پاسخ سویا به کاربرد آهن و نفسر در یک خاک آمکی

محمد رضا چاکرالحسینی، عبدالمجید رونفی، مونیجر متون و نجف علی کریمیان

چکیده
قابلیت استفاده آهن در خاک‌های آمکی ایران به دلیل فراوانی کلسیم کربنات و پ-هاش زیاد، کم است. به همین دلیل، مصرف پیش از نیاز کودهای تسردی‌پرداز ممکن است قابلیت استفاده آهن را کاهش دهد. هدف از این پژوهش ارزیابی گلخانه‌ای تأثیر نفسر، آهن و پرهمکش آنها بر وزن خشک اندازه‌گیری شده، و به‌جریان برخی از عنصر غذایی گیاه سویایی [Glycine max (L.) Merrill] سطح نفسر (صفر، 5، 10 و 15 میلی‌گرم در کیلوگرم از منبع پاکسازی دی‌هیدروژن فسفات) و جهار سطح آهن (صفر، 2/5 و 5 میلی‌گرم در کیلوگرم از منبع پاکسازی دی‌هیدروژن فسفات) و چهار تراکمی ترکیبی در گل‌سازی با چهار تکرار بود. گیاهان به صورت گازونقی در چهار ترکیب طرح کاملاً تصادفی با چهار تکرار رشد کرده. هشت فله در یک خاک لومی سری چیکر با نام علمی Fine-loamy، carbonatic، thermic، Typic، Calcixercepts نتایج نشان داد که کاربرد نفسر تا سطح 5 میلی‌گرم در کیلوگرم سبب افزایش معنی‌دار (P<0.05) وزن خشک قسمت هواپیمای سویا گردد. بونگین غلظت، جذب کل نفسر و کاهش نفسر از آهن در گیاه با مصرف نفسر افزایش، ولی با کاهش آهن کاهش پایه غلظت، و جذب نفسر نگاهی نداشتند. نتایج نشان داد که استفاده از سطح نفسر (صفر، 5، 10 و 15 میلی‌گرم در کیلوگرم) و چهار سطح آهن (صفر، 2/5 و 5 میلی‌گرم در کیلوگرم) و چهار تراکمی ترکیبی بر روی وزن خشک قسمت هواپیمای سویا تاثیرگذار نبود. غلظت روز و منی در گیاه با مصرف نفسر و سطح آهن افزایش یافت. غلظت منی نگرانی نکنندا سطح 5 میلی‌گرم نفسر و 5 میلی‌گرم آهن تاثیرگذار نبود. نتایج نشان داد که کاربرد سطح نفسر (صفر، 5، 10 و 15 میلی‌گرم در کیلوگرم) و چهار سطح آهن (صفر، 2/5 و 5 میلی‌گرم در کیلوگرم) و چهار تراکمی ترکیبی بر روی وزن خشک قسمت هواپیمای سویا نبود.

واژه‌های کلیدی: نفسر، آهن، تغذیه گیاه، سویا، کلسیم کربنات، پ-هاش، غلظت، جذب، ماده خشک

1. به ترتیب دانشجوی سالی کارشناسی ارشد، دانشیار و استادان خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز
مقدمه
در خاک‌های اهگی ایران به عنوان فراوانی کلستری کردن و پ‌ب‌هاش زیاد، قابلیت استفاده اهگ کم است. سالانه مقادیر
چشم‌گیری کودهای فسفردار به این کوه نهایتاً افزوده می‌شود، که علاوه بر بی‌هوری و الکل‌های کم‌بوده (Eutrification) 
آهن، می‌تواند سبب تجمیع فسفر در اندام هواپیمایی گیاه‌گردد. در 
خاک‌هایی که غلظت فسفر قابل استفاده از حد بحرانی کمتر
است، گیاهان نسبت به کاردوز کودهای فسفردار پاسخ مثبت 
به‌صورت (3.7 و 3.8). سایر (10) در کشت گلخانه‌ای سرویا
نتیجه گرفت که عملکرد آهگ خشک سرویا با فسفر
افزاش‌پذیر بیشترین عمکرده ماده خشک سرویا با افزودن
50 یا 100 گیلوگرم فسفر در هر کیلوگرم خاک به دست آمد. که به
ترتیب افزایش کرده در 42 و 64 درصد به شاهد داشت.
لیندز و شوپ (22) نشان دادند که در کاهش کمبود آهن
بوده است. آنان علت را یافتنی بی‌شک FeDTPA
FeEDDHA و FeEDTA 
به‌طور مشابه [2] در محدوده ب‌های 4-10 زیاد کرده. رومیزه و کرمیمان
(29) گزارش دادند که کربنتر آهن به صورت
نام خاک‌های اهگی مورد آزمایش بی به طور معنی‌داری باعث
افزاری غلظت آهن در سرویا شده و ژیل غلظت مکانیس به دلیل
ایجاد اختلال در انتقال آن از خاک به ریشه و یا از ریشه به
قسمت هواپیمایی داشته. دانشیا و همکاران (14) گزارش کرده که مصرف زیاد
کربنتر آهن به صورت FeDTPA 
در خاک‌های اهگی جنوب ایران ممکن است موجب
عوارض کم‌بوده درگیر نظر روزی مانند و مس شود.
مواد و روش‌ها
خاک کافی از افق سطحی (0-30 سنگ‌شیمی) سری
چیتگر واقع در شهرستان سرویا استان فارس جمعیت آری گردید. این
خاک از نوع Calccic Brown soil بوده و متراز آن در سیستم
Fine-loamy, carbonatic, thermic, Typic Takaunomox خاک
تایکسومونی‌ی می‌باشد (5). پس از خشک‌کردن خاک در
Calcixercepts معرض و گوناگون از الک دو میلی‌متری، برای از زیست‌های
فیزیکی و شیمیایی آن نظریه بان و روش‌های مدرن (1) 
کلستری کربنات محلول به روش بخش کردن با اسید کلریدریک
(7)، قابلیت همبستگی ناپایداری در عصاره و اهدای بین
الکتریکی، فسفر قابل استفاده به روش اولین و همکاران (19)
پ‌ب‌هاش در خمیر اشباع، غلظت عصاره کم مصرف کلستری‌ها
DTPA (23) ماه آلی به روش کم‌بودهای با اسید
کرومین و مسی تنده کردن با فلز امینوم سولفات (19).
تیتر بزرگ کل به روش کلسیل (11)، تیتر بزرگ تیتر نبی به روش فنل

۹۲
پاسخ سویا به کاربرد آهن و فسفر در یک خاک آهکی

در اسکوئیک اسید (10) و پنامی عمده‌گیری شده با استفاده از کربنات (20) فیبریکی و شیمیایی خاک در جدول 1 نشان داده شده است.

آزمایش در شرایط کلیه‌ای (مانند دما روز و شب) به ترتیب 24 و 14 درجه سانتی‌گراد به صورت فاکتورول 5 در
جرجوب طرح کاملاً تصادفی با چهار تکرار اجرای شد.

تیمارهای مرد استفاده یافت و کاهش سطح فسفر (صرف، صفر، 100 میلی‌گرم فسفر در کیلوگرم خاک) و به سطح آهن (صرف، 5 و 10 میلی‌گرم آهن در کیلوگرم

خاک) به صورت معنی‌داری با هردو فسفات (KH₂PO₄ و (NH₄)₂SO₄) مصرف آهن از سه سه‌ستن آهن (383) پیش از کاشت به خاک افزوده گردید. نتیجه‌گیری از مقایسه 70 میلی‌گرم پیش از کاشت و 50 میلی‌گرم پیش از کاشت از سه سه‌ستن آهن (NH₄)₂SO₄ به عنوان سرک روی کلیه تیمارها اضافه شد. هفته بدر سویا، رقم و پیلیام در عمق 2

تست سمات متری از سطح خاک کاشت شد.

حذف مرطوب‌کننده از کاشت، شمار بوده‌ها به سه عدد کاهش داده شد. از آبدری گل‌دانه‌ها در طول رشد با آب مقطر تا حد فریب مربوطه، از طریق توزین گل‌دانه‌ها صوت و گرفت. پس از هفت هفته، گیاهان از محل طوف روی کلیه‌ساخت، پی در پی از شستشوی در ا پهنه فلورانت در ۲۵ درجه سانتی‌گراد می‌توانند زن و نهایی خاک گیاهی خاص نشان دهنده خاک گیاهی. نمونه‌های گیاهی پس از توزین به سیل‌های آبی برقی پرورش نهاد. به منظور تجزیه گیاهی، یک گرم ماده خاک گیاهی، پس از از سخت‌سازی (Dry ashing) روی منظورهای مختلف و سیل‌های انتهایی و غلظت فسفر به روش مرطوب‌کننده و راپی (۲۴) تجزیه گردید.

پاسخ‌های گیاهی شامل، زن خاک، اندام هواپیمای گیاه، غلظت آهن، فسفر، روی مگنزیوم و سیل کل این عنصر (حاص یک در زن خاک خاک) در غلظت غذایی به

وپردازش روی روش آماری و چهارموزار MSTATC، با استفاده از آزمون F تجزیه واریانس شده، میانگین‌های ریشه به‌طور مربوط به اثر اصلی
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>مقدار</th>
<th>ویژگی‌های خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>شن (درصد)</td>
</tr>
<tr>
<td>46</td>
<td>سیلت (درصد)</td>
</tr>
<tr>
<td>24</td>
<td>رس (درصد)</td>
</tr>
<tr>
<td>پ-هاس (حمیر اشباع)</td>
<td></td>
</tr>
<tr>
<td>قابلیت هدایت الکتریکی (دهی زیستی بر متر)</td>
<td></td>
</tr>
<tr>
<td>ماده آلی (درصد)</td>
<td></td>
</tr>
<tr>
<td>0/1</td>
<td>ظرفیت تبدیل کاتیونی (سانتی‌مول در کیلوگرم خاک)</td>
</tr>
<tr>
<td>0/65</td>
<td>کربنات کلسیم معادل (درصد)</td>
</tr>
<tr>
<td>0/5</td>
<td>فسفر محلول در پی کربنات سدیم (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>0/54</td>
<td>نیتروژن کل (درصد)</td>
</tr>
<tr>
<td>0/0</td>
<td>نیتروژن نیتراتی (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>250</td>
<td>پنل محلول در اسانس آمونیوم (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>2/2</td>
<td>DTPA (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>0/96</td>
<td>روی محلول در DTPA (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>3/5</td>
<td>دمگه محلول در DTPA (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>0/87</td>
<td>مس محلول در DTPA (میکروگرم در گرم خاک)</td>
</tr>
</tbody>
</table>

غلظت و جذب کل آهن در سویا شده است. با افزایش فسفر، میانگین غلظت آهن به طور معنی‌داری نسبت به شاهد کاهش یافت، و کاربرد 1/00 میلی‌گرم فسفر در کیلوگرم خاک باعث بیشترین کاهش در میانگین غلظت آهن گردید (جدول 3). دلیل این کاهش را می‌توان به کاهش قابلیت استفاده آهن در خاک در اثر فسفر و کاهش جذب یا تأثیر فسفر بر انتقال آهن از ریشه به قسمت هوایی گیاه نسبت داد. براین و جوئن (12) نتیجه گرفتند که کاهش غلظت آهن در سویه‌گر در اثر کاربرد فسفر، به دلیل تأثیر منفی فسفر بر مکانیسم جذب آهن توسط گیاه می‌باشد. به طور کلی، کاربرد فسفر سبب کاهش معنی‌دار میانگین جذب کل آهن نسبت به شاهد شد (جدول 3).

درصد) در تمام سطوح فسفر بودند. وایس و همکاران (31) گزارش کردند که فسفر افزوده شده به خاک، غلظت فسفر در پنح درصد با راه طور معنی‌داری افزایش داده است. با دال و ارزون (7) نتیجه گرفتند که با افزایش فسفر قابل استفاده، جذب فسفر توسط سویا افزایش یافته، و این افزایش در خاک‌های با میزان فسفر محلول بالا کمتر آنها، بیشتر بوده است.

طبق جدول 3، افزایش سطوح آهن معنی‌دار میانگین غلظت و جذب کل آهن نسبت به شاهد نشان داد و همچنین افزایش با افزودن 1/00 میلی‌گرم آهن در کیلوگرم خاک افزایش گردید. رویه زاده و کریمیان (29) دریافت که کاربرد آهن به صورت FeEDDHA سبب افزایش معنی‌دار
پایگاه سویا به کاربرد آهن و فسفر در یک خاک آمکن

جدول 2. تأثیر سطح مختلف فسفر و آهن بر وزن خشک اندام هواپی. غلظت و چگی کل فسفر در سویا

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میلی‌گرم در کیلو‌گرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلو‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/08</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>0/16</td>
<td>120</td>
<td>40</td>
</tr>
</tbody>
</table>

وزن خشک اندام هواپی (گرم در گلدان)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>320</td>
<td>240</td>
<td>160</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

غلظت فسفر (میکروگرم در گرم)

<table>
<thead>
<tr>
<th>میانگین</th>
<th>0/232A</th>
<th>0/232B</th>
<th>0/232C</th>
<th>0/232D</th>
<th>0/232E</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

جذب کل فسفر (میلی‌گرم در گلدان)

<table>
<thead>
<tr>
<th>میانگین</th>
<th>0/2/28A</th>
<th>0/2/28B</th>
<th>0/2/28C</th>
<th>0/2/28D</th>
<th>0/2/28E</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2</td>
<td>10/2</td>
<td>10/2</td>
<td>10/2</td>
<td>10/2</td>
<td>0</td>
</tr>
</tbody>
</table>

برای هر یک از پایگاه‌های گیاهی، میانگین هایی که در هر روشی در هر سطح در یک هر خشک برگ و یا میانگین‌هایی که در میان جدول در یک هر خشک کوچک مشترک هستند، طبق آزمون دانکن در سطح پنج درصد قبول می‌شوند.

بایگاه سطح آهن، میانگین غلظت و چگی کل فسفر توسط سویا به طور معنی‌داری کاهش یافته (جدول 2). به نحوی که مصرف 10 میلی‌گرم آهن در کیلو‌گرم خاک سبب کاهش در غلظت فسفر و جذب کل فسفر، به ترتیب به میزان 0/2/28A و 0/2/28B درصد نسبت به شده کرده‌اند. از علی که غلظت فسفر در ظرفی تغییر شکل فسفر قابل استفاده به شکل‌های غیر قابل استفاده را نکرد. داهیا و سینگ (132) دریافت کرده افزودن آهن سبب کاهش غلظت فسفر در گیاه بی‌ولای شده، و

۹۵
جدول 3- تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل آهن و نسبت فسفر به آهن در سوا ن

<table>
<thead>
<tr>
<th>سطح فسفر (میکروگرم در کیلوگرم خاک)</th>
<th>سطح آهن (میکروگرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/80 D</td>
<td>13/79 a</td>
</tr>
<tr>
<td>32/39 C</td>
<td>13/33 b</td>
</tr>
<tr>
<td>44/48 C</td>
<td>13/79 c</td>
</tr>
<tr>
<td>56/56 A</td>
<td>13/79 d</td>
</tr>
<tr>
<td>78/78 A</td>
<td>13/79 e</td>
</tr>
<tr>
<td>100/100 C</td>
<td>13/79 f</td>
</tr>
<tr>
<td>120/120 C</td>
<td>13/79 g</td>
</tr>
<tr>
<td>140/140 C</td>
<td>13/79 h</td>
</tr>
<tr>
<td>160/160 C</td>
<td>13/79 i</td>
</tr>
</tbody>
</table>

توجه: نسبت فسفر به آهن به کمربند است. میزان پالسا در سطح پهن دیده می‌شود. قبلاً در کیفیت که‌بی‌داری نیازی است. این افزایش کمتر است. (جدول 3). دیگر (15 و 16) گزارش

همکاران (8) نشان دادند که در مانند کشت شده در خاک چشمه‌ای، یکی از این نسبت ضعیف به آهن بین 30 تا 40 درصد آب می‌باشد. این افزایش سطح فسفر، میانگین غلظت و جذب کل روی به طور معنی‌داری باعث شده که کاهش یابد. یکی از دلایل کاهش غلظت روي را می‌توان اثر تودهٔ ضخامت مدید و مندال

(25 دیده که مصرف سطح بالای فسفر باعث کاهش غلظت روی در بینی شد.) آنان نظرداشتند که این کاهش غلظت رويه‌های دشوار را می‌توان حدود 60 ذکر کرد. بسیاری و
سوریا سپر کاهش معنی‌دار غلظت و جذب کل منگنز شده است. آنان دلیل این مرحله ایجاد شده زیر نسال که نتیجه‌گیری جدید شده که منگنز در انواع پودری‌های هوالی تعدادی از این پودرها را به ریشه برای استفاده از مقدار زیادی آن می‌توانند مقرر بر روی کیفیت منگنز در گیاه سوریا شود.

در پژوهش حاصل ارزویان آهن سبب افزایش معنی‌دار منگنز نسبت به منگنز شد (جدول 5). به طوری که منگنز در تمامی سطح‌ها با بی‌پک‌سازی و کاهش تفاوت معنی‌دار داشتند. دلیل این نتایج، افزایش غلظت آهن و کاهش غلظت منگنز در نتیجه کاربرد آهن در گیاه است. نسبت کم آهن به منگنز در محلول غذایی مقرر در سوی کیفیت آهن می‌شود، و به نظر می‌رسد که اینیده‌ی احساس باعث احساس نسبت کم آهن به منگنز، می‌توان نتیجه گرفت که نسبت میانگین آهن به منگنز در سر زیستی حاصل از پژوهش حاصل برای تولید حاصلات عملکرد و زن خشک، در حدود 1/5 می‌باشد، که با مصرف آهن و فسفر به ترتیب به میزان‌های 2/5 و 80 میلی‌گرم در کیلوگرم خاک به دست آمده است.

مقایسه میانگین‌های غلظت مس (جدول 6) نشان می‌دهد که با افزایش سطح فسفر، این منگنز تنها سطح 80 میلی‌گرم فسفر در کیلوگرم خاک به طور معنی‌داری کاهش یافته، ولی سطح بالاتر سطح فسفر افزایش معنی‌دار آن نسبت به شاهد شده است. هرچند که میانگین‌های غلظت مس در دو سطح 120 و 160 میلی‌گرم فسفر در کیلوگرم خاک تفاوت معنی‌داری با یکدیگر نداشتند. بنابراین کاهش 40 میلی‌گرم فسفر در کیلوگرم خاک باعث افزایش معنی‌دار منگنز جذب کل منگنز شده به شاهد شد، ولی دیگر میانگین‌ها با یکدیگر با شاهد تفاوت معنی‌داری نداشتند. ولی با هنگام (31) نشان دادن که در پ‌هاش بیش از 8 افزایش فسفر سبب کاهش مس در
جدول ۴. تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل روي و نسبت فسفر به روی در سویا

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۳۰</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۶</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

نسبت فسفر به روی

<table>
<thead>
<tr>
<th>میانگین</th>
<th>۳۰۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۶۷</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۶۱۶</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>۵۰۴</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>۴۹۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۴۳۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۲۸۴</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>۲۴۲</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، میانگین‌های که در هر رشته را در هر سطح در یک حرف یک گروه، و یا میانگین‌ها که در مین جدول در یک حرف کوچک مشترک هستند، طبق آزمون داکی در سطح پنج درصد نتایج معنی‌داری ندارند.

میانگین میلی‌گرم در کیلوگرم بالینی (میانگین میلی‌گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>میانگین</th>
<th>۱۸۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۳۱</td>
<td>۳۲۰</td>
</tr>
<tr>
<td>۴۳۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۴۲</td>
<td>۱۳۰</td>
</tr>
<tr>
<td>۲۸۴</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

برگ ساقه‌های سبز و سرخ در درد آهنتی کاربرد آهن تأثیر معنی‌داری بر میانگین غلظت مس نداشت، ولی کاربرد ۲/۵ میلی‌گرم آهن در کیلوگرم خاک سبب افزایش معنی‌دار میانگین جذب کل مس نسبت به شاهد شد (جدول ۴). روی باید و کریمیان (۵۹) نتیجه گرفته که کاربرد آهن و برمکش فسفر و آهن تأثیر معنی‌داری بر غلظت و جذب کل مس در سویا نداشته است.

نتیجه‌گیری

نتایج این آزمایش نشان داد که مصرف فسفر تا ۰/۵ میلی‌گرم و
جدول 5. تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل منگنز و نسبت آهن به منگنز در سoya

<table>
<thead>
<tr>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/81 A</td>
<td>87/22 d</td>
</tr>
<tr>
<td>50/51 B</td>
<td>82/65 d</td>
</tr>
<tr>
<td>27/25 C</td>
<td>82/65 d</td>
</tr>
<tr>
<td>18/15 D</td>
<td>82/65 d</td>
</tr>
<tr>
<td>4/11 B</td>
<td>82/65 d</td>
</tr>
<tr>
<td>نسبت آهن به منگنز</td>
<td></td>
</tr>
<tr>
<td>0.2/0.1</td>
<td></td>
</tr>
<tr>
<td>0.1/0.1</td>
<td></td>
</tr>
<tr>
<td>0.1/0.1</td>
<td></td>
</tr>
<tr>
<td>0.2/0.1</td>
<td></td>
</tr>
</tbody>
</table>
| برای هر یک از پایه‌های کیاهی، منگنز‌هایی که در هر رنگ‌یافته در هر ستوان در یک حرف برزگ، و یا منگنز‌هایی که در مین جدول در یک حرف کوچک مشترک هستند، طبق آزمون دانکن در سطح پنج درصد تفاوت معناداری دارند.

جدول 6. تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل منگنز در سoya

<table>
<thead>
<tr>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/22 B</td>
<td>0.5/45 A</td>
</tr>
<tr>
<td>4/14 C</td>
<td>80 A</td>
</tr>
<tr>
<td>4/35 B</td>
<td>120 A</td>
</tr>
<tr>
<td>4/29 B</td>
<td>160 A</td>
</tr>
<tr>
<td>4/4 A</td>
<td>0 A</td>
</tr>
<tr>
<td>5 A</td>
<td></td>
</tr>
<tr>
<td>120 A</td>
<td></td>
</tr>
</tbody>
</table>
| برای هر یک از پایه‌های کیاهی، منگنز‌هایی که در هر رنگ‌یافته در هر ستوان در یک حرف برزگ مشترک می‌باشند، طبق آزمون دانکن در سطح پنج درصد تفاوت معنادار نمی‌باشد.
سیاست‌گرایی

برای بنیاد وسیله از دانشگاه‌های برای راه‌های اخیر ممکن و مشتریان و
ایجاد تهیه‌سازی از همکاران در کشور خاک‌شناسی
صمیمانه قدردانی می‌گردد.

منابع مورد استفاده

1. رودی، س. 1373. ارزیابی وضعیت آهن قابل استفاده یکی به روش‌های مختلف خاک‌گاهی و خاک‌گاهی در خاک‌های
آهکی منطقه زیر سد در اردیبهشت. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز.


4. قنبری، ع. 1371. ارزیابی خاک‌گاهی و خاک‌گاهی چندین عصاره کی با تغذیه فسفر قابل استفاده در بعضی از خاک‌های
آهک مه ساخت خاک‌گاهی، پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز.

5. Abtahi, A. 1980. Soil genesis as affected by topography and time in highly calcareous parent material under

Part II, Am. Soc. Agron., Madison, WI.


465.

Part 2, Monograph No. 9, Am. Soc. Agron., Madison, WI.

Agron., Madison, WI.

468-472.


WI.