید. با موافقتنامه در امر ارزیابی و بهره‌برداری شیکه‌های آبیاری به کار برده.

واژه‌های کلیدی: ارزیابی عملکرد، شیکه‌های آبیاری، تحلیل پوشنی داده‌ها

۱. استاد پژوهشی، دانشگاه تبریز، دانشگاه تربیت مدرس
۲. مؤسس بین‌المللی تحقیق در عملیات بهین کارا
۳. دانشجوی سابق کارشناسی ارشد تاسیسات آبیاری، دانشگاه تبریز، دانشگاه تربیت مدرس
مقدمه
عملکرد سیاری از شیکه‌های موجود با به دلایل مانند نفس در طراحی و اجرای برنامه‌ریزی مناسب، کمتر از حد مورد انتظار است (15 و 17). عملکرد ضعیف شیکه‌های موجود، حجم عظیم سرمایه‌گذاری‌های انجام شده در این بخش و محدودیت مالی آلی و آب و خاک موجب توجه بیش از پیش از مسألات اعتباری بین‌مللی و مراکز تحقیقات آبیاری مانند HMI و وزارت نیرو (۳) به ارزیابی و بهبود عملکرد شیکه‌های آبیاری شده است. روش‌هایی که تاکنون برای ارزیابی شیکه‌های آبیاری ارائه شده است مانند روش‌های تجزیه و تحلیل تخصصی (DA) (12) ارزیابی‌های (RAP) سریع (8) و ارزیابی چارچوبی (Framework Appraisal) (18) به دنبال تحقیقات و نظری و غیر کمی (FA) هستند. و یا اگر مانند روش‌های کلاسیک شاخص‌های کنی ارائه می‌کنند، استانداردهای برای مقایسه و بهبود عملکرد تدارک (4). مشکلات روش‌شناسی موجود در ارزیابی و بهبود عملکرد شیکه‌های آبیاری، موجب آن شده که بررسی‌های بهبود عملکرد آنها چندان موفق نباشد (9).

Data Envelopment Analysis (با DEA) روش تحلیل پوششی داده‌ها (10) که در سال ۱۹۷۸ توسط چارنر و همکاران (11) (Analysis) ارائه شد، تحلیل برای ارزیابی اقتصادی و فنی و اخذ‌های تویلی مورد استفاده گردید. امر مجزای این روش برای ارزیابی عملکرد واحدهای خدماتی، عمدتاً از دولتی و غیر دولتی، به طور گسترده استفاده می‌شود (11، 12 و 15 و 16). در این روش به استفاده از برنامه‌ریزی خصوصی، مزرع کارایی واحدهای مختلف به عنوان استاندارد عملکرد تعبیه و عملکرد واحدها نسبت به آن سنجیده و به صورت درجه کارایی مشخص می‌شود.

12
ارزیابی عملکرد بهره‌برداری از شبکه‌های آیپی به روش تحلیل پوششی داده‌ها (DEA)

توانایی‌های مشتری به مجموعه ای مدل‌ها اضافه شد، به طوری که اکنون این مدل‌ها می‌توانند بسیاری از مشتری‌ها مشاهده کنند.

اصول اساسی و مدل‌های اصلی DEA، که در این پژوهش استفاده شده، به شرح زیر است:

برای تشخیص آزمایشات تهیه است بایستی یک مثال ساده ارائه داده شود. بهترین ارزیابی 9 واحد مختلف، مقایسه ستاد در برای تنها آنها در یک دستگاه محصولات به روش رسم، و نقاط تغییر هر واحد مشخص می‌شود (شکل 1). به‌طور کلی، روش تحلیل به‌سادگی پوسته به سه صورت ماهیت نهادی‌ها، تحلیل با ماهیت نهادی، ماهیت داده‌ها، و تحلیل با ماهیت داده‌ها تغییر نهادی‌ها، در تحلیل با ماهیت نهادی آثار تغییر نهادی‌ها، و در تحلیل با ماهیت داده‌ها تغییر نهادی‌ها و ستادها به صورت توان‌ای واحددر این موضوع متفاوت درصد می‌شود.

در تحلیل با ماهیت نهادی‌ها، میان واحدهای مشابه‌ای که یک مقیاس مساوی ستادهای مشابه می‌کنند (واحدهای 1)، و در تحلیل با ماهیت داده‌ها، میان واحدهای مشابه‌ای که یک مقدار مساوی نهاده صورت می‌کند (واحدهای 2)، در تحلیل با ماهیت داده‌ها، میان واحدهای مشابه‌ای که یک مقدار مساوی نهاده صورت می‌کند (واحدهای 2)، در تحلیل با ماهیت داده‌ها، میان واحدهای مشابه‌ای که یک مقدار مساوی نهاده صورت می‌کند (واحدهای 2).

مرز کارایی شامل دو قسمت مرز فوق (خط پر در شکل) و مرز پایین (خط زیر در شکل) است. مرز دلتای مهمی با معنی اینست که کارایی تمایل به افزایش می‌گیرد، و مرز پایین در مدل‌های اصلی تحلیل با ماهیت داده‌ها می‌گردد. در مدل کارایی در مجموعه امکان تولید به دست می‌آید.

DEA

تعداد و 6، همچنین، واحدهای اصلی واحد 6 عبارت‌اند از واحدهای 1 و 4، و ضریب تغییر واحدهای مرحله به مرحله واحدهای بی‌سانتوری با واحدهای 6، واحد 6 و 4 عبارت‌اند از واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود. در واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود.

واحدهای 6، همچنین، واحدهای مرحله به مرحله واحدهای بی‌سانتوری با واحدهای 6، واحد 6 و 4 عبارت‌اند از واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود. در واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود.

واحدهای 6، همچنین، واحدهای مرحله به مرحله واحدهای بی‌سانتوری با واحدهای 6، واحد 6 و 4 عبارت‌اند از واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود. در واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود.

واحدهای 6، همچنین، واحدهای مرحله به مرحله واحدهای بی‌سانتوری با واحدهای 6، واحد 6 و 4 عبارت‌اند از واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود. در واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود.

واحدهای 6، همچنین، واحدهای مرحله به مرحله واحدهای بی‌سانتوری با واحدهای 6، واحد 6 و 4 عبارت‌اند از واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود. در واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود.

واحدهای 6، همچنین، واحدهای مرحله به مرحله واحدهای بی‌سانتوری با واحدهای 6، واحد 6 و 4 عبارت‌اند از واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود. در واحدهای مورد نظر تغییر مناسب نشان دهنده می‌شود.
فرض کنید n واحد مورد ارزیابی وجود داشته باشد (DMU) که هر کدام با استفاده از m متغیر کلیه، افزایش بهبود نهاده s مدل تولید کننده ابزارهای مصرفی افزوده شده به عنوان Y_{ij} می‌رسد. سه گام ارزیابی ابعاد ابزارهای مصرفی X_{ij} به‌طور معمول می‌تواند به صورت زیر بیان می‌شود:

\[0_p^* = \min \theta_p \]

\[\theta_p X_p, Y_p \in T_{CCR} \]

\[0_p^* = \min \theta_p \]

\[\sum_{j=1}^{n} \lambda_j X_j \leq \theta_p X_p \]

\[\sum_{j=1}^{n} \lambda_j Y_j \leq \theta_p Y_p \]

\[\sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 \]

آماره گام نهاده s مورد ارزیابی واحد X_{ij} و Y_{ij} در یک مدل DEA ماهیت نهادهای Y ثابت و ضریب θ_p برای X_{ij} در نظر گرفته می‌شود. برای بافتنت نفطه نظر P روی مراکز کارگیری، مقدار احتمال به گونه‌ای به دست می‌آید که θ_p از مجموعه امکان و CCR تولید خارج نشود. بدین ترتیب روابط ریاضی مدل‌های BCC و CCR مدل ماهیت نهاده‌های باید به‌صورت زیر بیان می‌شود:

\[0_p^* = \min \theta_p \]

\[\theta_p X_p, Y_p \in T_{CCR} \]

\[0_p^* = \min \theta_p \]

\[\sum_{j=1}^{n} \lambda_j X_j \leq \theta_p X_p \]

\[\sum_{j=1}^{n} \lambda_j Y_j \leq \theta_p Y_p \]

\[\sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 \]

مجموعه امکان تولید عبارت است از مجموعه‌ای از نقاط امکان‌پذیر تولید در فضای $m \times n$ عبارت در نهاده‌ها و سطح‌های $	ext{BCC}$ و $	ext{CCR}$ به‌طور معمول می‌تواند به سه گام X_j و Y_j به‌طور معمول می‌تواند به صورت زیر بیان می‌شود: $T_{CCR} = \{(X_t, Y_t) : X_t \geq \sum_{j=1}^{n} \lambda_j X_j, Y_t \leq \sum_{j=1}^{n} \lambda_j Y_j, \sum_{j=1}^{n} \lambda_j \geq 0 \}$

\[T_{BCC} = \{(X_t, Y_t) : X_t \geq \sum_{j=1}^{n} \lambda_j X_j, Y_t \leq \sum_{j=1}^{n} \lambda_j Y_j, \sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 \} \]
هدکامی که شمار واحدهای تخصیص گیری کمتر از مجموع شمار نهادها و ستادهای آنها، بیشتر واحدهای کارا ارزیابی می‌شوند. امکان ارزیابی مقایسه‌ای آنها از بین می‌روند. چارچوب و همکاران (10) برای امکان استفاده از این روش به عنوان یک فاقده تجربی، شمار واحدهای تخصیص گیری را حداکثر سه بر اساس مجموع نهادها و ستادهای پیشنهاد کردند. در شرایطی که شمار واحدهای کمتر از شرایط کمتر از این بوده باشد، یکی از راه‌حل‌های رفع مشکل استفاده از مدل اندرسن-پیترسون (5) است. در این مدل تغییر نفعه مرجع روی مرز کارایی بدون استفاده از واحد مورد ارزیابی و صرفاً بر اساس واحدهای دیگر صورت می‌گیرد.

بدین ترتیب امکان مقایسه واحدهایی که ممکن بود در مدل BCC یا CCR همگون دارای ضریب کارایی 1 باشد را فراهم می‌نماید. به عنوان نمونه مدل استاندارد CCR با ماهمت نهادهای به صورت زیر تغییر می‌یابد:

\[
\min (\theta_p - 1S^+ - 1S^-) = 0
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_p X_p
\]

\[
\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p
\]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+ , S^- \geq 0\]

مدل BCC با ماهمت نهادهای

\[
0_p^* = \min \theta_p
\]

\[\{\theta_p X_p, Y_p\} \in T_{BCC}\]

به عبارت دیگر

\[
0_p^* = \min \theta_p
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j \leq \theta_p X_p
\]

\[
\sum_{j=1}^{n} \lambda_j Y_j \geq \theta_p Y_p
\]

\[\sum_{j=1}^{n} \lambda_j = 1\]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+ , S^- \geq 0\]

مدل BCC با ماهمت نهادهای

برای امکان تحلیل در شرایط وجود مرزهای قوی و ضعیف و امکان تفکیک آنها از مدل‌های DEA با متغیرهای کمکی کمی به صورت (S^+) و مارک (S^-) استفاده می‌گردد. به عنوان مثال در ارزیابی واحد از امکان استفاده از مدل CCR با ماهمت نهادهای ضمن یافتن مقادیر حداقل 0، با در نظر گرفتن S^+ و S^- را به حداکثر CCR با ماهمت نهادهای و متغیرهای مارک و کمیاب به صورت زیر بیان می‌شود:

\[
\min (\theta_p - 1S^+ - 1S^-) = 0
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_p X_p
\]

\[
\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p
\]

\[\lambda_j \geq 0, \ j = 1, \ldots, n\]

\[S^+ , S^- \geq 0\]
استفاده می‌شود. شاخص‌های
عملکرد علاوه بر ادارات و گروه‌های پیکرامین به‌جای مانند دیگر
کالاهای جهانی مانند استانداردها و مناسب‌سازی‌های این شرکت، نشان
دهند که کیفیت سرویس و خدمات ارائه‌دهنده نیز هستند.

شناخت‌ها شامل سه نوع ساده، نسبی، و ترکیبی هستند (18).

شاخص‌های ساده مقدار مطلق یک عامل مؤثر در عملکرد مانند
مقدار محصول را گزارش می‌کند. شاخص‌های نسبی نسبت
عامل مؤثر در عملکرد مانند مقدار محصول را در واقع سطح را
گزارش می‌کنند. شاخص‌های ترکیبی مجموعه‌ای از عوامل مؤثر
در عملکرد را گزارش می‌کنند که می‌توانند ترکیبی از
شاخص‌های ساده و نسبی باشد.

در این پژوهش به دلیل گسترشی عوامل مؤثر بر عملکرد و
محدود بودن شمار و اندازه‌های آماری، یکی نسبی به‌نسبت به
ستانداردهای گزارشی استفاده شده است. به این ترتیب
که ترکیب ورودی معنی‌داری را که ترکیب عوامل این است. عوامل
ساده مؤثر در عملکرد به صورت ورودی به ترکیب را می‌تواند، و
به هم عامل، ضریب معنی‌داری به رغم آن یادآوری شده است.
در این ارزیابی‌های مقادیر کمی از طریق فضاهای
شاخص‌های ساده و نسبی با توجه به تخمین شده است. اگرچه روش
نحوه‌ای به کار رفته برای ارزیابی و اندازه‌گیری روش کمی
است. ولی برای تعیین ضریب اهمیت هر یک از شاخص‌ها، که
معنی‌داری نداشت با استفاده از نظریات کارشناسی استفاده کرد.

در این ارزیابی از شاخص‌های نهادهای شامل شاخص‌های
شبکه، هزینه، نیروی انسانی (پرسنل)، و مالیات، و
شاخص‌های ساده و نسبی شاخص‌های کارشکنی، دیآدم، و
مشترکی استفاده شده است. شاخص‌های و عوامل جزئی تشكل
دهند. این آن را در جدول‌های 2 و 3 ارائه شده است. مجموعه شمار
عناوین اطلاعاتی جمع‌آوری شده برای محاسبه شاخص‌ها و
ارزیابی شکل‌های آماری در هر شبکه بالغ بر 120 عنوان
می‌گرد. به کمک این شاخص‌ها مجموعه سیستم شکل‌های آماری
از دیدگاه سیستمی به صورت شکل 3 نمایش داده می‌شود.

ورامین، گرمسار، قزوین، گلستان، زاپورود، بهبهان، مغان، و
میناب.

عملکرد شبکه‌های ایرانی تحت تأثیر ذه عامل اصلی
فیزیکی و مدرنیته است. برخی از عوامل فیزیکی مؤثر
در عملکرد شبکه‌های ایرانی عبارتند از: طراحی، ساخت، و
شرایط محیط. عوامل مدرنیته مانند مجموعه فعالیت‌های
شرکت‌های بهره‌برداری در تعامل با شبکه و کشاورزان است.

شرکت‌های بهره‌برداری به کارگیری عواملی بسیاری، شبکه‌ها
بر پرسنل و مالیات نهایی همچنین توزیع آب و
تغییرات و تکنیک‌های شبکه، جستجوی مشترک‌کاران در
بهره‌برداری و نگهداری شبکه در این پژوهش به دلیل تأثیر
در بهره‌برداری مانند ارزیابی و شبکه‌های بهره‌برداری از آن‌ها در
عملکرد بکارگیری، ترکیب آنها به صورت یک سیستم در نظر
گرفته شده است. افزون بر آن، به منظور امکان مقایسه عملکرد
کل سیستم و شبکه‌های بهره‌برداری و ارائه راه‌کارهای
مناسب، شرکت‌های بهره‌برداری به طور جداگانه در نظر
گرفته شده‌اند.

دیدگاه‌های مختلفی برای ارزیابی عملکرد می‌توان در نظر
گرفت که در هر یک از این دیدگاه‌ها از تعدادی از
شاخص‌های مربوط به آن دیدگاه استفاده می‌شود. این دیدگاه‌ها
عبارتند از: دیدگاه‌های مدیریتی، فنی، اقتصادی، اجتماعی،
کشاورزی، و زیست‌محیطی. در این پژوهش با استفاده
گسترده‌ای که یک پژوهش پایه‌های و همکاران (7) به عمل آمد.

عملکرد عوامل مؤثر بر عملکرد شبکه برای هر یک از دیدگاه‌های فوق
تعین شده است. انتخاب عوامل مؤثر بر عملکرد از بین
مجموعه عوامل مربوط به دیدگاه‌های مختلف مطرح شده، بر
اساس اندازه‌گیری اصلی منافع از عملکرد شبکه (صحاحیان
سه‌گانه شبکه‌های بهره‌برداری، مشترکین شبکه، مدیریت شبکه،
و پرسنل شبکه‌های بهره‌برداری) جریuxtaposition، و کیفیت
اطلاعات مورد نیاز صورت گرفته است.

برای کمی نمودن ارزیابی از شاخص‌های عملکرد
جدول 1. شاخص‌های ارزیابی عملکرد

<table>
<thead>
<tr>
<th>شاخص</th>
<th>پارامتر مشخصه</th>
<th>نوع شاخص</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$N_1 + N_2 + N_3 + N_4 + N_5 + N_6 + N_7 + N_8 + N_9$</td>
<td>1</td>
<td>شیبک</td>
</tr>
<tr>
<td>C</td>
<td>$C = \frac{70C_1 + 30C_2}{100}$</td>
<td>2</td>
<td>هزینه</td>
</tr>
<tr>
<td>P_e</td>
<td>$P_e = \frac{P_{el} + P_{e2}}{2}$</td>
<td>3</td>
<td>پرسل</td>
</tr>
<tr>
<td>M</td>
<td>$M = \frac{40M_1 + 25M_2 + 25M_3 + 10M_4}{100}$</td>
<td>4</td>
<td>ماسین آلات</td>
</tr>
<tr>
<td>A</td>
<td>$A = \frac{60A_1 + 20A_2 + 20A_3}{100}$</td>
<td>5</td>
<td>کشاورزی</td>
</tr>
<tr>
<td>R</td>
<td>$R = \sum_{i=1}^{N} A_i C_i (W)$</td>
<td>6</td>
<td>درآمد</td>
</tr>
<tr>
<td>S</td>
<td>$S = \frac{30S_1 + 70S_2}{100}$</td>
<td>7</td>
<td>مشترکین</td>
</tr>
</tbody>
</table>

دیگر صفت‌های روبه‌رو به شکل‌آپاری از دیدگاه سیستمی

شکل 3. مجموعه شیبک آپاری از دیدگاه سیستمی

شکل 4. شرکت بهره‌برداری از دیدگاه سیستمی
جدول ۲ عوامل جزئی شاخص‌های ارزیابی

<table>
<thead>
<tr>
<th>شرح پارامترهای عامل جزئی</th>
<th>تعیین عامل جزئی</th>
<th>عامل جزئی مشخصه</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح تحت پوشش شیبک</td>
<td>N₁ = 0.22 A</td>
<td>سطح تحت پوشش شیبک</td>
<td>۱</td>
</tr>
<tr>
<td>حجم آب ورودی به شیبک</td>
<td>N₂ = 0.19 V</td>
<td>حجم آب ورودی به شیبک</td>
<td>۲</td>
</tr>
<tr>
<td>طول و توده کالا</td>
<td>N₃ = 0.14(∑ Q₁L₁)₁</td>
<td>طول و توده کالا</td>
<td>۳</td>
</tr>
<tr>
<td>ضرب توده کالا</td>
<td>N₄ = 0.13(∑ Q₁L₁)₂</td>
<td>ضرب توده کالا</td>
<td>۴</td>
</tr>
<tr>
<td>سازه‌های آبسید</td>
<td>N₅ = 0.1(∑ nQ)</td>
<td>سازه‌های آبسید</td>
<td>۵</td>
</tr>
<tr>
<td>سازه‌های آبسید</td>
<td>N₆ = 0.08(∑ nQ)₁</td>
<td>سازه‌های آبسید</td>
<td>۶</td>
</tr>
<tr>
<td>سازه‌های آبسید</td>
<td>N₇ = 0.08(∑ nQ)₂</td>
<td>سازه‌های آبسید</td>
<td>۷</td>
</tr>
<tr>
<td>سیفون</td>
<td>N₈ = 0.05(∑ LQ)</td>
<td>سیفون</td>
<td>۸</td>
</tr>
<tr>
<td>دراب</td>
<td>N₉ = 0.05(∑ HQ)</td>
<td>دراب</td>
<td>۹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شمار پرست فریلاینس</th>
<th>P₁</th>
<th>شمار پرست فریلاینس</th>
<th>P₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>فورچن</td>
<td>P₂</td>
<td>فورچن</td>
<td>P₂</td>
</tr>
<tr>
<td>پژوهش اجرایی و پژوهشی</td>
<td>P₃</td>
<td>پژوهش اجرایی و پژوهشی</td>
<td>P₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شمار محصولات</th>
<th>A₁</th>
<th>شمار محصولات</th>
<th>A₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین معمول</td>
<td>A₂</td>
<td>میانگین معمول</td>
<td>A₂</td>
</tr>
<tr>
<td>محصول</td>
<td>۱۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارزش محصولات</td>
<td>A₃</td>
<td>ارزش محصولات</td>
<td>A₃</td>
</tr>
<tr>
<td>شیبک</td>
<td>۲۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص درآمد</td>
<td>R</td>
<td>شاخص درآمد</td>
<td>R</td>
</tr>
<tr>
<td>شمار قرارداد منعقد</td>
<td>S₁</td>
<td>شمار قرارداد منعقد</td>
<td>S₁</td>
</tr>
<tr>
<td>میانگین سطح زیر</td>
<td>S₂</td>
<td>میانگین سطح زیر</td>
<td>S₂</td>
</tr>
</tbody>
</table>

\[
P_{el} = \frac{27P₁ + 25P₂ + 20P₃ + 15P₄ + 13P₅}{100}
\]

\[
P_e = \frac{75P₆ + 25P₇}{100}
\]

\[
\sum_{i=1}^{n} A_i P_i
\]

\[
A_2 = \frac{\sum_{i=1}^{n} A_i}{n}
\]

\[
A_3 = \sum_{i=1}^{n} A_i P_i C_i(y)
\]

\[
R = \sum_{i=1}^{n} A_i C_i(w)
\]

\[
S = n
\]

\[
S_2 = \frac{\sum_{i=1}^{n} A_i}{n}
\]
ارزیابی عملکرد بههرمداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

برای جدا کردن ارزیابی عملکرد شبکه‌های بههرمداری از عملکرد کل سیستم، شاخص شبکه به عنوان مجموعه‌ای که سرویس گیرنده از شرکت بههرمداری است، باید با عنوان نتایج در نظر گرفته شود (شکل ۱)، هر کدام از دو سیستم مکانیکی به طور جداگانه مورد ارزیابی و تحلیل قرار می‌گیرند. مقایسه نتایج ارزیابی به تفکیک شرکت‌های بههرمداری و کل سیستم، می‌تواند جهت گیری راه‌کارهای بهبود در زمینه مدیریت و ویژگی‌های فیزیکی سیستم را نیز کند.

نتایج و بحث

نتایج به دست آمده از اجرای مدل‌های DEA شامل درجه کارایی و احتمال مورد ارزیابی، واحد (های) مرجع، ضریب (ضرایب) نظیر واحد (های) مرجع برای ارزیابی مجموعه کل سیستم و شرکت‌های بههرمداری از شبکه‌ها به طور جداگانه در جدول‌های ۳ و ۴ ارائه گردیده است. نتایج نتایج مجموعه کل سیستم و سیستم تابع مربوط به شرکت‌های بههرمداری و در پایان مقایسه آن در بحث و بررسی می‌شود.

ارزیابی مجموعه کل سیستم

در ارزیابی مجموعه کل سیستم، شبکه آبیاری زاپاسکوه به کاریابی ۳۱۳۲۹ بالاترین میانگین ارزیابی شبکه آبیاری ۵۴۶۸ ۳ برابر نهاده‌ی واحد زاپاسکوه داشته که به آن به عنوان هاگام ارزیابی مجموعه کل سیستم می‌باشد. شاخص شبکه به عنوان نهاده‌ی واحد در نظر گرفته شد. لذا نتایج بهبود راه‌کارها به کاهش نهاده‌ی واحد دیده می‌شود. بنابراین شاخص شبکه نیز در مجموعه ارزیابی کل سیستم که به دست نهاده‌ی واحد می‌شود.

در مورد شبکه غلستان که برابر نهاده‌ی واحد می‌باشد، در نظر گرفته شد. لذا نتایج بهبود راه‌کارها به کاهش نهاده‌ی واحد دیده می‌شود. بنابراین شاخص شبکه نیز در مجموعه ارزیابی کل سیستم که به دست نهاده‌ی واحد می‌شود.

ارزیابی مجموعه کل سیستم گرایش‌های این است که به‌دست‌آمده‌ی

19
جدول 3. نتایج حاصل از ارزیابی عملکرد مجموعه کل سیستم‌های آب‌یابی با استفاده از مدل CCRp-I

| ضریب نظیر واحد (های) مرجع | واحدهای مرجع | درجه کارایی | شکه مورد ارزیابی | رده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/7545</td>
<td>قزوین</td>
<td>۳/۸۸۳۰۳</td>
<td>زاین‌دروی</td>
<td>1</td>
</tr>
<tr>
<td>1/5977</td>
<td>ورامین</td>
<td>۲/۳۴۷۹</td>
<td>گرم‌سار</td>
<td>2</td>
</tr>
<tr>
<td>1/3871</td>
<td>مغان</td>
<td>۲/۳۴۷۹</td>
<td>گرم‌سار</td>
<td>3</td>
</tr>
<tr>
<td>1/0841</td>
<td>زاین‌دروی</td>
<td>۲/۰۸۴۷</td>
<td>گرم‌سار</td>
<td>4</td>
</tr>
<tr>
<td>1/8876</td>
<td>گلمستان</td>
<td>۱/۳۵۵۱</td>
<td>گرم‌سار</td>
<td>5</td>
</tr>
<tr>
<td>1/4274</td>
<td>قزوین</td>
<td>۱/۲۳۷۹</td>
<td>مغان</td>
<td>6</td>
</tr>
<tr>
<td>1/5017</td>
<td>گرم‌سار</td>
<td>۰/۹۶۵۵</td>
<td>بهبهان</td>
<td>7</td>
</tr>
<tr>
<td>1/1980</td>
<td>زاین‌دروی</td>
<td>۰/۶۲۶۹</td>
<td>ورامین</td>
<td>8</td>
</tr>
<tr>
<td>1/3592</td>
<td>گرم‌سار</td>
<td>۰/۶۲۶۹</td>
<td>میناب</td>
<td></td>
</tr>
<tr>
<td>1/6288</td>
<td>میناب</td>
<td>۰/۶۲۶۹</td>
<td>میناب</td>
<td></td>
</tr>
<tr>
<td>1/9278</td>
<td>میناب</td>
<td>۰/۶۲۶۹</td>
<td>میناب</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. نتایج حاصل از ارزیابی عملکرد شرکت‌های بهره‌برداری از شیشه‌های آب‌یابی با استفاده از مدل CCRp-I

| ضریب نظیر واحد (های) مرجع | واحدهای مرجع | درجه کارایی | شکه مورد ارزیابی | رده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/7545</td>
<td>قزوین</td>
<td>۳/۸۸۳۰۳</td>
<td>زاین‌دروی</td>
<td>1</td>
</tr>
<tr>
<td>1/5977</td>
<td>ورامین</td>
<td>۲/۳۴۷۹</td>
<td>گرم‌سار</td>
<td>2</td>
</tr>
<tr>
<td>1/3871</td>
<td>مغان</td>
<td>۲/۳۴۷۹</td>
<td>گرم‌سار</td>
<td>3</td>
</tr>
<tr>
<td>1/0841</td>
<td>زاین‌دروی</td>
<td>۲/۰۸۴۷</td>
<td>گرم‌سار</td>
<td>4</td>
</tr>
<tr>
<td>1/8876</td>
<td>گلمستان</td>
<td>۱/۳۵۵۱</td>
<td>گرم‌سار</td>
<td>5</td>
</tr>
<tr>
<td>1/4274</td>
<td>قزوین</td>
<td>۱/۲۳۷۹</td>
<td>مغان</td>
<td>6</td>
</tr>
<tr>
<td>1/5017</td>
<td>گرم‌سار</td>
<td>۰/۹۶۵۵</td>
<td>بهبهان</td>
<td>7</td>
</tr>
<tr>
<td>1/1980</td>
<td>زاین‌دروی</td>
<td>۰/۶۲۶۹</td>
<td>ورامین</td>
<td>8</td>
</tr>
<tr>
<td>1/3592</td>
<td>گرم‌سار</td>
<td>۰/۶۲۶۹</td>
<td>میناب</td>
<td></td>
</tr>
<tr>
<td>1/6288</td>
<td>میناب</td>
<td>۰/۶۲۶۹</td>
<td>میناب</td>
<td></td>
</tr>
<tr>
<td>1/9278</td>
<td>میناب</td>
<td>۰/۶۲۶۹</td>
<td>میناب</td>
<td></td>
</tr>
</tbody>
</table>

20
ارزیابی عملکرد بهره‌برداری از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

بهره‌برداری، یک شاخص شبه به عنوان ستاد در نظر گرفته شده است. بنابراین، راهکار کاهش نهاده‌ای فقط منحصر به شاخص‌های شرکت بهره‌برداری (وزن‌های، پرستاری و مشایین آن) است.

شرکت‌های بهره‌برداری مغان، گرمسار، و رامین دارای نهادی یک واحد مرجع هستند. بنابراین، نهاده‌های مصری و این شرکت‌ها به ترتیب مرجع با ضرایب مرتبه به نهاده‌های این شرکت‌ها به ترتیب مرجع است.

از ارزیابی شرکت‌های بهره‌برداری گویای این است که کارایی بهره‌برداری در بهره‌برداری بیشتر کل، کلی و در مرحله‌های مختلف ویژه‌سازی شده است. شاخص شاخص به عنوان نهاده در ارزیابی شرکت‌های بهره‌برداری، یک شاخص شاخص شکه به عنوان ستاد در نظر گرفته شده است. بنابراین، شاخص‌های کیفیتی، کمتر از یک بوته و ابن واحدها از طرف سطح مالی و دستیابی به نهاده‌های موجود تولید شده است. با کاهش مرتبه‌های خود به مرز نهاده‌های این شرکت به ترتیب مرجع مربوطه، می‌تواند شرکت‌های خود را به یک دست‌بند برساند. دیگر شرکت‌های بهره‌برداری با مسیر کارایی قرار می‌گیرند. هنگامی که شاخص‌ها مناسب با میزان کارایی نبوده، که در جدول ۴، مشخص است.

مقایسه ارزیابی مجموعه کل سیستم و شرکت‌های بهره‌برداری

همان‌گونه که قبلاً گفته شد، در ارزیابی مجموعه کل سیستم، شاخص‌های بهره‌برداری به کل سیستم‌های بهره‌برداری، شاخص‌های بهره‌برداری به عنوان ستاد در نظر گرفته شده است. بنابراین، مقایسه کارایی‌ها و این اقدام در هر حالت پاسخ‌گذاری به بهره‌برداری شاخص‌های بهره‌برداری یک شاخص ابزاری مشخص می‌کند.

نتایج به دست آمده نشان می‌دهد که شبکه آبیاری زایندرود و شرکت بهره‌برداری آن نسبت به دیگر شبکه‌ها و شرکت‌ها بهترین کارایی را داشته و میزان کارایی و اهدافحصاره مرکز و ضرایب و اهدافحصاره مرکز در هر حالت مناسب است. در هر حالت شبکه آبیاری زایندرود و شرکت بهره‌برداری آن می‌تواند به عنوان واحد اگو و نمونه دیگر اهدافحصاره قدرد، و میزان توانایی بهره‌برداری مصرف مرکز و این شرکت درجه کارایی مجموعه کل سیستم گرمسار و شبکه‌های منابع، ورامین و به همراه کارایی کمتر از یک دارند. و در صورت حفظ سطح موجود تولید ساخته‌های کاهش نهاده‌های خود به میزان نهاده‌های مرجع مربوطه، می‌تواند کارایی خود را به یک برساند. واحدهای دیگر کارایی بیش از یک دارند. و روند مرز کارایی قرار می‌گیرند. هنگامی که درجه کارایی آنهاست، که در جدول ۳ مشخص است.

ارزیابی شرکت‌های بهره‌برداری

در ارزیابی شرکت‌های بهره‌برداری، شرکت بهره‌برداری میراب زایندرود یک عدد کارا ۳۰۳۸۱۳ و شرکت بهره‌برداری میراب با کارایی ۴۷۵۹ به ترتیب بیشترین و کمترین کارا ۲۱۳۰ مشخص است. بنابراین، شرکت‌های بهره‌برداری دیگر به ترتیب از بیشترین تا کمترین کارایی عبارت است از قراری، مغان، گرمسار، بهبهان، گلستان، و رامین.

در مورد شرکت‌های میراب زایندرود، واحد‌های مرجع عبارتند از شرکت‌های بهره‌برداری قزوین و رامین و به ترتیب با ضرایب ۱/۵۴۵۵ و ۱/۵۸۰۲. ترتیب خمی ایند و شرکت‌ها ضرایب مربوطه، ستادهای برای با ستاده بهره‌برداری میراب زایندرود تولید می‌کند. بنابراین، نهاده‌های این واحد مرکز به نهاده شرکت میراب زایندرود برای با ۲۸۳۸ خواهد بود.

در مورد شرکت بهره‌برداری میراب، واحد‌های مرجع عبارتند از شرکت‌های بهره‌برداری قزوین و میراب زایندرود. به ترتیب با ضرایب ۳۸۸۷ و ۱۳۵۷. ترتیب خمی ایند و شرکت‌ها ضرایب مربوطه، ستادهای برای با ستاده بهره‌برداری میراب تولید می‌کند. بنابراین، نهاده‌های این واحد مرکز به نهاده‌های شرکت میراب برای با ۴۷۵۹ است. بنابراین شرکت میراب با ۴۷۵۹ مصرف صرفه‌تر می‌باشد. کاهش بهره‌برداری شرکت میراب با ۴۷۵۹ به دست آمده می‌کند. کاهش بهره‌برداری شرکت میراب با ۴۷۵۹ به دست آمده می‌کند. کاهش بهره‌برداری شرکت میراب با ۴۷۵۹ به دست آمده می‌کند. کاهش بهره‌برداری شرکت میراب با ۴۷۵۹ به دست آمده می‌کند.

درجه کارایی ارزیابی شرکت‌های بهره‌برداری
کارایی مجموعه کل سیستم شبکه میناب و شرکت
بهره‌داری آن کمتر از یک است، و در هر دو حالت کاراست، ولی در معیار شرکت بهره‌داری (0.25) کمتر از کارایی مجموعه کل سیستم (0.34٪) است. بنابراین، در صورت ضرورت بهبود عملکرد، اولویت سرمایه‌گذاری در بهبود شرکت بهره‌داری است.

مجموعه کل سیستم شبکه گلستان دارای کارایی ۰/۸۴۷ است. در حالی که کارایی شرکت بهره‌داری آن ۰/۸۱۱ است، بنابراین، تشخیص می‌دهد اگرچه کل سیستم گلستان کاراست، ولی شرکت بهره‌داری آن ناکاراست، و برای بهبود عملکرد می‌ساید به وضعیت شرکت بهره‌داری توجه کرد.

مجموعه سیستم شبکه قزوین و شرکت بهره‌داری آن کارایی پیشرفت از یک است، ولی کارایی مجموعه کل سیستم (0.35) کمتر از کارایی شرکت بهره‌داری (0.29) است. بنابراین، در صورت ضرورت بهبود عملکرد، اولویت سرمایه‌گذاری در بهبود سیستم فیزیکی شبکه است.

کارایی مجموعه کل سیستم شبکه میناب و شرکت بهره‌داری آن پیشرفت از یک است، ولی کارایی مجموعه کل سیستم (0.8) کمتر از کارایی شرکت بهره‌داری (0.9) است. بنابراین، تشخیص می‌دهد اگرچه کل سیستم گلستان کاراست، ولی شرکت بهره‌داری آن ناکاراست، و برای بهبود عملکرد، اولویت سرمایه‌گذاری در بهبود شرکت بهره‌داری است.

کارایی مجموعه کل سیستم شبکه ورامین و شرکت بهره‌داری آن پیشرفت از یک است، ولی کارایی مجموعه کل سیستم (0.64) کمتر از کارایی شرکت بهره‌داری (0.79) است. بنابراین، تشخیص می‌دهد اگرچه کل سیستم گلستان کاراست، ولی شرکت بهره‌داری آن ناکاراست، و برای بهبود عملکرد، اولویت سرمایه‌گذاری در بهبود شرکت بهره‌داری است.

مهمتر است.
در تحلیل با ماهیت نهادی، واحد مورد ارزیابی باید ترکیبی خلاصه‌ای از واحدهای مرجع مقایسه‌ای می‌گردد. که ستادهای برادر با ستاده واحد مورد ارزیابی تولید کنند و برای بهبود عملکرد باید سطح مصرف نهاده‌ای خود را به سطح نهاده‌ای واحد (نهاد) مرجع با ضریب مربوط به سیستم، بهینه‌سازی مقداری از واحدها و ترتیبی از آنها، واحدهای مرجع و ضرایب تأخیر آنها به عنوان استاندارد مقایسه‌ای واحد مورد ارزیابی و راهکار بهبود آن تعیین شود. مقایسه کارایی به دست آمده از این دیدگاه‌های متنوع (مجموعه کل سیستم و شرکت بیرهبرداری)، امکان تعیین واگذاری سرمایه‌گذاری برای بهبود عملکرد سیستم‌ها را در زمینه شبکه با شرکت فراهم می‌کند. بنابراین، سطح مورد نیاز واحد مورد ارزیابی و عدم توانایی آنها در ارائه استانداردهای واقع بین‌النهرین شاهکارهای عملی بهبود روش کارآمد محدودیت‌های موجود را ندارد، تقسیم‌بندی گام‌های مشابه‌های بیشتری دارد.

با توجه به اینکه استفاده از روش DEA به‌رازنده ارزیابی عملکرد شبکه‌های آبیاری در سطح ملی و بین‌المللی برای

منابع مورد استفاده

1. ارزیابی عملکرد توزیع‌گرهای آب و تغییر میزان بهره‌وری به کمک تحلیل پوششی داده‌ها. پایان‌نامه کارشناسی ارشد مدیریت عملکرات از بیمه‌های ایران، 1373.
2. عملکرد شبکه‌های آبیاری. م. ن. نظامداری، 1998. ارزیابی عملکرد توزیع‌گرهای به‌نظر گرفته شده، گازی، و آبی و تعیین کارایی آنها به کمک تحلیل پوششی داده‌ها. سیستم‌های کارهایی بین‌المللی برای تهیه.
3. برنامه‌ریزی پروژه‌های سازمان مدیریت منابع آب ایران. 1376. فراوانی طرح‌های تحقیقاتی وزارت آب و برق، وزارت آب و برق.
4. برنامه‌ریزی پروژه‌های آبیاری توزیع‌گرهای به‌نظر گرفته شده، گازی، و آبی و تعیین کارایی آنها به کمک تحلیل پوششی داده‌ها. سیستم‌های کارهایی بین‌المللی برای تهیه.