ارزیابی عملکرد بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

محمد جواد منم، محمدرضا علیرضاپی و ابراهیم صالحی

چکیده
بررسی‌هایی که عمل آمد تاکید داده است که عملکرد شبکه‌های آبیاری به دلایل مختلف کمتر از انتظار است، گزارش و توصیه برای بهبود عملکرد شبکه‌های آبیاری ارائه گردیده است. روش‌های ارائه شده برای ارزیابی عملکرد شبکه‌های آبیاری تاکیدی را در نظر گرفته و از تحلیل تنش‌محیط و ارزیابی سرمایه‌های (RA) و ارزیابی دیگر (DA) جارچی‌یبرگ (FA) بهره‌مندی و گزارش که در استانداردهای بهتر عملکرد قرار گرفته است، به بررسی با استفاده از روش تحلیل پوششی داده‌ها (DEA) دست نمی‌دهد. در این مقاله با استفاده از روش تحلیل پوششی داده‌ها (DEA) برای ارزیابی عملکرد شبکه‌های آبیاری استانداردهای استانداردهای تولید داده‌شده در مراکز شرکت‌های آبیاری ارائه می‌شود. با توجه به شرایط واحدهای ارزیابی شده در مقیاس با استانداردها و تاکید به بهترین سطح، کاهش استانداردهای استانداردهای تحلیل پوششی داده‌ها در این مقاله، با استفاده از روش‌های مختلفی مورد بررسی قرار می‌گیرد.

واژه‌های کلیدی: ارزیابی عملکرد، شبکه‌های آبیاری، تحلیل پوششی داده‌ها

1. استادیار تأسیسات آبیاری، دانشکده کشاورزی، دانشگاه تربیت مدرس
2. مؤسس بین‌المللی تحقیق در عملیات بین‌کارا
3. دانشجوی سابق کارشناسی ارشد تأسیسات آبیاری، دانشکده کشاورزی، دانشگاه تربیت مدرس
مقدمه
عملکرد بسیاری از شیکه‌های موجود با به دلایل‌ماندنی نقص در طراحی و اجرای مدیریت‌منابع، کمتر از حد مورد انتظار است (15 و 17). عملکرد ضعیف شیکه‌های موجود، حجم غذای سرماهای گزارش‌های انجام شده در این بخش و محدودیت مانعی از آن و به‌دست توجه بیش از پیش می‌شود. مؤسسات اعتباری بین‌المللی و مراکز تحقیقات آب‌پزشکی مانند HMI و وزارت نیرو (3) به ارزیابی و بهبود عملکرد شیکه‌های آبیاری است. روش‌هایی که تاکنون برای ارزیابی شیکه‌های آبیاری ارائه شده است مانند روش‌های تجزیه و تحلیل تشخیصی (DA) (12) ارزیابی‌های ت سریع (RA) (8) و ارزیابی چارچوبی (Framework Appraisal) (18) نظر به تعداد آنها نیست. هندی، شیکه‌هایهای کلاسیکی شاخص شایسته انتخاب برای بررسی‌های بهبود عملکرد شیکه‌های آبیاری، موجب آن شده که بررسی‌های بهبود عملکرد آنها چندان موفق نباشند (9).

Data Envelopment Analysis (DEA) یا تحلیل پوششی داده‌ها، یکی از آنها، در سال 1978 توسط چارنر و همکاران (11) (Analysis) ارائه شد. تحلیل ارزیابی اقتصادی و فنی و احکامی تولیدی عبارت است از نظر ارزیابی خصوصی برای تولید داده‌های خدمتی، اهمیت از دو لایه و غیر دولتی، به طور کلی، استفاده می‌شود. ارزیابی‌های شرکتی که به تغییر نسبی با استفاده از برنامه‌ریزی خصوصی، مرسک کارایی و احکامی متفاوت به‌طور درارایی استفاده شدند، به‌طور کلی در کارایی، عملکرد و احکامی نسبی به آن سنجیده و به صورت درجه‌گذاری کارایی مشخص می‌شود.

روش تحلیل پوششی داده‌ها (DEA) در این پژوهش برای تحلیل و برای ارزیابی عملکرد هیئت شیکه‌های آبیاری کشور استفاده شده است. هدف از این پژوهش، عملکرد و بهبود عملکرد و توانمندی روش DEA در ارزیابی عملکرد شیکه‌های آبیاری و رفع برعی مشکلات روش شناسی در این زمینه، ارزیابی مقایسه‌ای عملکرد مورد نظر بود.

مواد و روش‌ها
معرفي روش تحلیل پوششی داده‌ها
در یک واحد تولیدی برای تعیین کارایی، رابطه بین نهادگاه و نهادگاه (Product function) است. همان‌گونه انتصاب تولیدی از تولیدی پیش‌بینی شده به وسیله تولید تولیدی میان نهادگاه و نهادگاه داده می‌شود. تولید بیشتر و تولیدی میان نهادگاه و نهادگاه تخمین زده می‌شود. در روش نهادگاهی تحلیل داده‌های داده‌های مشاهده‌ای عوامل و ضرایب تابع تولید و به دنبال آن خود تابع تولید تعیین می‌شود. در روش نهادگاهی تحلیل داده‌های داده‌های مشاهده‌ای می‌شود. مدل داده‌های در یک واحد تولیدی (14) استفاده از روش‌های نهادگاهی برای تعیین کارایی در یکی از نهادگاه‌ها و یکی از نهادگاه‌ها کمتر. چارنر و همکاران (11) در سال 1978 به استفاده از برنامه‌ریزی خصوصی، مرسک کارایی و احکامی متفاوت به‌طور درارایی استفاده شدند. به سه‌گانه تعیین داده‌های CCR (Charnes, Cooper & Rhodes) (18) تحلیل پوششی داده‌ها (DEA) معرفی شد. در سال 1984 برای DEA روش A (7) روش Banker, Charnes & Cooper (18) معرفی گردد. در پی این مدل‌ها گوناگون BCC (Banker, Cooper & Rhodes) (18) به مدل‌های بیشتری بوده است.
ارزیابی عملکرد بهره‌برداری از شبکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

1. توانایی‌های متفاوت به مجموعه این مدل‌ها اضافه شد، به طوری که آکنون این مدل‌ها می‌تواند پاسخ‌های مسائل کاربردی‌ای باشد.

2. اصول اساسی و مدل‌های اصلی DEA که در این پژوهش استفاده شده، به شرح زیر است:

برای تشخیص عوامل، بهتر است یک مثال ساده، که مشکلی از 9 واحد با یک نهاد و یک ستاده است، در نظر گرفته شود. برای ارزیابی 9 واحد مختلف، مقادیر ستاده در برای نهاد آنها در یک دستگاه معنویت در پژوهش رسم پذیری و نقاط نظر هر واحد مشخص می‌شود (شکل 1). به طور کلی، روش تحلیل به سه متغیر ساختار، تحلیل با ماهیت، تحلیل با ماهیت ترکیبی صورت می‌گیرد. در تحلیل با ماهیت تک‌نی، تحلیل با ماهیت ستاده، آثار نتیجه‌گیری شده در تحلیل با ماهیت ستاده یک نظریه تک‌نی، و در تحلیل با ماهیت ترکیبی آثار نتیجه‌گیری شده و ستادهایی که بیشترین تأثیر وابسته به یکی از متغیرهای مشخص می‌شود در تحلیل با ماهیت تک‌نی، میان واحد‌هایی که یک مقدار مستقل ساختاری و تحلیل با ماهیت ترکیبی صورت می‌گیرد (واحدهای 1 و 2) واحدی دارای کارایی بیشتر است که ممتاپایه را با صورتی مشخص می‌کند. (واحدهای 1 و 2)...

13
فرض کنید n واحد مورد ارزیابی وجود داشته باشد (Decision Making Unit) که به کد A با استفاده از m متغیر، x_{ij} به تولید سطح های y_{ij} می‌پردازد. می‌توان این را مانند نمود:

هدف: $\min_{\theta_p} \quad y_{ij}$

با محدودیت: $y_{ij} \leq \theta_p x_{ij}$

برای ارزیابی واحد i به تعداد P، در یک مدل DEA می‌شود. برای یافتن θ_p برای x_{ij} در نظر گرفته می‌شود. برای یافتن نقطه نظیر P روی مرز کارایی، مقدار هدایت θ_p به کوتاهی به دست می‌آید که به مجموعه امکان تولید خارج نشود. بدین ترتیب روابط ریاضی مدل های CCR و BCC ماهیت نهاده‌ای به صورت زیر بیان می‌شود:

$$\theta_p^* = \min_{\theta_p} \quad y_{ij}$$

$$\theta_p x_{ij} \leq y_{ij} \quad (\forall j, \forall i)$$

به عبارت دیگر:

$$\theta_p^* = \min_{\theta_p} \quad y_{ij}$$

$$\theta_p x_{ij} \leq y_{ij} \quad (\forall j, \forall i)$$

$\text{به شرح زیر می‌شود:}$

$\text{BCC} $

$$\sum_{j=1}^{n} \lambda_j x_j \leq \theta_p x_{ij} \quad (\forall j, \forall i)$$

$\text{CCR} $

$$\sum_{j=1}^{n} \lambda_j x_j \leq \theta_p x_{ij} \quad (\forall j, \forall i)$$
ارزیابی عملکرد به‌محدودیت‌های شیکه‌های آیپاری به روش تحلیل پوششی داده‌ها (DEA)

هنگامی که شمار واحدهای تجهیزات کمتر از مجموع شمار نهاده‌ها و ستاده‌های شایع، بیشتر واحدها کارآیی ارزیابی می‌شود، امکان ارزیابی مقایسه‌ای آنها بین مجموع. چارتر و همکاران (10) برای امکان استفاده از این روش به عنوان یک فاقده تجهیز، شمار واحدهای تجهیزات کمتر از مجموع نهاده‌ها و ستاده‌ها پیشنهاد کردند. در شرایطی که شمار واحدها کمتر از این بوده باشد، یکی از راه‌های رفع مشکل استفاده از مدل اندرس-پیرسنس (5) است. در این مدل تغییرات مبلغ مرجع روزی قاری کاربردی بدون استفاده از واحدهای ارزیابی و صرفاً اساس واحدهای دیگر کلیه می‌گیرد. به‌دين ترتیب، امکان مقایسه واحدهای که ممکن بود در مدل BCC یا ممکن دارای ضریب کارایی 1 باشد را فراهم می‌نماید. به عنوان نمونه، مدل استفاده‌ای CCR با ماهیت نهاده‌ای به صورت زیر تغییر می‌یابد:

\[
\min \left(\theta_p - 1S^+ - 1S^- \right)
\]

\[
\sum_{j=1}^{n} \lambda_j X_j + S^+ = \theta_p X_p
\]

\[
\sum_{j=1}^{n} \lambda_j Y_j + S^- = Y_p
\]

\[
\lambda_j \geq 0, \quad j = 1, \ldots, n\]

\[S^+, S^- \geq 0\]

سیستم‌های مورد ارزیابی و شاخص‌های ارزیابی عملکرد مسائل و مشکلات زیادی در تمام مراحل مختلف طرح‌های آبیاری کشور وجود دارد که ضرورت ارزیابی همه جانبه و ارائه راهکارهای بهبود عملکرد آنها را ابزاری می‌کند. در این پویاگرایی از بین شیکه‌های آبیاری کشور کمیک است ارزیابی انتخاب شد. یکی از میکرها انتخاب شکیکه و وجود اندازه‌های مورد نیاز برای ارزیابی بود. همچنین، معنی شک‌که‌ها حتی برای گذاری در کلیات عامل مؤثر بر عملکرد شیبه همی‌باشد. به عنوان نمونه، تمامی واحدها مدیر، و غیرایندازه، سیستم‌ها کنترل از این شیبه‌ها عبارت‌اند از: شیکه‌های آیپاری

\[
\sum_{j=1}^{n} \lambda_j Y_j \geq Y_p
\]

\[
\lambda_j \geq 0, \quad j = 1, \ldots, n
\]

\[T_{BCC}\]

به عبارت دیگر:

\[
\theta_p^* = \min \theta_p
\]

\[
\{\theta_p X_p, Y_p\} \in T_{BCC}
\]

\[
\sum_{j=1}^{n} \lambda_j X_j \leq \theta_p X_p
\]

\[
\sum_{j=1}^{n} \lambda_j Y_j \geq \theta_p Y_p
\]

\[
\sum_{j=1}^{n} \lambda_j = 1\]

\[
\lambda_j \geq 0, \quad j = 1, \ldots, n
\]

\[S^+, S^- \geq 0\]
عملکرد شکافته‌ای باید تحت تأثیر دو عامل اصلی فیزیکی و مدرنی‌سازی است. برخی از عوامل فیزیکی مؤثر در عملکرد شکافته‌ای باید عبارتند از: طراحی ساخت و شرایط محیطی. عوامل مدرنی‌سازی مانند مجموعه فعالیت‌های شرکت‌های به‌پردازی در عامل بایشک و کشاورزان است. شرکت‌های به‌پردازی با کارگیری عواملی چون سرمایه، پرسنل، و مالیات، و انجام فعالیت‌های می‌هجوم توزیع آب تعیین و تکمیل‌کردن شکافته، جلب مشارکت کشاورزان در بهبود عملکرد و تغییر بسیاری از شکافته و مشکلات نمودن کشاورزان، سعی در بهبود عملکرد شکافه در این پژوهش به دلیل تأثیر تاثیر و تأثیر شکافته‌ای آیسای و شرکت‌های به‌پردازی از آنها در عملکرد بدکیفی گر خلاقیت آنها به صورت یک سیستم در نظر گرفته شده است. افزون بر آن، به منظور اکمال مفاهیم عملکرد کل سیستم و شرکت‌های به‌پردازی و ارزان راهکارهای مناسب، شرکت‌های به‌پردازی نیز به طور جدی‌تری در نظر گرفته شده‌اند.

گرتفاایی مختلفی برای ارزیابی عملکرد به توان در نظر گرفت که در هر یک از این دیدگاه‌ها از تعدادی از شاخص‌های مربوط به آن دیدگاه استفاده می‌شود. این دیدگاه‌ها عبارتند از: دیدگاه‌های مدرنی‌سازی، فنی، اقتصادی، اجتماعی، کشاورزی و ریسک‌های محیطی. در این پژوهش با استفاده کشت‌داده‌که از پژوهش بی‌پردازه و همکاران (7) به عمل آمد عوامل مؤثر بر عملکرد شکافه برای هر یک از دیدگاه‌های فوق تعیین شده است. انتخاب عوامل مؤثر بر عملکرد از بین مجموعه عوامل مربوط به دیدگاه‌های مختلف مطرح شده بود اساس اندازه‌گیری اصلی وابسته به عملکرد شکافه (ساحان) به‌پردازی مرکزی، ارزیابی شکافه، مدیریت شکافه، و پرسنل شکافه‌بپردازی، موجودیت و کیفیت اطلاعات ورودی با عوامل که توانده می‌باشد برای کمی نمودن ارزیابی، از شاخص‌های عملکرد
جدول 1. شاخص‌های ارزیابی عملکرد

شاخص	تعریف شاخص	پارامتر مشخصه	نوع شاخص	رده
$N = N_1 + N_2 + N_3 + N_4 + N_5 + N_6 + N_7 + N_8 + N_9$	N	شیبکه	1	
$C = \frac{70C_1 + 30C_2}{100}$	C	هریته	2	
$P_e = \frac{P_{el} + P_{e2}}{2}$	P_e	پرسنل	3	
$M = \frac{40M_1 + 25M_2 + 25M_3 + 10M_4}{100}$	M	ماشین‌آلات	4	
$A = \frac{60A_1 + 20A_2 + 20A_3}{100}$	A	کشاورزی	5	
$R = \sum_{i=1}^{N} A_i C_i (W)$	R	درآمد	6	
$S = \frac{30S_1 + 70S_2}{100}$	S	مشترکن	7	

شکل 3. مجموعه سیستم شیبکه آبیاری از دیدگاه سیستمی

شکل 4. شرکت بهره‌برداری از دیدگاه سیستمی
جدول ۲ عوامل جزئی شاخص‌های ارزیابی

<table>
<thead>
<tr>
<th>شرح بایرام‌‌های عامل جزئی</th>
<th>تعیین عامل جزئی مشخصه</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح تحت پوشش شبکه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_1 = 0.22A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>حجم آب ورودی به شبکه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_2 = 0.19V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sum Q_i L_i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول و طرفین کالان</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_3 = 0.14(\sum Q_i L_i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sum nQ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مجموع حاشیه‌های بزرگ تعداد در طرفین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_6 = 0.08(\sum nQ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مجموع حاشیه‌های بزرگ تعداد در ارتفاع در</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_9 = 0.05(\sum nQ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{el}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نرمال‌شدن</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{el} = \frac{27P_1 + 25P_2 + 20P_3 + 15P_4 + 13P_5}{100}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل فوتبالیست</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فوتبالیست</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل اماراتی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{el}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نرمال‌شدن</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{el} = \frac{75P_6 + 25P_7}{100}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار ماهی‌های آل/گر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{el}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاهش امکانات</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منابع مشترک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارزش محدوده‌های تعمل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص درصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شمار پرسرل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منابع مشترک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاهش امکانات</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[A_1 = \frac{\sum A_i P_i}{\sum A_i} \]

\[A_2 = \frac{\sum A_i P_i}{\sum A_i} \]

\[A_3 = \sum A_i P_i C_1(y) \]

\[R = \sum A_i C_1(w) \]

\[S = n \]

\[S_2 = \frac{\sum A_i}{n} \]
ارزیابی عملکرد بهبودیاری از شیکته‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

برای جداسازی ارزیابی عملکرد شرکت‌های بهبودیاری از عملکرد کل سیستم، شاخص شیکه به عنوان مجموعه‌ای که سروش‌گیرندگان از شرکت بهبودیاری است، باید به عنوان سیستم‌های در نظر گرفته شود (نکته 4). هر همکاری از دو سیستم مدارک به طور جداگانه مورد ارزیابی و تحلیل قرار می‌گیرد. مقدار نتایج ارزیابی به تفکیک شرکت‌های بهبودیاری و کل سیستم، می‌تواند به‌عنوان یک عامل مهم در زمینه مدیریت و بهبود هیات فیزیکی سیستم ویژه نسبت داده شود.

نتایج و بحث

نتایج به دست آمده از اجرای مدل DEA شامل درجه کارایی واحدها مورد ارزیابی، واحد (های) مربع، ضریب ضریب (ضریب) نظر واحد (های) مربع برای ارزیابی مجموعه کل سیستم و هر یک از شرکت‌های بهبودیاری از شیکه به طور جداگانه در جدول‌ها 3 و 4 آورده شده است. نتایج نمایش مجموعه کل سیستم و سیستم نمونه‌سازی به شرکت‌های بهبودیاری و در پایان مقایسه آن در بحث و بررسی می‌شود.

ارزیابی مجموعه کل سیستم

در ارزیابی مجموعه کل سیستم، شیکه‌های آبیاری زاینده‌رود با کارایی 3/83093 با بالاترین شاخص میانی نهایی 5/50990 داشته‌اند. رتبه‌بندی دیگر‌ها به ترتیب از پیشترین تا کمترین کارایی عبارتند از: بروجردی، گلستان، قزوین، مسجد سالار و ورامین.

در مرحله سیستم‌های زاینده‌رود واحدهای مربع عبارتند از شیکه‌های آبیاری فربودن و ورامین. به ترتیب با ضرایب 1/7565 و 1/5972 باید به عنوان یک تکیه‌گاه خواده که کارایی لیشته‌ای آن با با تنظیم‌های واحد زاینده‌رود برای خواده، در اینجا اشاره گردید است که برای تایپ بهبود سازی و برنامه‌ریزی خطی، هیچ گونه تکیه‌گاه مشابه شیکه به‌گونه‌ای در تحلیل سیستم‌های ارزیابی نمی‌توان باتک کرده‌باشد.

 massa
جدول 3. نتایج حاصل از ارزیابی عملکرد مجموعه کل سیستم‌های آب‌یاری با استفاده از مدل CCRp-I(1)

ضریب نظیر واحد (های)	واحدهای مرجع	درجه کارایی	شیکه مورد ارزیابی	رده
۱/۷۲۴۵۵	فریز	۲/۳۸۸۰۳	زایندرود	۱
۱/۵۹۷۲	ورایی	۲/۳۴۷۹	گرمسار	۲
۰/۸۷۹۲	مغان	۲/۸۴۸۷۱	گلستان	۳
۰/۱۰۸۴	گرمسار	۱/۳۵۵۱	فریز	۴
۰/۲۵۷۲	زایندرود	۱/۲۳۷۹	مغان	۵
۰/۵۰۱۷	فریز	۰/۹۶۵۵	بهبندین	۶
۰/۱۸۸۰	گرمسار	۰/۶۲۶۹	ورایی	۷
۰/۳۵۴۲	گلستان	۰/۵۵۴۹	میانب	۸
۰/۶۲۸۰	زایندرود			
۰/۹۲۸۰	گرمسار			
۰/۲۴۸۲	میانب			
۰/۱۳۲۸	زایندرود			

جدول 4. نتایج حاصل از ارزیابی عملکرد شرکت‌های بهره‌برداری از شیکه‌های آب‌یاری با استفاده از مدل CCRp-I(8)

ضریب نظیر واحد (های)	واحدهای مرجع	درجه کارایی	شیکه مورد ارزیابی	رده
۱/۷۲۴۵۵	فریز	۲/۳۸۸۰۳	زایندرود	۱
۱/۷۲۴۵۵	ورایی	۱/۲۳۷۹	گرمسار	۲
۰/۸۷۹۲	مغان	۱/۲۳۷۹	گلستان	۳
۰/۵۰۱۷	گرمسار	۰/۹۶۵۵	بهبندین	۴
۰/۱۸۸۰	گرمسار	۰/۶۲۶۹	ورایی	۵
۰/۲۴۸۲	میانب	۰/۵۵۴۹	میانب	۶
۰/۱۳۲۸	زایندرود			
۰/۱۳۲۸	گلستان			
۰/۲۴۸۲	زایندرود			
۰/۱۳۲۸	میانب			
۰/۱۳۲۸	زایندرود			

۲۰
ارزیابی عملکرد بهره‌برداری از شیکه‌های آبیاری به روش تحلیل پوششی داده‌ها (DEA)

بهره‌برداری، شاخص شبکه به عنوان سناده در نظر گرفته شده است. بنابراین، راهکار کاهش نهاده‌ای فقط منحصر به شاخص‌های شرکت بهره‌برداری (هرنیزه، بردنیل، و مشین‌آلات) است.

شرکت‌های بهره‌برداری امغان، گمرسان، و رامین دارای تنها یک واحد مرتبه هستند، که نسبت نهاده‌هایی مصرفی واحدهای مرجع با ضرایب مربوط به نهاده‌های این شرکت به ترتیب ۲۰۰۵/۱۸/۱ و ۲۰۰۴/۱۸/۱۲ می‌باشد. این است که کارایی ارزیابی شرکت‌های بهره‌برداری گویای این است که کارایی بهره‌برداری بهبود گرفته در کل، کلمن، و رامین، و میزان کمتر از یک بوده و این واها‌ها از حفظ سطح موجود تولید سناده، با کاهش مصرف نهاده‌های خود به منزال نهاده‌های واحد مرجع مربوطه، می‌توانند کارایی خود را به یک برسانند. دیگر شرکت بهره‌برداری گریننگ. رتبه‌یک کل شرکت‌ها مناسب با میزان کارایی آنهاست، که در جدول ۴ مشخص است.

مقایسه ارزیابی مجموعه کل سیستم و شرکت‌های بهره‌برداری همانگونه که قبلاً گفته شد، در ارزیابی مجموعه کل سیستم، شاخص شبکه به عنوان نهاده، در ارزیابی شرکت‌های بهره‌برداری، شاخص شبکه به عنوان سناده در نظر گرفته شده است. بنابراین، مقایسه کارایی واحدها در حال حاضر پویای‌ترین بهبود عملکرد و اولویت‌های سرمایه‌گذاری در شرکت بهره‌برداری یا شبکه‌های آبیاری مشخص می‌کند. نتایج به دست آمده نشان می‌دهد که شبکه‌های آبیاری زایندرود و شرکت بهره‌برداری آن نسبت به دیگر شبکه‌ها و شرکت‌ها بهترین کارایی را داشته، و میزان کارایی واحدهای مرجع و ضرایب واحدهای مرجع در هر حال مدارا است. در هر حال، شبکه‌های آبیاری زایندرود و شرکت بهره‌برداری آن می‌تواند با عنوان واحدهای اگر نموده دیگر واحدها تلقی گردد، و میزان تحلیل بهبود عملکرد در واحد با این منتجه تجزیه کوه درجه کارایی مجموعه کل سیستم گمرسان و شبکه‌های میزان، ورای و بهبود چهارم کارایی کمتر از یک دارند. و در صورت حفظ سطح موجود تولید سناده‌ها، با کاهش نهاده‌های مرجع مربوطه، می‌توانند کارایی خود را به یک برسانند. واحدهای دیگر کارایی بیش از یک دارند. و روز مز کارایی قرار می‌گیرد. رتبه‌یک کل واحدها مناسب با درجه کارایی آنهاست، که در جدول ۳ مشخص است.

ارزیابی شرکت‌های بهره‌برداری در ارزیابی شرکت‌های بهره‌برداری، شرکت بهره‌برداری سیراب زایندرود با کارایی ۲۰۰۵/۱۸/۱ و شرکت بهره‌برداری میناب با کارایی ۲۰۰۶/۱۸/۱۸ به ترتیب بیشترین و کمترین کارایی را داشته‌اند. رتبه‌یک کل شرکت‌های بهره‌برداری دیگر به ترتیب از بیشترین تا کمترین کارایی عبارت از اینهای، میزان، گمرسان، بهبود، کلمن، و رامین.

در مورد شرکت میانپای زایندرود، واحدهای مرجع عبارتند از شرکت‌های بهره‌برداری قزوین و رامین، به ترتیب با ضرایب ۲۰۰۶/۱۸/۱۲ و ۲۰۰۶/۱۸/۱۸/۲۰ تولیده می‌گردند، و نسبت نهاده‌های این واحد مرجع به نهاده‌های شرکت میانپای زایندرود برای با کارایی ۲۰۰۶/۲۳/۸۸/۱۸ خواهد بود.

در مورد شرکت بهره‌برداری میناب، واحدهای مرجع عبارتند از شرکت‌های بهره‌برداری زایندرود و پرای، به ترتیب با ضرایب ۲۰۰۶/۱۲/۰۳ و ۲۰۰۶/۱۲/۰۳ خواهد بود. رتبه‌یک کل شرکت‌های بهره‌برداری زایندرود، سیراب، و میناب به ترتیب بیشترین در شرکت با ضرایب مربوطه، سناده‌ای برای با سناده شرکت میناب تولیده می‌گردند، و نسبت نهاده‌های این واحد مرجع به نهاده‌های شرکت میناب برای با کارایی ۲۰۰۶/۱۰/۳۹/۲۰ به ترتیب با ضرایب ۲۰۰۶/۱۲/۰۳ و ۲۰۰۶/۱۲/۰۳ خواهد بود.

در مورد شرکت بهره‌برداری میناب، واحدهای مرجع عبارتند از شرکت‌های بهره‌برداری زایندرود، سیراب، و میناب به ترتیب با ضرایب مربوطه، سناده‌ای برای با سناده شرکت میناب تولیده می‌گردند، و نسبت نهاده‌های این واحد مرجع به نهاده‌های شرکت میناب برای با کارایی ۲۰۰۶/۱۲/۰۳/۲۰ به ترتیب با ضرایب ۲۰۰۶/۱۲/۰۳ و ۲۰۰۶/۱۲/۰۳ خواهد بود.
کاراپایی مجموعه کل سیستم شبکه میاناب و شرکت بهبودپردازی آن کمتر از یک است، و در هر دو حالت کاراپایی، ولی درجه کاراپایی شرکت بهبودپردازی (200/100) کمتر از کاراپایی مجموعه کل سیستم (724/64) است. بنابراین، در صورت ضرورت بهبود عملکرد، اولویت سرمایه‌گذاری در بهبازی شرکت بهبودپردازی است.

شکایت عمده، مجموعه سیستم شبکه کل سیستم دارای کاراپایی 208/67 است. در حالی که کاراپایی شرکت بهبودپردازی آن 206/67 است، که نشان می‌دهد اگرچه کل سیستم گلستان کاراپایی، ولی شرکت بهبودپردازی آن ناکاراپایی، و برای بهبود عملکرد می‌باشد به وضعیت شرکت بهبودپردازی توجه کرد.

مگاین و ناکاراپایی شرکت بهبودپردازی آن کاراپایی بیش از یک دارد، و در هر دو حالت کاراپایی میاناب و شرکت بهبودپردازی 100/67 است. بنابراین، نتیجه موجود در سرمایه‌گذاری برای بهبود عملکرد وجود ندارد، ولی در مقایسه با واحدهای کاراپایی (زاویدرود) در هر دو زمینه پتانسیل بهبود وجود دارد.

کاراپایی مجموعه کل سیستم شبکه میاناب و شرکت بهبودپردازی آن یک بیش از یک و در هر دو حالت برابر است. بنابراین، نتیجه موجود در سرمایه‌گذاری برای بهبود عملکرد وجود ندارد، ولی در مقایسه با واحدهای کاراپایی (زاویدرود)، در هر دو زمینه پتانسیل بهبود وجود دارد.

کاراپایی مجموعه کل سیستم شبکه میاناب و شرکت بهبودپردازی آن دارای 198/67 است. بنابراین، نتیجه موجود در سرمایه‌گذاری برای بهبود عملکرد وجود ندارد، ولی در مقایسه با واحدهای کاراپایی (زاویدرود) در هر دو زمینه پتانسیل بهبود وجود دارد.

کاراپایی مجموعه کل سیستم شبکه میاناب و شرکت بهبودپردازی آن یک بیش از یک و در هر دو حالت برابر است. بنابراین، نتیجه موجود در سرمایه‌گذاری برای بهبود عملکرد وجود ندارد، ولی در مقایسه با واحدهای کاراپایی (زاویدرود) در هر دو زمینه پتانسیل بهبود وجود دارد.
ارزیابی عملکرد بهبودیاری از شیکه‌های آبیاری به روش تحلیل پوشتی داده‌ها (DEA)

در تحلیل با ماهیت نهادی، واحد مورد ارزیابی با ترکیب خطی از واحدهای مرجع مقایسه‌ی می‌گردد. که سناتور برای بیان مورد ارزیابی تولید کند و برای بهبود عملکرد باید سطح مصرف نهادی خود را به سطح نهادی خانه (ویژه) مرجع با ضریب مربوط به سروربندی بدن تربیتی، علاوه بر ارزیابی مقایسه‌ی واحدها و رتبه‌بندی آنها، واحدهای مرجع و ضریب‌بندی نظیر آنها به عنوان استاندارد مقایسه‌ی واحد مورد ارزیابی و راهکار بهبود آن تعیین می‌شود. مقایسه‌ی کارایی به دست آمده از دیدگاه‌های مختلف (مجموعه کل سیستم و شرکت بهبودیاری)، امکان تعیین لیست سرمایه‌گذاری برای بهبود عملکرد سیستم‌ها را در زمینه شیکه‌بایی غاز فراهم می‌کند. با توجه به ویژگی‌های روش‌های ارزیابی موجود و عدم توانایی آنها در ارزیابی اهداف اقتصادی و فنی شیکه‌بایی و راهکارهای عملی بهبود، روش DEA می‌تواند به عنوان یک روش کارآمد محدودیت‌های موجود را ندارد. تلقی شود.

با توجه به این که استفاده از روش DEA برای ارزیابی عملکرد شیکه‌های آبیاری در سطح ملی و بین‌المللی برابر با مثال استفاده

منابع مورد استفاده

1. علی‌صدر، ن. 1373. ارزیابی عملکرد بیماری‌های نبا و تعیین میزان بهره‌وری به کمک تحلیل پوشتی داده‌ها. پایان‌نامه کارشناسی ارشد، مدیریت عملات و بهبودیاری، مؤسسه تحقیقات و آموزش مدیریت.
2. علی‌صدر، ن. 1372. ارزیابی عملکرد بیماری‌های بهماری‌های بیماری، گازی، و آبی و تعیین کارایی آنها به کمک تحلیل پوشتی داده‌ها. صدراین کنفرانس‌های بین‌المللی برق، تهران.
3. پام، م. م. معاونت پزشکی سازمان مدیریت مبانی بر اثر ایران. 1378. فراوانی و رنگ‌های تحقیقاتی و وزارت نیرو. تهران، وزارت نیرو.
4. منجم، م. ج. 1378. روش‌های ارزیابی عملکرد بیماری‌های آبیاری و زیست‌کشی. مجموعه مقالات کارگاه فنی ارزیابی عملکرد سیستم‌های آبیاری و زیست‌کشی، کمیته‌ی ملی آبیاری و زیست‌کشی ایران، ص 207-209.

