محمدرضا علیرضایی و ابراهیم صالحی

چکیده
بررسی‌هایی به عمل آمده نشان داده است که عملکرد شیب‌های آبی‌اری به دلایل مختلف کمتر از حد انتظار است. که ضرورت توجه به ارتقای عملکرد این شیب‌ها را کوچک‌تر می‌کند. نحوه نگهداری برای بهبود عملکرد شیب‌های آبی‌اری، ارزیابی وضع موجود آنهاست. پژوهش افراد شاهد برای ارزیابی عملکرد شیب‌های آبی‌اری پای مانند روش‌های تجزیه و تحلیل تشخیصی (DA) چارچوبی (RA) و همچنین روش‌های تجزیه و تحلیل (FA) دست نیست. در این مقاله با استفاده از روش تحلیل پوششی داده‌ها (DEA) که یک روش تحلیل کمی بوده و استانداردهای واقعیت‌شناسی عملکرد افرادی را بررسی نمی‌کند، هشت شیب آبی‌اری کشور ارزیابی و کارآیی آنها تعیین شده است. با توجه به شمار واحدهای ارزیابی شده در مقیاس با شمار تعداد موارد و ساختارهای مربوط به مدل مناسب DEA برای ارزیابی عملکرد شیب‌های آبی‌اری انتخاب شد. با معرفی شاخص‌های مختلف فنی و مدیریتی به صورت به‌هم و ساختار ارزیابی مجموعه کل سیستم شیب‌های بهبودیابی با تفکیک فراهم گردید.

نتایج به دست آمده گویای آن است که شیب‌های آبی‌اری زاپیسته و شرکت مراپرزیدنر، از میان هشت شیبکه و شرکت مورد بررسی، بیشترین کاراکترهای دارند و در سیستم‌های شیب‌های آبی‌اری نیز آنها همکار‌اند. شیب‌های آبی‌اری گله‌گی و بهبودی‌اری آنها افزایش یافته، زمانه، و میزان و کاراکترهای بهبودیابی آنها افزایش دارا نیستند، ولی دارای پتانسیل بهبود می‌باشند. در مجموع با توجه به نتایج آزمون‌های DEA ارزیابی عملکرد و تعیین استانداردهای واقعیت‌شناسی و ارائه‌های شیب‌های آبی‌اری مناسب بهبود عملکرد، نمی‌توان این روش را به عنوان یک روش کارآمد، به محدودیت روش‌های موجود را نتایج به دست آمده گویای آن است که شیب‌های آبی‌اری زاپیسته و شرکت مراپرزیدنر، از میان هشت شیبکه و شرکت مورد بررسی، بیشترین کاراکترهای دارند و در سیستم‌های شیب‌های آبی‌اری نیز آنها همکار‌اند. شیب‌های آبی‌اری گله‌گی و بهبودی‌اری آنها افزایش یافته، زمانه، و میزان و کاراکترهای بهبودیابی آنها افزایش دارا نیستند، ولی دارای پتانسیل بهبود می‌باشند. در مجموع با توجه به نتایج آزمون‌های DEA ارزیابی عملکرد و تعیین استانداردهای واقعیت‌شناسی و ارائه‌های شیب‌های آبی‌اری مناسب بهبود عملکرد، نمی‌توان این روش را به عنوان یک روش کارآمد، به محدودیت روش‌های موجود را نتایج به دست آمده گویای آن است که شیب‌های آبی‌اری زاپیسته و شرکت مراپرزیدنر، از میان هشت شیبکه و شرکت مورد بررسی، بیشترین کاراکترهای دارند و در سیستم‌های شیب‌های آبی‌اری نیز آنها همکار‌اند. شیب‌های آبی‌اری گله‌گی و بهبودی‌اری آنها افزایش یافته، زمانه، و میزان و کاراکترهای بهبودیابی آنها افزایش دارا نیستند، ولی دارای پتانسیل بهبود می‌باشند. در مجموع با توجه به نتایج آزمون‌های DEA ارزیابی عملکرد و تعیین استانداردهای واقعیت‌شناسی و ارائه‌های شیب‌های آبی‌اری مناسب بهبود عملکرد، نمی‌توان این روش را به عنوان یک روش کارآمد، به محدودیت روش‌های موجود را نتایج به دست آمده گویای آن است که شیب‌های آبی‌اری زاپیسته و شرکت مراپرزیدنر، از میان هشت شیبکه و شرکت مورد بررسی، بیشترین کاراکترهای دارند و در سیستم‌های شیب‌های آبی‌اری نیز آنها همکار‌اند. شیب‌های آبی‌اری گله‌گی و بهبودی‌اری آنها افزایش یافته، زمانه، و میزان و کاراکترهای بهبودیابی آنها افزایش دارا نیستند، ولی دارای پتانسیل بهبود می‌باشند. در مجموع با توجه به نتایج آزمون‌های DEA ارزیابی عملکرد و تعیین استانداردهای واقعیت‌شناسی و ارائه‌های شیب‌های آبی‌اری مناسب بهبود عملکرد، نمی‌توان این روش را به عنوان یک روش کارآمد، به محدودیت روش‌های موجود را نتایج به دست آمده گویای آن است که شیب‌های آبی‌اری زاپیسته و شرکت مراپرزیدنر، از میان هشت شیبکه و شرکت مورد بررسی، بیشترین کاراکترهای دارند و در سیستم‌های شیب‌های آبی‌اری نیز آنها همکار‌اند. شیب‌های آبی‌اری گله‌گی و بهبودی‌اری آنها افزایش یافته، زمانه، و میزان و کاراکترهای بهبودیابی آنها افزایش دارا نیستند، ولی دارای پتانسیل بهبود می‌باشند. در مجموع با توجه به نتایج آزمون‌های DEA ارزیابی عملکرد و تعیین استانداردهای واقعیت‌شناسی و ارائه‌های شیب‌های آبی‌اری مناسب بهبود عملکرد، نمی‌توان این روش را به عنوان یک روش کارآمد، به محدودیت روش‌های موجود را نتایج به دست آمده گویای آن است که شیب‌های آبی‌اری زاپیسته و شرکت مراپرزیدنر، از میان هشت شیبکه و شرکت مورد بررسی، بیشترین کاراکترهای دارند و در سیستم‌های شیب‌های آبی‌اری نیز آنها همکار‌اند. شیب‌های آبی‌اری گله‌گی و بهبودی‌اری آنها افزایش یافته، زمانه، و میزان و کاراکترهای بهبودیابی آنها افزایش دارا نیستند، ولی دارای پتانسیل بهبود می‌باشند. در مجموع با توجه به نتایج آزمون‌های DEA ارزیابی عملکرد و تعیین استانداردهای واقعیت‌شناسی و ارائه‌های شیب‌های آبی‌اری مناسب بهبود عملکرد، نمی‌توان این روش را به عنوان یک روش کارآمد، به محدودیت روش‌های موجود را
مقدمه
عملکرد سیاست‌های موجود با ارزیابی مانند تحلیل و آزمون توانائی، و بهبود عملکرد شیکه‌های آبیاری است. روش‌هایی که تاکنون برای ارزیابی شیکه‌های آبیاری ارائه شده، این روش‌ها نقص جزئی و تحلیل نشانی (DA) از دیافراگم‌هایی (RAP) سریع، نظیری و غیر کمی (FA) هستند. و یا اگر به نظر رسد کلاسیک شاخه‌های کنی ارائه می‌کند، استانداردهای برای مقایسه و بهبود عملکرد تدارند. مشکلات روش‌های موجود در ارزیابی و بهبود عملکرد شیکه‌های آبیاری، موجب آن شده که بررسی‌های بهبود عملکرد آنها جدید موفق نباشد.

Data Envelopment Analysis (DEA)
روش تحلیل پوششی داده‌ها (DEA) در سال ۱۹۷۸ توسط چارنس و همکاران (۱۱) (Analysis) ارائه شد. نخبه‌برای ارزیابی اقتصادی و فنی واحدهای تولید عضوی گردید. امرورز این روش برای ارزیابی عملکرد واحد‌های خدماتی، از دولتی و غیر دولتی، به طور گسترده استفاده می‌شود. (۱۱) در این روش با استفاده از برنامه‌ریزی خطی، مرز کارایی واحدهای مختلف به عنوان استاندارد عملکرد تبعیین و عملکرد واحدها نسبت به آن تجسید نمی‌شود. به صورت درجه‌بندی کارایی مشخص می‌شود.

۱۲

دهشت شیکه آبیاری کشور از دو دیدگاه فنی و مدرنیت بوده است. در بخش اول این مقاله به معرفی کلی روش و DEA مدل‌های اساسی آن برداشته و در بخش بعد ضمن معرفی شاخه‌های ارزیابی، عملکرد دهشت شیکه‌های آبیاری یک دستگاه به جامع و ارزیابی می‌شود.

مواد و روش‌ها
مطابق با فاز (۱۴) استفاده از روش‌های نمایشی برای تبعیض کارایی در یک سیستم با دو نهاده و یک سیستم از دو نهاده تولید عضوی از دو نهاده استفاده‌ای از برنامه‌ریزی برای روش نمایشی برای سیستم‌های آبیاری با نهاده و سیستم‌های تجربه داده‌ها در مدل حاصله به سیستم‌های (CCR) یا (Charnes, Cooper & Rhodes) Tحلیل پوششی داده‌ها (DEA) معرف شد. در سال ۱۹۸۴ بکر و همکاران (۷) روش DEA را برای حالات دارای بارزی به مقیاس صعودی، ثابت، و نرمال یا Banker, Charnes & Cooper (BCC) تعیین داده‌ها، که به مدل DEA معرف کرده. در یک مدل‌های می‌گویند و...
ارزیابی عملکرد بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

باید اصول اساسی و مدل‌های اصلی DEA که در این پژوهش استفاده شده، به شرح زیر است:

برای تشخیص روش‌های اصولی بهتر است یک مثال ساده، که مشکل‌کلی از 9 واحد با یک نهاد و یک سطح است، در نظر گرفته شود. برای ارزیابی 9 واحد مختلف، مقدار سطح در 9 نهاد نهاد آنها در یک دستگاه مختصاتی دو بعدی، رسم و نقاط نظر هر واحد مشخص می‌شود (شکل 1). به طور کلی، روش تحلیل به SE صورت می‌گیرد و تحلیل با ماهیت نهادهای آتار تغییر نهادها، در تحلیل با ماهیت سطحی اثر تغییر نهادها، در تحلیل با ماهیت تکیی تغییر نهادها و سطح‌ها به صورت یافتن واحدهای مختلف بررسی می‌شود. در تحلیل با ماهیت تست که یک مقیار مسرای سطحی ستاده کمین (واحدهای 1-3) واحدی دارای کارایی بیشتر است که کمترین نهاد را مصرف می‌کند (واحد 1). در تحلیل با ماهیت سطحی، مینی و واحد‌هایی که یک مقیار

مسایل نهادهای مصرف می‌کنند (واحدهای 1-4) واحدی دارای کارایی بیشتر است که نهاد بیشتری تویید می‌کند (واحد 4). در این مثال واحدهایی که دارای کارایی بیشتری هستند (واحدهای 1-3)، به طور مزیت محسوس شده و تکیی

خط کارایی مشاهده فرمول مرز می‌شود (خط بپ در شکل). در مزرعه‌هایی که دارای سطح مصرفی ممکن می‌باشند، در رشته‌های فشرده به‌طور میانگین می‌باشد. در مزرعه‌هایی که دارای سطح مصرفی ممکن می‌باشند، در رشته‌های فشرده به‌طور میانگین می‌باشد.

DEA مدل‌های اصلی

در مدل‌های اصلی DEA تحلیل با ماهیت تکیی صورت می‌گیرد. در مزرعه‌هایی که تفاوت میانگین می‌باشد. در مزرعه‌هایی که دارای سطح مصرفی ممکن می‌باشند، در رشته‌های فشرده به‌طور میانگین می‌باشد.

مرز کارایی شامل دو قسمت مرز می‌باشد: مرز ضعیف (خط ضعیف در شکل) و مرز تایید (خط بپ در شکل). در مزرعه‌هایی که نهاد بیشتری تویید می‌کنند، در مزرعه‌هایی که نهاد بیشتری تویید می‌کنند، در مزرعه‌هایی که نهاد بیشتری تویید می‌کنند، در مزرعه‌هایی که نهاد بیشتری تویید می‌کنند.
فرض کنید $n$ واحد مورد ارزیابی وجود داشته باشد (Decision Making Unit) که در کدام با استفاده از $m$ ستاده تولید کنند. اگر واحد ارزیابی شده با اندازه $s$، هر واحد ارزیابی شده با اندازه $s$ به تولید ستاده‌های $i$ (1, $\ldots$, $m$) $x_{ij}$ و $y_{ij}$ می‌پردازد، می‌توان آن را مانند شکل ۱ نمایش داد.

دیده مجموعه امکان تولید عبارت است از مجموعه‌ای از نقاط امکان‌پذیر تولید در فضای $m$ دو بعدی به نهادها و ستاده‌ها. به $Y_i$ و $X_i$ منظور داریم. مجموعه امکان تولید $T_m$ مجموعه‌ای از $Y_i$ و $X_i$ است که هستند. به شکل ۲ نشان داده می‌شود.

برای ارزیابی واحد $i$ با نهاد $j$ ماهیت نهاد $j$ می‌تواند به صورت زیر بیان شود:

شکل ۲ نمایش نهادها و ستاده‌ها واحد $j$

برای ارزیابی واحد $P$ با نهاد $j$ ماهیت نهاد $j$ و ضرب $\theta_j$ برای $x_i$ در نظر گرفته می‌شود. برای یافتن نقطه نظیر $P$ روی مرز کارایی، مقدار حداکثر $\theta_j$ به گونه‌ای به دست می‌آید که $C_R$ و $C_M$ از مجموعه امکان تولید شود. بنابراین روابط ریاضی مدل‌های $BCC$ و $CCR$ به شرح زیر بیان می‌شود:

$\quad 0^*_p = \min \theta_p$

$\quad \{ \theta_p x_p, y_p \} \in T_{CCR}$

$\quad 0^*_p = \min \theta_p$

$\quad \sum_{j=1}^{n} \lambda_j x_j \leq \theta_p x_p$

$\quad \lambda_j \geq 0$

$\quad \sum_{j=1}^{n} \lambda_j = 1$

$\quad \lambda_j \geq 0$

$\quad T_{CCR} = \left\{ (x_i, y_i) \mid x_i \geq \sum_{j=1}^{n} \lambda_j x_j, y_i \leq \sum_{j=1}^{n} \lambda_j y_j, \lambda_j \geq 0 \right\}$

$\quad T_{BCC} = \left\{ (x_i, y_i) \mid x_i \geq \sum_{j=1}^{n} \lambda_j x_j, y_i \leq \sum_{j=1}^{n} \lambda_j y_j, \lambda_j \geq 0 \right\}$
ارزیابی عملکرد به‌ورودی‌داری از شیکه‌های آبیاری به روش تحلیل پورشی داده‌ها (DEA)

هنگامی که شمار واحدهای تخصیص گیری کمتر از مجموع شمار نهادها و ستاده‌های می‌شود، امکان ارزیابی مقایسه‌ای آنها بین مرو. چارت و همکاران (۱۰) برای امکان استفاده از این روش به عنوان یک قاعده تجاری، شمار واحدهای تخصیص گیری را حداکث سه برآور مجموع نهادها و ستاده‌ها پیشنهاد کردند. در شرایطی که شمار واحدهای تخصیص گیری کمتر از این حد باشد، یکی از راه‌حل‌های رفع مشکل استفاده از مدل اندرسون-پیترس (۵) است. در این مدل تعیین نقطه مرجع و ایجاد واحدهایی به صورت اتوماتیک راه‌حل‌هایی ارائه می‌دهد.

بدین ترتیب، امکان مقایسه واحدهایی که ممکن بود در مدل BCC با ممکن بود در مدل CCR به‌طور ممکن داشته باشد را فراهم می‌کند.

به عنوان نتیجه، مدل استفاده‌ای CCR با ماهیت نهادهای به صورت زیر تغییر می‌یابد:

\[
\min \left( \theta_p - 1S^+ - 1S^- \right)
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j Y_j = Y_p
\]

\[
\lambda_j \geq 0, \ j = 1, \ldots, n
\]

\[
S^+, S^- \geq 0
\]

سیستم‌های مورد ارزیابی و شاخص‌های ارزیابی عملکرد مسائل و مشکلات زیادی در تمام مراحل مختلف طرح‌های آبیاری کشور وجود دارد که ضرورت ارزیابی همه جانبه و ارائه ارائه‌های به‌هوش عملکرد آنها را ایجاد می‌کند. در این پژوهش از نیازی به‌هوش عملکرد آنها به‌غایتی که می‌تواند انتخاب شد. کیکی از معیارهای انتخاب شیکه‌ها وجود اطلاعات مورد نیاز برای ارزیابی بود. همچنین، سعی شد شیکه‌ها حتی‌الحال در کلیات عوامل مؤثر بر عملکرد شیب هم باشند.

به عنوان مثال، تعداد واحدهای مدرن، و غالبًا در دایری سیستم کنترل از البانست هستند. این شیکه‌ها عبارت‌اند از: شیکه‌های آبیاری

\[
\sum_{i=1}^{n} \lambda_i Y_j = Y_p
\]

\[
\lambda_j \geq 0, \ j = 1, \ldots, n
\]

\[
S^+, S^- \geq 0
\]
عملا و فنون کشاورزی و منابع طبیعی / جلد ششم / شماره چهارم / زمستان 1381

ورامین، گرمسار، فردو، گلستان، رآیندرود، بهبهان، مغان، و
میناب.

عملکرد شبکه‌های آبیاری تحت تأثیر دو عامل اصلی
فیزیکی و مدلپیشی است. برخی از عوامل فیزیکی مؤثر در
عملکرد شبکه‌های آبیاری عبارتند از: طراحی، ساخت، و
شرایط محلی. عوامل مدلپیشی مانند مجموعه فعالیت‌های
شرکت‌های بهره‌برداری در این شیبکه و کشاورزان است.
شرکت‌های بهره‌برداری با کارگری عواملی چون سرمایه،
پرسنل، پایش و ابزار، و انجام فعالیت‌های مجموعه توزیع آب
تعمیر و تکمیلی شیبکه، جلسه مشترک‌کردن سیستم‌ها
به‌همراه شیبکه نهایی و مشابه نیروی کشاورزی در
به‌همراه عملکرد شیبکه درنات. در این پژوهش به دلیل تأثیر
و تأثیرات شبکه‌های آبیاری و شیبکه‌های بهره‌برداری از آنها در
عملکرد یکپارچه، ترتیب آنها به صورت یک سیستم در نظر
گرفته شده است. افزایش رنگ آن به منظور امکان مقایسه عملکرد
کل سیستم و شیبکه‌های بهره‌برداری و ارائه راهکارهای
مناسب، شیبکه‌های بهره‌برداری نیز به طور جداگانه در نظر
گرفته شده‌اند.

گرگت، که در هر يک از اين ديدگاه‌ها از تعدادی از
شاخ‌های مربوط به آن ديدگاه استفاده می‌شود. این دیدگاه‌ها
عبارتند از دیدگاه‌های مدرنیستی، فنی، اقتصادی، اجتماعی،
کشاورزی، و زیست‌محیطی. در این پژوهش با استفاده
گردانه که یک پارامتر شاخصی از شاخه‌های نهاد
تعریف شده است. انتخاب عوامل مؤثر بر عملکرد از بین
مجموعه عوامل مربوط به دیدگاه‌های مختلف مطرح شده.
اساس اندازه‌گیری اصلی منافع از عملکرد شبکه (اصلاحیان
سه‌هم شیبکه‌های بهره‌برداری، مشترکین شبکه، مدت و شاخص،
و پرسنل شیبکه‌های بهره‌برداری)، موجودیت و کیفیت
اطلاعات مورد نیاز صورت‌گرفته است.

برای یکی نمونه ارزیابی، از شاخ‌های عملکرد
جدول 1. شاخص‌های ارزیابی عملکرد

<table>
<thead>
<tr>
<th>شاخص‌های ارزیابی عملکرد</th>
<th>پارامتر مشخصه</th>
<th>نوع شاخص</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = N₁ + N₂ + N₃ + N₄ + N₅ + N₆ + N₇ + N₈ + N₀</td>
<td>N</td>
<td>شیبک</td>
<td>1</td>
</tr>
<tr>
<td>C = ( \frac{70C₁ + 30C₂}{100} )</td>
<td>C</td>
<td>هزینه</td>
<td>2</td>
</tr>
<tr>
<td>( P_e = \frac{P_{el} + P_{e2}}{2} )</td>
<td>( P_e )</td>
<td>پرس</td>
<td>3</td>
</tr>
<tr>
<td>( M = \frac{40M₁ + 25M₂ + 25M₃ + 10M₄}{100} )</td>
<td>M</td>
<td>ماشین‌آلات</td>
<td>4</td>
</tr>
<tr>
<td>( A = \frac{60A₁ + 20A₂ + 20A₃}{100} )</td>
<td>A</td>
<td>کشاورزی</td>
<td>5</td>
</tr>
<tr>
<td>( R = \sum_{i=1}^{N} A_i C_i (W) )</td>
<td>R</td>
<td>درآمد</td>
<td>6</td>
</tr>
<tr>
<td>( S = \frac{30S₁ + 70S₂}{100} )</td>
<td>S</td>
<td>مشترکین</td>
<td>7</td>
</tr>
</tbody>
</table>

شکل 3. مجموعه سیستم شیبک آبیاری از دیدگاه سیستمی

شکل 4. شرکت بهره‌برداری از دیدگاه سیستمی
### جدول 2: عوامل جزئي شاخص های ارزیابی

<table>
<thead>
<tr>
<th>شرح بارامترهای عامل جزئی</th>
<th>تعیین عامل جزئی</th>
<th>عامل جزئی مشخصه</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح تحت پوشش شیشه A</td>
<td>N_1=0.22A</td>
<td>N_1</td>
</tr>
<tr>
<td>حجم آب ورودی به شیشه V</td>
<td>N_2=0.19V</td>
<td>N_2</td>
</tr>
</tbody>
</table>

\[
N_3 = 0.14 \left( \sum Q_i L_i \right)_1
\]

\[
N_4 = 0.13 \left( \sum Q_i L_i \right)_2
\]

\[
N_5 = 0.1 \left( \sum nQ \right)_1
\]

\[
N_6 = 0.08 \left( \sum nQ \right)_1
\]

\[
N_7 = 0.08 \left( \sum nQ \right)_2
\]

\[
N_8 = 0.05 \left( \sum LQ \right)
\]

\[
N_9 = 0.05 \left( \sum HQ \right)
\]

\[
P_{el} = \frac{27P_1 + 25P_2 + 20P_3 + 15P_4 + 13P_5}{100}
\]

\[
P_{el} = \frac{75P_6 + 25P_7}{100}
\]

\[
M_1 = \text{مانشین آلات سنگین بخاری}
\]

\[
M_2 = \text{مانشین آلاین آلات سنگین بخاری}
\]

\[
M_3 = \text{مانشین آلاین آلات سیک}
\]

\[
M_4 = \text{مانشین آلاین موتور بخاری}
\]

\[
M_5 = \text{مانشین آلاین موتور بخاری}
\]

\[
M_6 = \text{مانشین آلاین موتور بخاری}
\]

\[
M_7 = \text{مانشین آلاین موتور بخاری}
\]

\[
A_1 = \text{سطح زیر کشت}
\]

\[
A_2 = \frac{\sum_{i=1}^{n} A_i P_i}{n}
\]

\[
A_3 = \frac{\sum_{i=1}^{n} A_i C_i(y)}{n}
\]

\[
R = \frac{\sum_{i=1}^{n} A_i C_i(w)}{S_i=n}
\]

\[
S_2 = \sum_{i=1}^{n} A_i
\]
ارزیابی عملکرد بهره‌برداری از شیکه‌های آبی‌پری به روش تحلیل پوشتی داده‌ها (DEA)

برای جاده‌کردن ارزیابی عملکرد شرکت‌های بهره‌برداری از عملکرد کل سیستم، شاخه شیکه به عنوان مجموعه‌ای که سرویس گیرنده‌ای از شرکت بهره‌برداری است، باید به عنوان سئوله در نظر گرفته شود (شکل 4). همه کدام از دو سیستم مذکور به طور جدایی و کل ارزیابی و تحلیل قرار گرفته‌اند.

مقایسه نتایج ارزیابی با تفکیک شرکت‌های بهره‌برداری و کل سیستم، می‌تواند جهت گیری راهکارهای بهبود در زمینه مدیریت ویژگی‌های فیزیکی سیستم را تعیین کند.

تاثیح و بحث

نتایج به دست آمده از اجرای مدل DEA شامل بررسی کارایی واحدهای مورد ارزیابی، واحدهای (های) مرجع، ضریب (ضرایب) نظیر واحدهای (های) مرجع برای ارزیابی مجموعه کل سیستم و شرکت‌های بهره‌برداری از شیکه به طور جدایی و از آن را به دست آورده است. نتایج مجموعه کل سیستم و سیستم تابع مناسب به شرکت‌های بهره‌برداری و در پایان مقایسه آن دو بحث و بررسی می‌شود.

ارزیابی مجموعه کل سیستم

در ارزیابی مجموعه کل سیستم، شیکه آبی‌پری زایندرود با کارایی 0.38/0.38/0.50 سال‌های بلاتلرین و شیکه میناب با کارایی 0.50/0.50/0.50 بین ترتیب سطح عملکرد داشته‌اند. رتبه‌بندی دیگر واحدها به ترتیب از پیشترین تا کمترین کارایی عباراتند از گلستان، قزوین، اصفهان، وارزین.

در مورد شیکه آبی‌پری زایندرود واحدهای مرجع عباراتند از شیکه‌های آبی‌پری فروزان و وارزین. به ترتیب با ضرایب 17/7545/9 و 17/7542/7 بینی‌است که یک تراکم خاطر در واحدهای فروزان و وارزین با ضرایب مربوط به سیستم تابع مناسب به ترتیب خواهند کرد که سئوله تولیدی آن با سئوله تولیدی واحدهای زایندرود برای خواهند بود. در اینجا شایان ذکر است که برای دانستن بهینه‌سازی و برنامه‌ریزی خنثی‌هیج گونه تراکم خاطر دیگری از واحدهای مورد ارزیابی نمی‌توان باشد که با...
جدول ۳. نتایج حاصل از ارزیابی عملکرد مجموعه کل سیستم‌های آب‌داری با استفاده از مدل (CCR$_{r-I}$)

<table>
<thead>
<tr>
<th>ضریب نظر واحد (های) مرجع</th>
<th>واحدهای مرجع</th>
<th>درجه کارایی</th>
<th>شکله‌های مورد ارزیابی</th>
<th>رنگ</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰ / ۱۸۶۵۴</td>
<td>قزوین</td>
<td>۳ / ۳۸۴۰۳</td>
<td>زایندرود</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰ / ۵۹۷۲</td>
<td>ورامین</td>
<td>۲ / ۳۷۱۹۵</td>
<td>پیشرفت</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>۰ / ۷۶۴۳</td>
<td>مغان</td>
<td>۳ / ۳۴۸۶۵</td>
<td>مراقبت</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰ / ۶۵۴۴</td>
<td>میراب زایندرود</td>
<td>۱ / ۵۹۰۵</td>
<td>بهبود</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۰ / ۷۸۶۲</td>
<td>قزوین</td>
<td>۲ / ۴۰۲۱۷</td>
<td>گسترش</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۰ / ۷۶۴۴</td>
<td>میراب زایندرود</td>
<td>۲ / ۴۰۲۱۷</td>
<td>بهبود</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>۰ / ۳۱۱۶</td>
<td>قزوین</td>
<td>۳ / ۳۶۴۲۱</td>
<td>توانایی</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۰ / ۸۲۶۴</td>
<td>میراب زایندرود</td>
<td>۳ / ۳۶۴۲۱</td>
<td>توانایی</td>
<td>۸</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴. نتایج حاصل از ارزیابی عملکرد شرکت‌های پوره‌داری از شکله‌های آب‌داری با استفاده از مدل (CCR$_{r-I}$)

<table>
<thead>
<tr>
<th>ضریب نظر واحد (های) مرجع</th>
<th>واحدهای مرجع</th>
<th>درجه کارایی</th>
<th>شکله‌های مورد ارزیابی</th>
<th>رنگ</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰ / ۱۸۶۵۴</td>
<td>قزوین</td>
<td>۳ / ۳۸۴۰۳</td>
<td>زایندرود</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰ / ۵۹۷۲</td>
<td>ورامین</td>
<td>۲ / ۳۷۱۹۵</td>
<td>پیشرفت</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>۰ / ۷۶۴۳</td>
<td>مغان</td>
<td>۳ / ۳۴۸۶۵</td>
<td>مراقبت</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰ / ۶۵۴۴</td>
<td>میراب زایندرود</td>
<td>۱ / ۵۹۰۵</td>
<td>بهبود</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۰ / ۷۸۶۲</td>
<td>قزوین</td>
<td>۲ / ۴۰۲۱۷</td>
<td>گسترش</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۰ / ۷۶۴۴</td>
<td>میراب زایندرود</td>
<td>۲ / ۴۰۲۱۷</td>
<td>بهبود</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>۰ / ۳۱۱۶</td>
<td>قزوین</td>
<td>۳ / ۳۶۴۲۱</td>
<td>توانایی</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۰ / ۸۲۶۴</td>
<td>میراب زایندرود</td>
<td>۳ / ۳۶۴۲۱</td>
<td>توانایی</td>
<td>۸</td>
<td></td>
</tr>
</tbody>
</table>

۲۰
ارزیابی عملکرد بهرپردازی از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

به‌هرپردازی، شاخص شیب به عنوان سیستم در نظر گرفته شده است. بنابراین، راهکار کاهش نهاده‌ها فقط منحصر به شاخص‌های شیکه ببه‌هرپردازی (هزینه، بررسی) می‌باشد. آن‌ها (است).

شرکت‌های به‌هرپردازی مغان، گرمسار، و برای دارای نهایی به‌یک مرجع هستند. نهاده‌های مصرفی و احتمالی مرجع با ضرایب مرتبط به‌میزان باعث شرکت‌ها به‌ترتیب می‌باشند.

اصلی‌ترین شرکت‌های به‌هرپردازی گرمسار این است که کارایی به‌هرپردازی به‌هرپردازی کلستان، الیم، و منابع کمتر از یک بوده و این واکنش به حفظ سطح موجود تولید می‌باشد. با کاهش مصرف‌های نهاده‌ای به‌میزان نهاده‌های واحد مرجع مربوط به نهاده‌های کرایه‌سازی کرده و در تولید کارایی به‌هرپردازی از یک داشته و روی مقر کارایی قرار می‌گیرند. در مبنای کل شرکت‌ها متناسب با میزان کارایی آن‌ها، که در جدول ۱ مشخص است.

مقایسه ارزیابی مجموعه کل سیستم و شرکت‌های به‌هرپردازی همان‌گونه که قبلاً گفته شد، در ارزیابی مجموعه کل سیستم، شاخص‌های به‌هرپردازی به‌هرپردازی شاخص شیب به عنوان نهاده‌ای در ارزیابی شرکت‌های به‌هرپردازی، شاخص شیب به عنوان سیستم در نظر گرفته شده است. بنابراین، مقایسه کارایی و احتمالی به‌هفته عامل‌های به‌هرپردازی و اولویت‌های سرمایه‌گذاری در شرکت به‌هرپردازی با شیب‌های آبیاری مناسب می‌کند.

نتایج به دست آمده نشان می‌دهد که شکه‌آبیاری زایندرود و شرکت به‌هرپردازی آن نسبت به دیگر شیکه‌ها و شرکت‌ها بیشترین کارایی را داشته و میزان کارایی، واحد‌های مرجع و ضرایب واحد‌های مرجع در هر حالت مناسب است. در هر حالت شیب‌های آبیاری زایندرود و شرکت به‌هرپردازی آن می‌تواند به عنوان واحد نموده و نموده دیگر واحدها تلقی شوند. و میزان یکسان به‌هیله معلکرد در واحد با انتخاب شده درجه کارایی مجموعه کل سیستم گرمسار و شیب‌های میماند. ورامین و به‌هرپردازی کارایی کمتر از یک دارند. در نتیجه حفظ سطح موجود تولید می‌باشد. با کاهش نهاده‌های واحد‌های مرجع مربوط به نهاده‌های واحد مرجع در هر دارایی، دیگر کارایی بیش از یک دارند. و روی مراکز کارایی قرار می‌گیرند. زمان‌بندی کل واحدها مناسب با درجه کارایی آن‌ها، که در جدول ۱ مشخص است.

در مورد شرکت‌های به‌هرپردازی، احتمالات مرجع عبارتند از شرکت‌های به‌هرپردازی جنوب و در این، به ترتیب با ضرایب ۸/۱، ۸/۶، و ۸/۶/۱، از شرکت‌ها تولید می‌کند. نسبت به‌میزان واحد مرجع به‌میزان شرکت می‌باشد. در مورد شرکت‌های به‌هرپردازی میان‌بند، واحد‌های مرجع عبارتند از شرکت‌های به‌هرپردازی جنوب و در این، به ترتیب با ضرایب ۸/۳۸، و ۸/۳۸. به ترتیب با ضرایب ۸/۱۳۵. به ترتیب با کلیه این و در شرکت‌ها ضرایب مربوط به‌میزان شرکت می‌باشد. در مورد شرکت‌های به‌هرپردازی میان‌بند، واحد‌های مرجع عبارتند از شرکت‌های به‌هرپردازی جنوب و در این، به ترتیب با ضرایب ۸/۸۵۹/۸/۸۵۹/۸/۸۵۹٪. به ترتیب با کلیه این و در شرکت‌ها ضرایب مربوط به‌میزان شرکت می‌باشد. در مورد شرکت‌های به‌هرپردازی میان‌بند، واحد‌های مرجع عبارتند از شرکت‌های به‌هرپردازی جنوب و در این، به ترتیب با ضرایب ۸/۸۵۹/۸/۸۵۹٪. به ترتیب با کلیه این و در شرکت‌ها ضرایب مربوط به‌میزان شرکت می‌باشد. در مورد شرکت‌های به‌هرپردازی میان‌بند، واحد‌های مرجع عبارتند از شرکت‌های به‌هرپردازی جنوب و در این، به ترتیب با ضرایب ۸/۸۵۹/۸/۸۵۹٪. به ترتیب با کلیه این و در شرکت‌ها ضرایب مربوط به‌میزان شرکت می‌باشد.

21
کارایی مجموعه کل سیستم شبکه میناب و شرکت بهبودداری آن کمتر از یک است، و در هر دو حالت کاراست، ولی درجه کارایی شرکت بهبودداری (2000) کمتر از کارایی مجموعه کل سیستم (3427) است. بنابراین، در صورت ضرورت بهبود عملکرد، اولویت سرمایه‌گذاری در بهسازی شرکت بهبودداری است.

مجمع‌الجزای سیستم شبکه گلستان دارای کارایی 28047 است، در حالی که کارایی شرکت بهبودداری آن 2511 است، که نشان می‌دهد اگرچه کل سیستم گلستان کاراست، ولی شرکت بهبودداری آن ناکاراست، و برای بهبود عملکرد می‌باشد به وضعیت شرکت بهبودداری توجه کرد.

مجمع‌الجزای سیستم شبکه قزوین و شرکت بهبودداری آن کارایی بیش از یک دارد، و در هر دو حالت کاراست. ولی کارایی مجموعه کل سیستم (3051) کمتر از کارایی شرکت بهبودداری (2921) است. بنابراین، در صورت ضرورت بهبود عملکرد وجود ندارد، ولی در مقایسه با احدهای کارآمد (زاویده) در هر دو زمینه پتانسیل بهبود وجود دارد.

گروه سیستم مایکروکامپیوتر و شرکت بهبودداری آن بیش از یک، ولی در هر دو حالت بردار است. بنابراین، ترجیح خاصی در سرمایه‌گذاری پرای بهبود عملکرد وجود ندارد، ولی در مقایسه با احدهای کارآمد (زاویده) در هر دو زمینه پتانسیل بهبود وجود دارد.

کارایی مجموعه کل سیستم شبکه میناب و شرکت بهبودداری آن بیش از یک است، در حالی که شرکت بهبودداری آن دارای کارایی 8950 است، که نشان می‌دهد اگرچه کل سیستم گلستان کاراست، ولی شرکت بهبودداری آن ناکاراست، و برای بهبود عملکرد اولویت سرمایه‌گذاری در بهسازی شرکت بهبودداری است.

کارایی مجموعه کل سیستم شبکه گلستان و شرکت بهبودداری آن کمتر از یک است، و در هر دو زمینه ناکاراست، ولی کارایی شرکت (2012) کمتر از کارایی کل سیستم (2374) است. بنابراین، اگرچه در هر دو زمینه ضرورت بهبود عملکرد طرح است، ولی این امر در مورد شرکت بهبودداری مهم است.

۲۲
ارزیابی عملکرد بهرمداری از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

در تحلیل با ماهیت نهادی، واحد مورد ارزیابی بی‌ترکیب، خاطر از واحدهای مرجع متقابل می‌گردد، که ستادهای برای یافتن واحد مورد ارزیابی در تولید کننده، برای بهبود عملکرد بی‌تاثیر تولید مصرف نهادهای خود را به سطح نهادهای واحد (سال) مراجعه کرد. مراجعه بر ارزیابی می‌تواند نظامی و رتبه‌بندی نهادها، منجر به شناخت، ضرایب و تدوین آنها با عنوان استانداردهای واحد مورد ارزیابی و راهکارهای بهبود آن انجام می‌دهد. مراجعه کارایی به دست آمده از دیدگاه‌های مختلف (سیستم و شرکت بهرمداری)، امکان توانایی آزمون‌های گذاری برای بهبود عملکرد سیستم‌ها را از زمینه شبکه‌ها شرکت فراهم می‌کند. با توجه به محدودیت‌های روش‌های ارزیابی موجود و عدم توانایی آنها در ارائه استانداردهای واقعیابی و پیش‌بینی راهکار‌های عملی بهبود، روش DEA می‌تواند به عنوان یک روش کارآمد در محدودیت‌های موجود را ندارد. تلفی شود.

با نظیر به این که استفاده از روش DEA برای ارزیابی عملکرد شبکه‌های آبیاری در سطح ملی و بین‌المللی، برای

منابع مورد استفاده

1. علی‌مقدم، ن. ۱۳۸۳. ارزیابی عملکرد شبکه‌ها و تعیین میزان بهره‌وری به کمک تحلیل پوششی داده‌ها. پایان‌نامه کارشناسی ارشد، مدیریت عملکرات و بهرمداری، مؤسسه تحقیقات و آموزش مدیریت.
2. علی‌مقدم، م. و. علی‌مقدم. ۱۳۹۸. ارزیابی عملکرد شبکه‌های بی‌خاطری، گازی، و آب و تعیین کارایی آنها به کمک تحلیل پوششی داده‌ها. سیزدهمین کنفرانس بین‌المللی برق، تهران.
3. برنام. معاونت پژوهش‌های سازمان مدیریت منابع آب ایران. ۱۳۷۸. فراخوان درجه‌بندی کمیتی و توانایی شبکه‌های توزیع آب. تهران. وزارت آب و تغذیه شیرینی. ۱۳۷۸. مهندس. م. ج. درجه‌بندی شبکه‌های آبیاری عملکرد بی‌خاطری‌های آبیاری و زمین‌شناسی. مجموعه مقالات کارگاه فنی ارزیابی عملکرد سیستم‌های آبیاری و زمین‌شناسی بهبود ملی آبیاری و زمین‌شناسی ایران. صص.۲۰۰۰-۲۰۰۲.