تعیین اثر ریشه درختان پد و گز بر مقاومت برشی خاک ساحلی کارون در محل

محمود شفاعی بخشان و محمد سلیمی گل شیخی

چکیده
در دهه اخیر پژوهش‌های بسیاری در باره اثر ریشه گیاهان مختلف بر ویژگی‌های مکانیکی خاک، به ویژه مقاومت برشی انجام شده و روش‌های گوناگونی برای نگهداری آن در مکان‌های مختلف ارائه‌شده است. که از آن جمله می‌توان به آزمایش برخی بلکه‌های درختان برانه و آزمایش برخی از آن‌ها بر اساس این روش به منظور تعیین اثر ریشه درختان پد و گز در افزایش مقاومت برشی خاک، از آزمایش‌هایی در منطقه ملایسی در ساحل کارون انجام گرفته، بدین منظور یک دستگاه هیدرولویکی برای اندازه‌گیری نیروی مورد نیاز در برخی بلکه‌های خاکی بهره‌مند شده و سپس در پژوهش‌های مورد نظر از آزمایش برخی از آزمایش‌های به عوامل شرکت‌کرده در این است. این آزمایش‌های جدید را می‌توان در صورتی که به عنوان شاخص‌های عملکردی دارای شرایط مناسب باشد، روش دقت‌پذیرتری برای ارزیابی ریشه درختان بود. در این تحقیق، نتایج نشان داد که ریشه درختان برخی از آزمایش‌های 20-26 درصد مقاومت برخی خاک می‌گردد، و در عملیات کم‌سیان این آزمایش برای درختان گز به علت تراکم ریشه بیشتر، بیش از درختان پد بهره‌مند است.

واژه‌های کلیدی: پیونکینک، درختان، بلکه‌های خاکی و برای مناسبی مقاومت برخی خاک، پایداری سواحل کارون

مقدمه
فناوری سواحل رودخانه‌ها، شبیه‌سازی طبیعی و توانمندی‌ها در حوضه‌های آبیز، علاوه بر وارد آوردن خسارات سنگین به بیمه مجاور آن، باعث افزایش سطحی و خاک‌های مستعد می‌گردد. از این رو، ثبت این شیب‌ها مورد توجه مردم‌سین

1. استاد آموزشی دانشکده کشاورزی، دانشگاه شهید چمران
2. عضو هیئت علمی گروه آموزشی دانشکده کشاورزی، دانشگاه شهید چمران

27
نمونه‌ها را در فواصل ۱۵، ۳۰، و ۴۵ سانتیمتری از لبه بالایی استوانه برای صید میزان جهت جابجایی و نهایتاً مقاومت برخی نمونه‌ها در حال برای یک سرعت ثابت اندازه گرفته. در نتیجه گرفته که ریشه بین‌شیرین تأثیر را در افزایش مقاومت برخی خاک دارد (۹).

و بالادرون و دیکاپان (۱۰) برای تسهیل مدل‌های محاسباتی یک سری آزمایش‌های جدید انجام دادند. آنها در استوانه به قطرهای ۲۵، ۱۰، و ۵ سانتی‌متری به ترتیب درون آنها چاقوسی کردند. سپس به ترتیب درون آنها جو و چاک کاستند، و پس از رشد کامل این چاقوسی آنها را در طول ۴۳ سانتی‌متری به سرعت نسبت ۲/۵ میلی‌متر در دقیقه برخی داده می‌شود افزایش مقاومت برخی در گیاه آزمایش‌ها، و نتیجه گیری کردند که ریشه به دلیل تراکم ریشه بین‌شیرین، تأثیر زایدانی دارد.

از محاسبات دستگاه برخی مستقیم در آزمایشگاه‌ها، تسهیل در انجام شمار زیادی آزمایش است. ولی این دستگاه‌های دارای محدودیت در انتقال نمونه‌ها می‌باشد. در نتیجه نمی‌توان از آن برای بررسی اثر ریشه در خاک که معمولاً دارای ریشه‌های قطورت و طولانی‌تر هستند استفاده کرد. همچنین، این دستگاه نمونه‌ها را از یک ناحیه تجاری برخی می‌دهد. افزون بر آن، دیواره‌های صلب و اثر پیچیدگی توزیع ریشه در نتایج این آزمایش‌های ثابت دارد (۸).

با بررسی نشان دادن اثر قطورت در خاک بر شبیه‌سازی طبیعی از آزمایش برای بررسی در محل استفاده کرد. وی نخست یک بلک خاک همراه با ریشه از انتخاب و با دقت تمام خاک اطراف این بلک را حفر کرد. سپس اطراف بلک خاک و ریشه را به صفحات فلزی محصور کرد. این بلک با چکی که در جلوی آن یک نورسنج رنگی نصب می‌شده بود با سرعت ۱/۵ سانتی‌متر در دقیقه به جلو رانده می‌شود. در مجموع کرده که میان چرم اجرایی و موجود در خاک و سطح نمونه مقاومت برخی خاک را بطرقی محور کرد. در گزارش مرکز حفاظت (۱۱) به آزمایش بررسی در محل برای محاسبه افزایش مقاومت برخی خاک در اثر ریشه گیاهان

(۸) و (۹) و سوئیک (۱۰) از آنجا گیاه در افزایش پایداری سواحل را افزایش مقاومت برخی خاک در اثر وجود ریشه گیاهان افزایش زیادی در محصولات ساحلی و کاهش سرعت موسعی رودخانه و در نتیجه روبوکاری، نفوذپذیریتر شده خاک به خاک و چسبانی به آنها می‌گردد.

در بررسی فرآیند واکنش مجموعه‌های خاک و ریشه چشین فرض شده است که شوربی گیاه به مقاومت برخی خاک صادق است (۱):

\[S = C + \sigma_0 \tan \phi \]

که در این رابطه S مقاومت برخی خاک چسبندگی، C ارتباطی آزمایش دارد. آنها در معادله (۱) رابطه بین چسبندگی و ریشه از انتقال خاک می‌باشد. در حالی که ریشه گیاه در خاک وجود دارد، رابطه به صورت زیر خواهد بود (۹):

\[S = C + \Delta S + \sigma_0 \tan \phi \]

در این رابطه فرض شده است که ریشه گیاه به مقاومت برخی خاک چسبندگی کرده و بر زاویه اصطکاکی خاک به تأثیر است. برای تعیین مقادیر ΔS به‌منظور از روش‌های گوناگونی استفاده کرده‌اند. آن جمله آزمایش بررسی می‌باشد. چون به دو ناحیه برخی از آزمایش‌ها و برخی در محل قرار می‌گیرد هر یک از این روش‌ها دارای محاسبه و معایب خاص خود است.

والادرون و دیکاپان (۱۰) برای تعیین مقادیر ΔS سیستم خاک و ریشه، برای بررسی از دستگاه بررسی مستقیم در آزمایشگاه را بررسی کرده وی استنادهای به جهت ۲۵ سانتی‌متری انتخاب و درون آنها را با چهار نوع خاک مختلف بر کرد. در این استاندابه پیوسته جو و کاهش زرد کاشت و پس از این کرده ریشه به حد کافی رشد با استفاده از دستگاه بررسی مستقیم خاک (شکل ۱).

\[28 \]
شکل 1. دستگاه مقاومت برشی خاک در آزمایشگاه

میزان جا به جایی بلوک به کمک یک عقربه اندازه‌گیری گردد. شکل 2 نحوه انجام آزمایش و شکل 3 نتایج این آزمایش‌ها را نشان می‌دهد.

و و باخوان (12) آزمایش برش در محل با برای تعیین اثر ریشه درختان کننده در جنگل‌های نرمال و مقاومت برشی خاک انجام دادند. محل آزمایش دارای پروپیل خاک یکدامی یک بوده و ستگی یا بزرگ و گیاهان متفاوت در آن وجود نداشت. است. بلوک‌های مورد نظر شامل سیستم ریشه درختان 8-7 ساله، قطر بیشتر ریشه‌های ان کمتر از 2 سانتی‌متر، و خاک از سن سبیل بهره است. در آزمایش آزمایش‌ها، نخست درخت مورد نظر انتخاب و قسمت‌های بالایی آن را از محل در توده‌هایی دو نمی‌افزاید. آن گاه، یک بلوک خاک و ریشه به ابعاد 180 متر مربع و به عمق 150 متر حداکثر کمتردند. به طوری که ساقه در مرکز سطح آن قرار گیرد، و با نصب جک‌

اتخاذ ۸۰۳۰ سانتی‌متر اجیاد کردن. به دو نهایی که ریشه‌های جانی از میان و چهار جانی وارد کردنی، از طرف دیگر خارج شوند. ریشه‌هایی که از وعده جلو و عقیقی بلوک خارج می‌گرددند، قطع می‌شوند. پس از آماده سازی بلوک خاک، آن را تحت شرایط بخش سبیل و زیستی شده قرار دادند. با اندازه‌گیری میزان نیرو وارد و میزان جا به جایی مقادیر مقاومت برشی بلوک خاک و ریشه اندازه‌گیری شد.

هنگ‌چانواریچی و نیولی (1980) تأثیر ریشه گیاه و تیمور و بر افزایش مقاومت برشی خاک به کمک دستگاه (Vetiver) بر سطحی سبیل در محل برسی کردنی. در آزمایش‌ها، نمودن خاک و ریشه گیاه به صورت بلوک درون قاب قرار گرفت. این بلوک از یک سو با استفاده از جک هیدرولیکی فشرده شد و
گردد. در این باره آزمایش‌هایی به صورت برش مستقیم در محل و توسط دستگاهی که برای این منظور طراحی و ساخته شده است انجام شد، که شرایط روشن و نتایج به دست آمده در ادامه ارائه شده است.

مواد و روش‌ها

برای رسیدن به اهداف این پژوهش و انجام آزمایش‌های مورد نظر، نیاز به وسیله‌ای است که به‌تواند مقدار مقاومت برشی بلکه با جهت خاصی با ریشه درختان را اندام‌گیری نماید. زیرا به علت

هیدرولیکی در یک وجه آن وارد کردن نیرو توسط برش دستی، بلکه برش داده می‌شود. در پژوهش حاضر نیز برش در محل به منظور بررسی مقیاس آزمایش مقاومت برشی (ΔS) خاک در اثر ریشه درختان گر و پده انتخاب گردد. است. برای رسیدن به این هدف، ابتدا به‌وسیله یک ترکیب خاکی از ساحل رودخانه کارون که وضعیت نسبتاً پایداری دارد در یاده‌ای از ساحل رودخانه گرفته شد. در این نسبت مناسب، و نیز دسترسی به آن برای انجام آزمایش‌ها امکان‌پذیر است. در نتیجه‌ای روستایی حوالی جمعیت آموزشی-پژوهشی رایگان انجام انتخاب

شکل 2: آزمایش تعیین مقاومت برشی بلکه خاک و ریشه در محل توسط هنگ چانووانیچ و نیلیترا (۱)

شکل 3: منحنی آزمایش مقاومت برشی محاسبه شده توسط هنگ چانووانیچ و نیلیترا (۱)
وجود ریشه درختان نیاز به تهیه بلکه‌های نسبتاً بزرگ و استخراج‌هایی است که در آزمایشگاه‌های موجود بر شرکت‌های دانشگاهی که معمولاً در آزمایشگاه‌های مالکیت خاک وجود دارند، چنین توانایی‌هایی را ندارند. از این رو، نخست یک دسته‌گاه برای محل ساخته شد. این دسته‌گاه از دو بخش مجزا تشکیل شده است. قسمت اول شامل مخزن روان هیدرولیکی، الکتروموتور، پمپ هیدرولیکی دندهای، شیر کنترل دیب سیستم سه وضعیت، سوپاپ کنترل فشار و کلید روشن و خاموش می‌باشد.

که این مجموعه در کنار یک‌دکتری روز یک جفت چرخ فشار می‌گردی و یکاندازه جا به جا کرد. شیر کنترل سه وضعیت برای تعیین ورود و خروج روان هیدرولیکی به وضعیت بعدی است، و با آن توانایی میله جک را به جلو یا عقب می‌دهد. قسمت دوم شامل جک‌های هیدرولیکی دوطرفه و یک عقربی فشارسنج برای اندازه‌گیری فشار روان و یک عقربی فشارسنجی به استاندارد تهیه جک است. آنها به طور مناسب می‌تواند با تبدیل فشار دستگاه ساخته شده را نشان دهد.

میزان سرعت چاپ به جدول میله خروجی را نشان می‌دهد.

میزان دیو روان هیدرولیکی توسط شرکت مخصوص تنظیم کرد. همچنین، بنا به ابعاد بلکه‌ها و نوع خاک می‌توان حداکثر فشار به کار رفته را به گونه‌ای تنظیم کرده که به عقیده‌های شرکت‌های آسیبی وارد نگرد. عقربی فشارسنج مناسب وارد شد و روی جک در حقیقت میزان فشار خاک داخل چک با میزان تانو در واحد سطح مقطع پیستون را نشان می‌دهد. همچنین، در جدول میله خروجی که حالت آزاده دانسته می‌شود، به عقیده‌های شرکت‌های آسیبی وارد شد. عقربی فشارسنج مناسب وارد شد و روی جک در حقیقت میزان تانو در واحد سطح مقطع پیستون را نشان می‌دهد.

برای انجام آزمایش، حدود بیست درخت گر و پا، و ده محل به عنوان دانش در نظر گرفته شدند، و بلکه برای انجام آزمایش آماده گردید که به نهایت، به علت برخی دیواره‌های شماری از بلکه‌ها پیش از آزمایش، از آنها صرف نظر شده و چهار دشت گر و چهار درخت یک‌دکتری برای انجام گردید.

برای ریشه درختان پیدا و گزینه برخی خاک ساحل کارون در محل
شکل 4. نمایی از دستگاه مقاومت برشی در محل

شکل 5. بلکهای آماده آزمایش

جدول 1. مشخصات اولیه بلکهای مورد آزمایش

<table>
<thead>
<tr>
<th>Ar/A</th>
<th>Ar</th>
<th>درصد رس</th>
<th>نوع خاک</th>
<th>رطوبت</th>
<th>سطح مقطع بلاک</th>
<th>ابعاد بلاک (متر)</th>
<th>شماره بلاک</th>
<th>رده بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/143</td>
<td>0/132</td>
<td>0/125</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0/239</td>
<td>0/295</td>
<td>0/18</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0/252</td>
<td>0/214</td>
<td>8</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/323</td>
<td>0/54</td>
<td>20</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/152</td>
<td>0/139</td>
<td>18</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0/275</td>
<td>0/214</td>
<td>12</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0/281</td>
<td>0/812</td>
<td>16</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0/321</td>
<td>0/166</td>
<td>14</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0/178</td>
<td>0/75</td>
<td>12</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0/24</td>
<td>0/16</td>
<td>14</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0/24</td>
<td>0/16</td>
<td>14</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0/24</td>
<td>0/16</td>
<td>14</td>
<td>لوم سیلیت</td>
<td>14/10</td>
<td>14/25</td>
<td>1/1</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

A = مجموع سطح مقطع برشی عبوری از سطح برش (متر مربع) \(A = \frac{\text{سطح مقطع برشی معادل سطح مقطع بلک}}{\text{Ar}} \)
صمت عقب حمل کرد. در این حالت بلوک مورد نظر آماده آغاز آزمایش است.

با قرارگیری شیشه وضعیت در جلو رو به جلو آزمایش آغاز می‌شود. در این آزمایش یک نفر با قرار گرفتن در چند جک، در حالتی که میله با سرعت ثابت در حال پیشروی بود، در حین قرار داشتن فشار با استفاده از شاخه، میزان جا به جای اندکی گیری، و نفر دیگر اعداد قرارند شده را دادادشت می‌کرد. آزمایش تا هنگامی که بلوک به حد گسیختگی مرسید، ادامه می‌یافت. سپس از وسط بلوک خاک مورد آزمایش، ترکیب خاک ارای انجام آزمایش‌های فیزیکی خاک به کمک آگر گرفته می‌شد. شکل ۷ نحوه انجام آزمایش را نشان می‌دهد.

در خانه‌ام آزمایش، خاک بلوک‌هایی را به دست آورده بود و گزینه‌ها را برداشت. در این آزمایش، آزمایش‌های دو، سه و چهار مورد استفاده می‌شدند. نتایج محاسبه‌ای که در جدول ۲ آرائه شده است، سرنوشت این ۲۰ تا ۱۲ آزمایش صورت گرفت که داده‌های حاصل در جدول ۲ آرائه شده است.

نتایج و بحث
با استفاده از داده‌های جدول ۲ نخست مقادیر نیرو اوارد بر بلوک محاسبه می‌شود. برای محاسبه نیروی به کار رفته، مقادیر فشار اندازه‌گیری شده بر حسب بار (kg/cm²) و شتاب قلی (9/81 m/s²) در حالت پیشروی بلوک جک (چک) (9/81 cm²) و شتاب قلی (9/81 m/s²) بر حسب تقریباً هم‌گریده می‌گردند. نتایج حاصل در برای جدا جدا باید از طریق محاسبه به طور مستقیم و بر اساس آزمایش‌های واقعی جدول ۲ آرائه شده است.
شکل ۶. نحوه انجام آزمایش برخی مستقیم در محل با استفاده از چک هیدرولیکی

شکل ۷. نمودار نیرو در برابر جابجایی برای بلکهای خاک با ریشه درخت پد و بلکهای شاهد

رابطه تعیین میزان انفاش مقاومت برخی خاک به منظور تعیین رابطه میان ویژگی‌های ریشه و میزان انفاش مقاومت برخی خاک در پایان هر آزمایش نسبت مجموع سطح ریشه درخت گچ چند ساله ۳ به میزان ۹۷ درصد به مقاومت خاک اضافه کرده است.
جدول ۲ اطلاعات به دست آمده از آزمایش‌های مقاومت پرشی در پاژهازی از کارون

<table>
<thead>
<tr>
<th>کرا</th>
<th>کرا</th>
<th>شاهد 1</th>
<th>شاهد 2</th>
<th>پاژ</th>
<th>پاژ</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Bar</td>
<td>cm</td>
<td>Bar</td>
<td>cm</td>
<td>Bar</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

LEGEND: cm = سانتی‌متر, Bar = بار
شکل ۸. نمودار نیرو در پراپ جه جابجایی برای بلکهای خاک با ریشه درخت گز و بلکهای شاهد

جدول ۳. حداکثر نیروی گسیخگی و مقاومت برشی بلکهای آزمایش شده

<table>
<thead>
<tr>
<th>نمونه آزمایش</th>
<th>سطح بلک (متر مربع)</th>
<th>مقاومت بریشی (کیلویونتی)</th>
<th>حداکثر نیرو (کیلویونتی)بر متر مربع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۷</td>
<td>۷</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۹</td>
<td>۹</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۶/۸۶</td>
<td>۱۰/۰۷</td>
</tr>
</tbody>
</table>
جدول 4: خلاصه تابعیت بیشتر مقاومت برشی بلوکهای خاک با ریشه

<table>
<thead>
<tr>
<th>A/A</th>
<th>درصد افزایش مقاومت برشی (کیلویون بر مترمربع)</th>
<th>نمونه شهره</th>
<th>نمونه آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0</td>
<td>20</td>
<td>1/8</td>
<td>پایه 1</td>
</tr>
<tr>
<td>0/95</td>
<td>26</td>
<td>3/7</td>
<td>پایه 2</td>
</tr>
<tr>
<td>0/0</td>
<td>48</td>
<td>3/7</td>
<td>پایه 3</td>
</tr>
<tr>
<td>0/0</td>
<td>32</td>
<td>4/7</td>
<td>پایه 4</td>
</tr>
<tr>
<td>0/0</td>
<td>35</td>
<td>2/8</td>
<td>گرز 1</td>
</tr>
<tr>
<td>0/0</td>
<td>43</td>
<td>4/7</td>
<td>گرز 3</td>
</tr>
<tr>
<td>0/0</td>
<td>29</td>
<td>4/7</td>
<td>گرز 4</td>
</tr>
<tr>
<td>0/0</td>
<td>34</td>
<td>2/8</td>
<td>گرز 5</td>
</tr>
</tbody>
</table>

مقطع ریشه‌های عبوری از سطح برش به سطح بلوک، یعنی NIS محاسبه گردید. این ارقام در استون 5 جدول 4 از شده است. با در نظر گرفتن این که ریشه درختان عامل اصلی افزایش مقاومت برشی خاک است، سعی شد مقادیر افزایش مقاومت برشی در مقابل NIS سرای درختان گرز و پایه رسم کرده شکل‌های 9 و 10 به ترتیب این نمودارها را نشان می‌دهند. روند افزایش NIS در مقابل NIS منطقی بلوک و این روند خطی است. که با نسبت‌های آزمایش‌های دیگران (شکل 3) هم‌خوانی دارد. بدین‌گونه است به مقایسه با نتایج هنگام چانوانتی و تیباوا (11) انتشار می‌رود مقادیر افزایش NIS سرای ریشه درختان بسیار بیشتر از ریشه بونه گاه و نیازی به بارش برای افزایش NIS در برابر (A/A) و استخراج رابطه خطی به

tیجده‌ی گیری

در این پژوهش، به مطلور بررسی اثر ریشه درختان گرز و پایه برش مقاومت برشی خاک، بازه‌ای از روش‌های کارای اختیاری و با طراحی و ساخت دستگاه سنجش مقادیر برشی در محل، مقاومت برشی بلوک‌های خاک با ریشه و بلوک‌های خاک بدون ریشه درختان به طور مستقل اندازه‌گیری شد. به طور خلاصه از این آزمایش نتایج زیر استخراج گردید:

1. با توجه به این که انجام آزمایش برش در آزمایشگاه مستلزم برداشت و استفاده دست تخورده از محل می‌باشد، و

این امر بروز بلوکهای بزرگ و خاک‌های شن سیاهی تریباً غیر ممکن است، می‌توان از آزمایش برش در محل با استفاده از دستگاه طراحی شده در این پژوهش، به عنوان یک روش

مناسب تحقیق در این پژوهش در مورد استفاده از روش‌های جدید و نو آزمایش‌ها.

کلمات کلیدی: NIS، آزمایش‌ها، استرس، بار، مطالعه

مقدار ضریب K، با استفاده از روش مجزای مرجع و نرمال‌نمونه، برای درختان گرز و پایه تعریف گردید. در استخراج این Excel

معاملات سیب طاژ بررسی نشده است. در این NIS بزرگی از روش‌های کارای اختیاری و دست تخورده از محل به

نیازی به استخراج رابطه خطی به

ابزار ریشه‌های در خاک نیازی به

ملاحظات تحقیق در این پژوهش، مقدار NIS نیز ضریب خواهد بود.
سیاست‌گذاری

از سازمان مدیریت منابع آب ایران به‌خاطر تأمین یکشی‌از
هزینه‌های مالی طرح (قرارداد شماره 1/150/2422/18 /18/76)، و از
همکاری آقای مهندس شیخ‌دایدی عضو هیئت علمی گروه
ماشین‌های کشاورزی دانشگاه شهید چمران اهواز در طراحی
دستگاه منشی مقاومت برشی خاک تشکیل و قدردانی می‌گردند.
همچنین، با سردر محرزی که با مطالعه پیش‌نوسی این مقاله
پیشنهادهای ارزشهای ارائه کرده‌اند سیاست‌گذاری می‌شود.

راهنمایی در تعیین وزنگی‌های واقعی این نوع خاک‌ها استفاده
کرد.

2. ریشه‌های گیاهان، به ویژه درختان، می‌توانند به صورت
چشمگیری باعث افزایش پارامترهای مقاومتی خاک‌گردد. از
این ویژگی می‌توان در پروژه‌های بیوتکنیکی و تکنیک سواحل و
شبه‌استفاده کرد.

3. ریشه گیاه‌گر به طور متوسط بیشتر از ریشه درخت‌پنده
باعث افزایش مقاومت برشی خاک می‌گردد.

4. میزان افزایش مقاومت برشی خاک با درصد سطح مقطع
ریشه‌ها به واحد سطح خاک رابطه مستقیم خطی دارد.
منابع مورد استفاده

1. این جلال، ر. و م. شفاغی پیجستان. 1370. اصول نظری و عملی مکانیک خاک. انتشارات دانشگاه شهید چمران اهواز.