یازدهم کلیدی: ارزیابی عملکرد، شبکه‌های آی‌بایری، تحلیل پوششی داده‌ها

1. استدلال تأسیسات آی‌بایری، دانشکده کشاورزی، دانشگاه تربیت مدرس
2. مؤسسین علمی تحقیق در عملیات بهین‌کاری
3. دانشجوی سابق کارشناسی ارشد تأسیسات آی‌بایری، دانشکده کشاورزی، دانشگاه تربیت مدرس
مقدمه
عمکرد سیاستی از شکوهی موجود با به دلایل مالنده فرض
در طریق، اجرای و توسعه مدل‌سازی مناسب، کمک‌تر از حدا مرور
انتظار است (۱۵ و ۱۷). عمکرد ضعیف شکوهی موجود
حمج عظمی سرمایه‌گذاری‌های انجام شده در این بخش و
محدودیت مالی آلی و آب و خاک موجب توجه است به بخش
مقررات اعتباری بین‌المللی و مراکز تحقیقات آی‌آری ایمان
HMI و وزارت نیرو (۳) به ارزیابی و به‌طور عمکرد
شکوه‌های آب‌زیابی است. روش‌هایی که تاکنون برای ارزیابی
شکوه‌های آب‌زیابی ارائه شده است مانند روش‌های تجربی و
تحلیل تخصصی (DA) (۱۲) ارزیابی (۸) و ارزیابی چارچوبی
سریع (RA) (۱۸) تحلیل و غیر کمی (FA) هستند، و یا اگر مانند روش‌های کلاسیک شاخص‌های کمی
ارائه می‌کنند، استانداردپردازهای پیام‌برداری و به‌طور عمکرد
تاریخ (۴) مشکلات روش‌شناسی موجود در ارزیابی و به‌طور عمکرد
شکوه‌های آب‌زیابی باید موجب آن شده که بررسی‌های به‌طور عمکرد
عمکرد آنها ساده و موفق باشد (۹).

Data Envelopment Analysis (DEA)
روش تحلیل پوششی داده‌ها (DEA) که در سال ۱۹۷۸ توسط چارنز و همکاران (۱۱) (Analysis
ارائه شد، نخست برای ارزیابی اقتصادی و فنی واحدهای
توسعه‌یافته‌های مصرفی، امر و اثر برای ارزیابی عمکرد
و اداره‌های خدمتی، از دولتی و غیر دولی، به‌طور گسترده
استفاده می‌شود (۱۱، ۱۲ و ۱۶). در این روش با استفاده از
برنامه‌ریزی ختی، مرز کارایی واحدهای مختلف به عنوان
استاندارد عمکرد تعیین و عمکرد واحدهای نسبت به آن
سته‌سازی و به صورت درجه کارایی مشخص می‌شود.

در این پژوهش برای تخمین برای امتیاز
ارزیابی عمکرد شکوه آب‌زیابی کشور استفاده شده است.
هدف از این پژوهش، عملیات بررسی، فاصله و توانمندی
روش DEA از ارزیابی عمکرد شکوه‌های آب‌زیابی و رفع پرخی
مشکلات روش شناسی در این زمینه، ارزیابی مقایسه‌ای عمکرد

۱۲
توانایی‌های متغیرهای مدل‌های اصلی, به‌مدت ایرانی با سیاست‌های کاربردی از طریق اکثریت نمایشگاه‌های آپارتمان بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوشتی داده‌ها (DEA)

واحد ۶. همبستگی وابسته و جایگزینی افزایشی و معنی‌داری

واحد ۵. افزایشی و معنی‌داری اکثریت نمایشگاه‌های آپارتمان به روش تحلیل پوشتی داده‌ها (DEA)

واحد ۴. افزایشی و معنی‌داری وابستگی اکثریت نمایشگاه‌های آپارتمان به روش تحلیل پوشتی داده‌ها (DEA)

واحد ۳. همبستگی وابسته و جایگزینی افزایشی و معنی‌داری

واحد ۲. افزایشی و معنی‌داری وابستگی اکثریت نمایشگاه‌های آپارتمان به روش تحلیل پوشتی داده‌ها (DEA)

واحد ۱. همبستگی وابسته و جایگزینی افزایشی و معنی‌داری

تأثیر ماهمه‌های مختلف در تولید و توزیع مصرف مسکن (موردی) و تأثیر ماهمه‌های مختلف در تولید (موردی)

تأثیر ماهمه‌های مختلف در تولید و توزیع مصرف مسکن (موردی) و تأثیر ماهمه‌های مختلف در تولید (موردی)
فرش کردن n واحد مورد ارزیابی وجود داشته باشد (Decision Making Unit) که هر کدام با استفاده از m ستاده استقلال می‌پذیرد. اگر واحد ارزیابی شده با اندهیز و نشان داده شود که با مصرف نهاده‌های (i = 1, ..., m) x_{ij} به تولید ستاده‌های (r = 1, ..., s) y_{ij} می‌پردازد، می‌توان آن را مانند شکل 1 نمایش داد.

مجموعه امکان تولید عبارت است از مجموعه‌ای از نقاط امکان‌پذیر تولید در فضای x_{ij} بجز نهاده‌ها و ستاده‌ها. به x_{ij}, y_{ij}, و ستاده‌های مجموعه امکان تولید T مجموعه‌ای از x_{ij} و y_{ij} هستند. که می‌توانند به وسیله X_i تولید شود به عنوان:

\[T = \{ (x_i, y_i) | y_i \geq 0 \} \]

اگر x_{ij} و y_{ij} به ترتیب بردار حاصل از نهاده‌ها و ستاده‌های واحد (i, j) و x_{ij} به کار رفته برای واحد iام باشد، سرای واحد تنظیم کردن در مجموعه امکان تولید برای در مدل اصلی به شرح زیر می‌باشد:

\[T_{CCR} = \left\{ (X_i, Y_i) | X_i \geq \sum_{j=1}^{n} \lambda_j X_j, Y_i \leq \sum_{j=1}^{n} \lambda_j Y_j, \lambda_j \geq 0 \right\} \]

\[T_{BCC} = \left\{ (X_i, Y_i) | X_i \geq \sum_{j=1}^{n} \lambda_j X_j, Y_i \leq \sum_{j=1}^{n} \lambda_j Y_j, \sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 \right\} \]

\[\theta_i^* = \min \theta_i \]

\[[0_p X_p, Y_p] \in T_{CCR} \]

\[\theta_i^* = \min \theta_i \]

\[\sum_{j=1}^{n} \lambda_j x_{ij} \leq \theta_i X_p \]

شکل 2. نمایش نهاده‌ها و ستاده‌های واحد (Zam)

برای ارزیابی واحد P با نهاده Y_i در یک مدل DEA ماهیت نهاده‌ای \(X_p, Y_p \) نثبت و ضریب \(0_p \) برای \(X_p \) در نظر گرفته می‌شود. برای نتایج تغییر تغییر P روی میزان کارآیی، مقدار حداقل 0_p به هدف‌گذاری به دست می‌آید که 0_p از مجموعه امکان تولید خارج شود. بدین ترتیب روابط ریاضی مدل‌های CCR با ماهیت نهاده‌ای به صورت زیر بیان می‌شود:

\[\theta_i^* = \min \theta_i \]

\[\{0_p X_p, Y_p\} \in T_{CCR} \]

\[\theta_i^* = \min \theta_i \]

\[\sum_{j=1}^{n} \lambda_j x_{ij} \leq \theta_i X_p \]

شکل 1. نمایش مقداری یک ستاده در برای یک نهاده برای 9 واحد مورد ارزیابی
به هنگامی که شمار واحدهای تیمی گروهی کمتر از مجموع شمار نهاده‌ها و ستاده‌هاست، بیشتر واحدها کارآرایی می‌شوند، و امکان ارزیابی مقیاس‌های آنها از بین می‌روند. چارتر و همکاران (10) برای امکان استفاده از این روش به عنوان یک فاعله تجزیه‌برنده شمار واحدهای تیمی گروهی را حداقل سه برابر مجموع نهاده‌ها و ستاده‌ها بیشتر کردند. در شرایطی که شمار واحدها کمتر از این بالاتری شد، یکی از راه‌های رفع مشکل استفاده از مدل اندرسپ-پیرسن (5) است. در این مدل تغییر نطقه مرجع روز کاربردی بدست آمده از واحدهای ارزیابی و صرفه‌جویی اساس واحدهای دیگر صورت می‌گیرد. بدن ترتیب امکان مقایسه واحدهای که ممکن بود در مدل BCC یا محقق دارای ضریب کارایی 1 باشد را به نام CCR می‌شنوید. به عنوان نمونه، مدل استاندارد CCR با ماهیت نهاده‌ای به صورت زیر تبیین می‌شود:

\[
\min (\theta_p - IS^+ - IS^-) \tag{8}
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_p X_p \\
\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p \\
\lambda_j \geq 0, \ j = 1, \ldots, n \\
S^+, S^- \geq 0
\]

سیستمهای مورد ارزیابی و شاخص‌های ارزیابی عملکرد مسائل و مشکلات زیادی در تمامی مراحل مختلف طرح‌های آبیاری کشور وجود دارد که ضرورت ارزیابی همه جانبه و ارائه راهکارهای بهبود عملکرد آنها را اجبار می‌کند. در این یوهش از بین شیکه‌های آبیاری که بشرکارهای ارزیابی انتخاب شد. یکی از معیارهای انتخاب شیکه‌ها وجود اطلاعات مورد نیاز برای ارزیابی بود. همچنین، مسئولیت شیکه‌ها حتی مقدار در کلیات عوامل مؤثر بر عملکرد شیکه‌ها را باشد. به عنوان مثال، تعادل واحدها مدرن، و غالبًا درایی سیستم کنترل با بالاتر شده این شیکه‌ها عبارت‌اند از: شیکه‌های ایپیدی،

\[
\sum_{j=1}^{n} \lambda_j Y_j \geq Y_p \\
\lambda_j \geq 0, \ j = 1, \ldots, n
\]

مدل BCC با ماهیت نهاده‌ای

\[
\theta_p^* = \min \theta_p
\]

مشروط بر آن که: \(\{0_p X_p, Y_p\} \in T_{BCC}\) به عنوان دیگر

\[
\theta_p^* = \min \theta_p
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j \leq \theta_p X_p \\
\sum_{j=1}^{n} \lambda_j Y_j \geq \theta_p Y_p \\
\sum_{j=1}^{n} \lambda_j = 1 \\
\lambda_j \geq 0, \ j = 1, \ldots, n
\]

برای امکان تحلیل در شرایط وجود مزدهای قوی و ضعیف و امکان تفکیک آن‌ها، از مدل‌های DEA برای متغیرهای کمکی کمپوز (S) و مزادر (S+) استفاده می‌شود. به عنوان مثال، در ارزیابی واحد با استفاده از مدل CCR، با ماهیت نهاده‌ای ضمن یافتن مقادیر حداقل \(\theta_p\) باشد ویژه‌سازی \(S^+\) و \(S^-\) با به علاوه CCR رسانید. بدن ترتیب، روابط ریاضی مدل CCR با ماهیت نهاده‌ای و متغیرهای مزادر و کمپوز به صورت زیر بیان می‌شود:

\[
\min (\theta_p - IS^+ - IS^-) \tag{8}
\]

مشروط بر آن که:

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_p X_p \\
\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p \\
\lambda_j \geq 0, \ j = 1, \ldots, n \\
S^+, S^- \geq 0
\]

این شیکه‌ها عبارت‌اند از: شیکه‌های آبیاری

\[
\sum_{j=1}^{n} \lambda_j Y_j \geq Y_p \\
\lambda_j \geq 0, \ j = 1, \ldots, n
\]
عملاً در کارشناسی و منابع طبیعی/جلد ششم/شماره چهارم/زمان 1381

عملاً در کارشناسی و منابع طبیعی/جلد ششم/شماره چهارم/زمان 1381

عوامل مؤثر بر عملکرد شکه‌های آبیاری تحت تاثیر بر عامل اصلی
فیزیکی و مدرن‌شیئی است. فال‌خی بی‌نظیر مؤثر در
عملکرد شکه‌های آبیاری عبارت‌اند از: طرافی ساخت، و
شیر‌الم ملی. عوامل مؤثر بر عملکرد مجموعه فعالیت‌های
مصرف‌های بی‌دردی در عامل با شکه و کشاورزان است.
مصرف‌های بی‌دردی با کارگیری عواملی چون سرمایه،
پرستار و مالیات‌الایه، و انتقاد فعالیت‌های هم‌جوی توسعه آب
تعمیر و تکثیر زمین توسط به بهبود عملکرد عامل
برکناری شکه و مشکل نمودن کشاورزان، سعی
در بهبود عملکرد شبکه درمان این هم‌جوی به دلیل اثر
تاثیر شکه‌های آبیاری و شکه‌های بی‌دردی از آنها در
عملکرد بکارگیری ترتیب آنها به صورت یک می‌بیند در نظر
گرفته شده است. افزون برآن به منظور امکان مقایسه عملکرد
کل سیستم و شکه‌های بی‌دردی و ارائه راهکارهای
محمول، شکه‌های بی‌دردی نیز طریق جدیدانه در نظر
گرفته شده است.

در یک یوزه به دلیل گسترشگر عوامل مؤثر بر عملکرد و
محدود بودن شمار و احتمال تصمیم‌گیری گیری نسبت به نهادها و
سناتور‌ها، از شاخص‌های تکرکی استفاده شده است. و
علت آن که ترتیب وزنی معنی‌داری را ترتیب عوامل این، عوامل
سناتور در عملکرد به صورت وزنی به هم ترتیب شده‌اند، و
به هم عامل، ضریب مناسب با اهمیت آن داده شده است. در
این ارزیابی ضرایب مذکور از طریق فقدان کارشناسی و
مشاوره با کارشناسان به تجربه تعیین شده است. اگرچه روش
تحلیلی به کار رفته برای ارزیابی و ارائه استانداردهای روش کمی
است، ولی برای تعیین ضریب اهمیت هر یک از شاخص‌ها که
معمولاً کننده سیاست‌های استراتژی مدیریت است، می‌باشد از
نظریات کارشناسی استفاده کرد.

در این ارزیابی از شاخص‌های نهادهای شاخص‌های
شبکه، هزینه نیروی انسانی (پرسنل)، و مالی‌الات، و
شاخص‌های سناتوری شاخص‌های کشاورزی، درآمد، و
مشترکی استفاده شده است. شاخص‌ها و عملکرد تکامل
دهندگی آنها در جدول‌های 1 و 2 ارائه شده است. مجموعه شمار
عباراً اطلاعات جمع‌آوری شده برای محاسبه شاخص‌ها و
ارزیابی شکه‌های آبیاری هر شبکه بالغ بر 120 عنوان
می‌گرد. به کمک این شاخص‌ها مجموعه سیستم شبکه آبیاری
از دیدگاه سیستمی به صورت شکل ۳ تقابل داده می‌شود.

ورامین، گرمسار، قزوین، گلستان، زاینده‌رود، بهبهان، مغان، و
منابع.

در این پژوهش به دلیل گسترشگر عوامل مؤثر بر عملکرد
می‌توان در نظر
گرفت که در هر یک از این دیدگاه‌ها از تعدادی از
شاخص‌های مهم‌تر به آن دیدگاه استفاده می‌شود. این دیدگاه‌ها
عبارت از دیدگاه‌های مدرن‌شیئی، فنی، اقتصادی، اجتماعی،
کشاورزی و زمین‌سازی به حساب می‌آیند. در این پژوهش با استفاده
کامپیوتری چک که پژوهش با محاسبه
در این ارزیابی از شاخص‌های نهادهای شاخص‌های
شبکه، هزینه نیروی انسانی (پرسنل)، و مالی‌الات، و
شاخص‌های سناتوری شاخص‌های کشاورزی، درآمد، و
مشترکی استفاده شده است. شاخص‌ها و عملکرد تکامل
دهندگی آنها در جدول‌های 1 و 2 ارائه شده است. مجموعه شمار
عباراً اطلاعات جمع‌آوری شده برای محاسبه شاخص‌ها و
ارزیابی شکه‌های آبیاری هر شبکه بالغ بر 120 عنوان
می‌گرد. به کمک این شاخص‌ها مجموعه سیستم شبکه آبیاری
از دیدگاه سیستمی به صورت شکل ۳ تقابل داده می‌شود.
جدول 1. شاخص‌های ارزیابی عملکرد

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تعریف شاخص</th>
<th>پارامتر مشخصه</th>
<th>نوع شاخص</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$N_1 + N_2 + N_3 + N_4 + N_5 + N_6 + N_7 + N_8 + N_9$</td>
<td>N</td>
<td>شاخص</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>$\frac{70C_1 + 30C_2}{100}$</td>
<td>C</td>
<td>هزینه</td>
<td>2</td>
</tr>
<tr>
<td>P_e</td>
<td>$\frac{P_{el} + P_{e2}}{2}$</td>
<td>P_e</td>
<td>پرسنل</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>$\frac{40M_1 + 25M_2 + 25M_3 + 10M_4}{100}$</td>
<td>M</td>
<td>مالیات آلات</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>$\frac{60A_1 + 20A_2 + 20A_3}{100}$</td>
<td>A</td>
<td>کورچک‌هایی</td>
<td>5</td>
</tr>
<tr>
<td>R</td>
<td>$\sum_{i=1}^{N} A_i C_i (W)$</td>
<td>R</td>
<td>درآمد</td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td>$\frac{30S_1 + 70S_2}{100}$</td>
<td>S</td>
<td>مشترکین</td>
<td>7</td>
</tr>
</tbody>
</table>

شکل 3. جمع‌ی‌السیستم‌های آبیاری از دیدگاه سیستمی

شکل 4. جمع‌ی‌السیستم‌های آبیاری از دیدگاه سیستمی
جدول 2 عوامل جزئی شاخص‌های ارزیابی

<table>
<thead>
<tr>
<th>شرح پارامترهای عامل جزئی</th>
<th>تعريف حداکثری عامل جزئی</th>
<th>تعريف جزئی مشخصه</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح تحت پوشش شیبک</td>
<td>$N_1 = 0.22A$</td>
<td>N_1</td>
<td>1</td>
</tr>
<tr>
<td>حجم آب ورودی به شیبک</td>
<td>$N_2 = 0.19V$</td>
<td>N_2</td>
<td>2</td>
</tr>
<tr>
<td>مجموع طول در طرفیت پانه‌های مختلف کالر درجه یک</td>
<td>$N_3 = 0.14 (\sum Q_1 L_1)$</td>
<td>N_3</td>
<td>3</td>
</tr>
<tr>
<td>مجموع طول در طرفیت پانه‌های مختلف کالر درجه دو</td>
<td>$N_4 = 0.13 (\sum Q_1 L_2)$</td>
<td>N_4</td>
<td>4</td>
</tr>
<tr>
<td>مجموع حاصل ضرب تعداد در طرفیت‌های آبی‌سما</td>
<td>$N_5 = 0.1 (\sum nQ)$</td>
<td>N_5</td>
<td>5</td>
</tr>
<tr>
<td>مجموع حاصل ضرب تعداد در طرفیت‌های آبی‌سما</td>
<td>$N_6 = 0.08 (\sum nQ)$</td>
<td>N_6</td>
<td>6</td>
</tr>
<tr>
<td>مجموع حاصل ضرب تعداد در سیفون</td>
<td>$N_7 = 0.08 (\sum nQ)$</td>
<td>N_7</td>
<td>7</td>
</tr>
<tr>
<td>مجموع حاصل ضرب تعداد در سیفون</td>
<td>$N_8 = 0.05 (\sum LQ)$</td>
<td>N_8</td>
<td>8</td>
</tr>
<tr>
<td>مجموع حاصل ضرب از افزایش در طرفیت درآمدها</td>
<td>N_9</td>
<td>N_9</td>
<td>9</td>
</tr>
</tbody>
</table>

$P_{el} = \frac{27P_1 + 25P_2 + 20P_3 + 15P_4 + 13P_5}{100}$

$P_{el} = \frac{75P_6 + 25P_7}{100}$

$\begin{align*}
A_1 &= \frac{\sum n A_i P_i}{A_1} \\
A_2 &= \frac{\sum n A_i}{A_2} \\
A_3 &= \frac{\sum n A_i P_i C_i (y)}{A_3} \\
R &= \frac{\sum n A_i C_i (w)}{S = n} \\
S_1 &= \frac{\sum n A_i}{S_2} \\
S_2 &= \frac{\sum n A_i}{S_2}
\end{align*}$
ارزیابی عملکرد بهرمی‌داری از شیکه‌های آیاپی به روش تحلیل برسی‌های (DEA)

بر اساس جدایی از وابستگی تحلیلی و تکیه بر عملکرد یک سیستم کلی می‌تواند به عنوان مجموعه‌ای که سرویس‌هایی از شرکت‌های بهرمی‌داری است، باشد و به عنوان سیستم‌هایی که در تحلیل‌های گروهی شود (نسل 4)، هر کدام از این سیستم‌ها ممکن است توسط جدایگان مورد ارزیابی و تحلیل قرار گیرند. مقایسه نتایج ارزیابی کلی سیستم‌ها به ترتیب شرکت‌های بهرمی‌داری کلی و سیستم، می‌تواند جهت گسترش راهکارهای بهبود در زمینه مدیریت وبیزگی‌های فیزیکی سیستم را تعیین کند.

نتایج و بحث

نتایج به دست آمده از اجرای مدل DEA شامل درجه کارایی و احتمال امور ارزیابی، واحد (های) مرجع، ضریب (ضرایب) نظیر واحد (های) مرجع برای ارزیابی مجموعه کل سیستم و شرکت‌های بهرمی‌داری از شیکه‌ها به طور جدایگان در جدول‌های 3 و 4 آن‌هاشده است. نتایج نتایج مجموعه کل سیستم و سیستم تابع مربوط به شرکت‌های بهرمی‌داری و در پایان مقایسه آن در بحث و بررسی می‌شود.

ارزیابی مجموعه کل سیستم

در ارزیابی مجموعه کل سیستم، شیکه‌های آیاپی و اکتاپی در کارایی 23803 بالاترین برگزاري شده است. شاخص بانکی ارزیابی مجموعه کل سیستم، شاخص شیکه به عنوان نهاد در رده‌گرده شده است. شاخص بانکی، راهکار کاهش نهادها علاوه بر شاخص شیکه بهرمی‌داری (هزینه، پرستاری و ماهیان آلوده)، شامل شاخص شیکه نیز می‌شود.

در سیستم مدار (فازی)، بر اساس اطلاعات، واحد و کارایی 452/9/7 برابر نهادهای واحد فازی به عنوان سیستم کلی سیستم و احتمال شرکت‌های بهرمی‌داری واحد شیکه به آن واحد معرفی کرد. نتیجه نهادهای واحد مرجع به عنوان واحد مغان برای واحد 452/9/7 پرداخت. بنابراین، کارایی و واحد مغان

ارزیابی مجموعه کل سیستم گویای این است که واحد‌های

19
جدول ۳. نتایج حاصل از ارزیابی عملکرد مجموعه کل سیستم‌های ای‌پی با استفاده از مدل $\text{CCR}_{\text{P-I}}$:

<table>
<thead>
<tr>
<th>ضریب نظیر واحد (های) مرجع</th>
<th>واحدهای مرجع</th>
<th>درجه کارایی</th>
<th>شکه مورد ارزیابی</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/545</td>
<td>فزورین</td>
<td>3/380.3</td>
<td>زایندرود</td>
<td>1</td>
</tr>
<tr>
<td>8/5972</td>
<td>فزورین</td>
<td>3/380.3</td>
<td>زایندرود</td>
<td>1</td>
</tr>
<tr>
<td>8/284</td>
<td>مغان</td>
<td>2/382.9</td>
<td>گرمسار</td>
<td>2</td>
</tr>
<tr>
<td>8/1084</td>
<td>گرمسار</td>
<td>2/0847</td>
<td>گلستان</td>
<td>3</td>
</tr>
<tr>
<td>8/23842</td>
<td>زایندرود</td>
<td>0/5549</td>
<td>میناب</td>
<td>8</td>
</tr>
</tbody>
</table>

جدول ۴. نتایج حاصل از ارزیابی عملکرد شرکت‌های پهوبرداری از شیکه‌های آبادی با استفاده از مدل $\text{CCR}_{\text{P-I}}$:

<table>
<thead>
<tr>
<th>ضریب نظیر واحد (های) مرجع</th>
<th>واحدهای مرجع</th>
<th>درجه کارایی</th>
<th>شکه مورد ارزیابی</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/545</td>
<td>فزورین</td>
<td>3/380.3</td>
<td>زایندرود</td>
<td>1</td>
</tr>
<tr>
<td>8/5972</td>
<td>فزورین</td>
<td>3/380.3</td>
<td>زایندرود</td>
<td>1</td>
</tr>
<tr>
<td>8/284</td>
<td>مغان</td>
<td>2/382.9</td>
<td>گرمسار</td>
<td>2</td>
</tr>
<tr>
<td>8/1084</td>
<td>گرمسار</td>
<td>2/0847</td>
<td>گلستان</td>
<td>3</td>
</tr>
<tr>
<td>8/23842</td>
<td>زایندرود</td>
<td>0/5549</td>
<td>میناب</td>
<td>8</td>
</tr>
</tbody>
</table>
از ریزیابی شرکت‌های بهره‌برداری

در ارزیابی شرکت‌های بهره‌برداری، میزان بهره‌برداری، سایر ارزیابی‌ها و میزان همگی این ارزیابی‌ها و میزان ممکن کمتر از یک دارند، و در صورت

حفظ سطح موجود تولید ساخته‌ها، با کاهش نهاده‌های خروج به میزان همگی این ارزیابی‌ها و میزان شرکت‌های بهره‌برداری خود را به یک پرسنل و این ارزیابی‌ها می‌گیرند. زیریندی کل و احتمالاً مناسب

با درجه کارایی آن‌هاست، که در جدول ۳ مشخص است.

از ریزیابی مجموعه کل سیستم و شرکت‌های بهره‌برداری

مقدارsom بهترین شرکت شده، در ارزیابی مجموعه کل سیستم، بهره‌برداری شرکت‌های بهره‌برداری، یک بوده و این احتمالاً مناسب است.

ثبت شده، است. نتایج به دست آمده نشان می‌دهد که شرکت‌های بهره‌برداری و شرکت‌های بهره‌برداری آن نسبت به دیگر شرکت‌ها و شرکت‌ها بهترین کارایی را داشته، و میزان کارایی، واحدهایی مرجع، و ضرایب واحدهای مرجع در هر حال مشابه است. در هر حال، شرکت‌های بهره‌برداری و شرکت‌های بهره‌برداری آن می‌تواند به عنوان واحد آموزش به یک دیگر با یک دیگر تلقی گردد.

و میزان یا نسبت بهره‌برداری در واحد با یک سنجیده شود.

درجه کارایی مجموعه کل سیستم گمرک و شبکه میبان، ورامین و بهره‌های کمتر از یک دارند، و در صورت
کارایی مجموعه کل سیستم شبکه میناب و شرکت بهبودداری آن کمتر از یک است، و در هر دو حالت کارآمد، ولی درجه کارایی شرکت بهبودداری (0/50) کمتر از کارایی مجموعه کل سیستم (0/47) است. بنابراین، در صورت ضرورت بهبود عملکرد اولویت سرمایه‌گذاری در بهسازی شرکت بهبودداری است.

مجموعه کل سیستم شبکه گلستان دارای کارایی 21/887 است، در حالی که کارایی شرکت بهبودداری آن 21/311 است، که نشان می‌دهد آگاهی کل سیستم گلستان کارآمد، ولی شرکت بهبودداری آن ناکارآمد، و برای بهبود عملکرد می‌باید به وضعیت شرکت بهبودداری توجه کرد.

مجموعه کل سیستم شبکه قزوز و شرکت بهبودداری آن کارایی پیش از یک دارد، و در هر دو حالت کارآمد است، ولی کارایی مجموعه کل سیستم (1/50) کمتر از کارایی شرکت بهبودداری (1/51) است. بنابراین، در صورت ضرورت بهبود عملکرد اولویت سرمایه‌گذاری در بهسازی سیستم فیزیکی شبکه است.

کارایی مجموعه کل سیستم شبکه غمان و شرکت بهبودداری آن پیش از یک است و در هر دو حالت کارآمد است، بنابراین، ترجیح خاصی سرمایه‌گذاری برای بهبود عملکرد وجود ندارد، ولی در مقایسه با واحدهای کارآمد (زاویدنرود)، در هر دو زمینه توانایی بهبود وجود دارد.

کارایی مجموعه کل سیستم شبکه به‌پیشنهاد تندیزکه یک(1967) است، در حالی که شرکت بهبودداری آن دارای کارایی 19/795 است، که نشان می‌دهد شرکت بهبودداری به‌پیشنهاد ناکارآمد، و برای بهبود عملکرد اولویت سرمایه‌گذاری در بهسازی شرکت بهبودداری است.

کارایی مجموعه کل سیستم شبکه ورامین و شرکت بهبودداری آن کمتر از یک است، و در هر دو حالت ناکارآمد است، ولی کارایی شرکت بهبودداری (1/782) کمتر از کارایی کل سیستم (1/781) است. بنابراین، اگرچه در هر دو زمینه ضرورت بهبود عملکرد طرح است، ولی این امر در مورد شرکت بهبودداری مهمتر است.

نتیجه‌گیری

نتایج به دست آمده از این پژوهش را به شرح زیر می‌توان خلاصه کرد:

(الف) رتبهبندی سیستم‌های آبیاری به ترتیب از کارآمدترین تا ناکارآمدترین شبکه، عبارت است از زایندرود، گرمسار، غستان، غمان، به‌پیش، ورامین، و میناب.

(ب) رتبهبندی شرکت‌های بهبودداری از شبکه‌های آبیاری به ترتیب از کارآمدترین تا ناکارآمدترین شرکت، عبارت است از میراب زایندرود، غمان، به‌پیش، ورامین، و میناب.

(ج) سیستم‌های آبیاری زایندرود از هر دو جنیه شبکه و شرکت از میان هشت سیستم مورد ارزیابی بیشترین کارایی را نشان داده است.

(د) سیستم‌های آبیاری میناب و ورامین از هر دو جنیه شبکه و شرکت ناکارآمد. بنابراین، برای بهبود عملکرد در این سیستم‌ها باید در هر دو جنیه شبکه و مدیریت آن سرمایه‌گذاری کرد.

(ه) شبکه‌های گلستان و به‌پیش به‌پیش در کارآمدی به‌پیشداری آنها ناکارآمد. بنابراین، برای بهبود عملکرد آنها باید به بهبود ویژگی‌های شرکت بهبودداری آنها پرداخت.

(و) شبکه‌های گرمسار، غمان و شرکت‌های به‌پیشداری آنها کارا. ولی در مقایسه با یکدیگر یا با شبکه زایندرود و شرکت میراب تا حدودی دارای پتانسیل بهبود هستند.

22
ارزیابی عملکرد بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

در تحلیل با ماهیت نهادی، واحد مورد ارزیابی با ترکیب خطی از واحدهای مرجع مقایسه‌بندی می‌گردد. به عبارتی، با توجه به مدل‌های انجام شده مورد نظر، شبکه‌های آبیاری واحد مورد ارزیابی، به‌طور جزئی و ترکیبی از مدل‌های مرجع نهادی خود را به سطح نهادهای واحد (نهاد) مرجع با ضرب مربوط برایه‌ای می‌گردند. بنابراین، شبکه‌های مرجع به‌طور جزئی و ترکیبی مدل‌های واحدها و رتبه‌بندی آنها را، واحد مدل‌های مرجع و ضرایب تبدیل آنها به عنوان استاندارد مقایسه‌بندی واحد مدل‌های شبکه‌های آبیاری، و راهکار بهبود آن تعیین می‌شود. مدل‌های کارایی به دست آمده از دیدگاه‌های مختلف (مجموعه کل سیستم و شرکت بهره‌برداری)، امکان تعیین وسایل سرمایه‌گذاری برای بهبود عملکرد سیستم‌ها را در زمینه شیبکه‌ای شرکت، فراهم می‌کند. با توجه به محدودیت‌های مدل‌های روش‌های آبیاری موجود و عدم توانایی آنها در ارائه استانداردهای واقعی‌شناسه و پیش‌نهاد راهکارهای عملی بهبود، روش کارآمد محدودیت‌های موجود را ندارد، تلقی شود.

با نظر به اینکه مدل‌های یک DEA برای ارزیابی عملکرد شبکه‌های آبیاری در سطح ملی و بین‌المللی، برای متابع مورد استفاده

1. علیدار، ن. 1382. ارزیابی عملکرد شبکه‌های آبیاری و تعیین میزان بهره‌وری به‌کمک تحلیل پوششی داده‌ها. پایان‌نامه کارشناسی ارشد، مدیریت عملیات و بهره‌برداری، مؤسسه تحقیقات و آموزش مدیریت.

2. علیرضایی، م. و، علیدار. 1398. ارزیابی عملکرد شبکه‌های آبیاری بخش‌های گازی، آبی و آب‌یابی کارایی آنها به‌کمک تحلیل پوششی داده‌ها. سیزدهمین کنفرانس بین‌المللی برخ. تهران.

3. بنی، م. م. معاونت پژوهشی سازمان مدیریت متابع آب ایران. 1378. فراخوان محور تحقیقات وزارت نیرو، تهران، وزارت نیرو.

4. نعمت، م. ج. 1378. روش‌های ارزیابی عملکرد پرازهای آبیاری و زنگکشی. مجموعه مقالات کارگاه فنی ارزیابی عملکرد سیستم‌های آبیاری و زنگکشی، کمیته ملی آبیاری و زنگکشی ایران، ص-7-1380.

