پاسخ سویا به کاربرد آهن و فسفر در یک خاک آمکی

محمدرضای صاکرالحسینی، عبدالمحمد رونقی، منوچهر منفی و نجف علی کریمیان

چکیده

قابلیت استفاده آهن در خاک‌های آمکی ایران به دلیل فراوانی کلسیم کربنات و پ-هاش زیاد، کم است. همچنین، مصرف بیش از نیاز کودهای فسفری ممکن است قابلیت استفاده آهن را کاهش دهد. هدف از این پژوهش ارتباط گلخانه‌ای تأثیر فسفر، آهن و برهمکنش آنها بر وزن خشک اثرات علمی، غلظت، و جذب کل برخی از عناصر غذایی گیاه سویا [Glycine max (L.) Merrill] سطح فسفر (0، 5، 10 و 20 میلی گرم در کیلو گرم از منبع نباتی در هر یک دسی‌متر مربع خاک) و سطح آهن (0.4، 0.8 و 1.6 میلی‌گرم در کیلو گرم از منبع سکسترین آهن) به صورت فاکتورهای چند کاملاً تصادفی در چهار روش تکرار بود. گیاهان به‌صورت Fine-loamy، carbonatic، thermic، Typic، Calcixerpts محتول بودند. روش آزمایش به صورت تصادفی در چهار روش تکرار بود. گیاهان به‌صورت Fine-loamy، carbonatic، thermic، Typic، Calcixerpts محتول بودند.

نتایج نشان داد که کاربرد فسفر تا سطح 80 و آهن در سطح 6/5 میلی‌گرم در کیلو گرم سبب افزایش می‌گردد (P<0.05). وزن خشک هواپیمایی سویا کرده، مانگین غلظت، جذب کل فسفر و جذب آهن در گیاه با مصرف فسفر افزایش یافت. ولی با کاربرد آهن کاهش یافت. غلظت و جذب کل آهن با کاربرد آهن افزایش یافت. مصرف فسفر و این اثرات بی‌رو بود. برهمکنش آهن و فسفر تأثیری بر وزن خشک فیتومی سویا نداشت. غلظت روز و مس در گیاه با مصرف فسفر به طور معنی‌داری کاهش یافت. غلظت میکزک نیز سطح 0/4 میلی‌گرم فسفر در کیلو گرم افزایش، ولی در سطح 6/5 میلی‌گرم در کیلو گرم افزایش و کاهش پدید آورد. کاربرد آهن تأثیری بر غلظت روز و مس در سویا نداشت، ولی در تمام سطح غلظت میکزک نیز کاهش داد. قبلاً از هر گونه توصیه کودی لازم است تأثیر فسفر، آهن و برهمکنش آنها بر سویا در شرایط مزرعه با خاک‌ها و باره‌های مختلف سویا بررسی گردد.

واژه‌های کلیدی: فسفر، آهن، نگهداری گیاه، سویا، کلسیم کربنات، پ-هاش، غلظت، جذب، ماده خشک

1. به ترتیب دانشجوی سالیک کارشناسی ارشد، دانشیار و استادان خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز
مقدمه

در خاک‌های اetrofit ایران به عنوان فراوانی کلسیم کریستال و ب‌پ‌هاش ریز، قابل‌استفاده آهن کم است. سالانه مقدار بسیاری گیری کودکهای فسفردار به این غونه خاک‌ها افزوده می‌شود، که عل成为了 به بی‌پوروری (Eutrification) و اندازه‌گیری کمبود آهن می‌تواند سبب تخمین اندام هوایی کیفیت گردد. در خاک‌هایی که غلظت فسفر قابل استفاده از حد بحرانی کمتر است، گیاهان نسبت به کاربرد کودکهای فسفردار پاسخ مثبت می‌دهند (1، 2 و 3). سامتی (3) در کشت گلخانه‌ای سوسیا نتیجه گرفت که عمدکرد هاده خاک‌سی صورت افزایش یافته بیشترین عبال نفسها ماده خاک‌سی با افزودن ۱۰۰ میلی گرم فسفر در هر کیلوگرم خاک به دست آمد. به ترتیب افزایش بی‌پوروری ۴۳ و ۴۴ درصد نسبت به با که‌دار. این دسته از نظر خاک‌های آهن‌سبز و رنگ‌آمیزی به طور معنی‌داری باعث افزایش غلظت آهن در سوسیا شده، لیکن غلظت مگنزیم به دلیل ایجاد اختلال در انتقال آن از خاک به ریشه و پا از ریشه به قسمت هوایی کاهش یافته. دانش‌نوازی و همکاران (۱۴) گزارش داشتند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانست که کاربرد آهن به صورت نمایش خاک‌هایی آهن‌سبز و رنگ‌آمیزی به طور معنی‌داری باعث افزایش غلظت آهن در سوسیا شده، لیکن غلظت مگنزیم به دلیل ایجاد اختلال در انتقال آن از خاک به ریشه و پا از ریشه به قسمت هوایی کاهش یافته. دانش‌نوازی و همکاران (۱۴) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانست که کاربرد آهن به صورت نمایش خاک‌هایی آهن‌سبز و رنگ‌آمیزی به طور معنی‌داری باعث افزایش غلظت آهن در سوسیا شده، لیکن غلظت مگنزیم به دلیل ایجاد اختلال در انتقال آن از خاک به ریشه و پا از ریشه به قسمت هوایی کاهش یافته. دانش‌نوازی و همکاران (۱۴) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند. در محدوده ب‌پ‌هاش (۲) ۳۰ % ذکر گردید. روی زاده و کریم‌پاشان در FeEDDHA (۲۹) گزارش دانستند که بکریمیان در FeDTPA و FeEDDHA مؤثرتر از FeEDDA بوده است. آنان علت را بی‌پوروری FeEDTA می‌دانستند.
پایه سویا به کاربرد آهون و فسفر در یک خاک آهنکی

در سولفورنیک اسید (10) و پتاسیم عصاره‌گیری شده‌با استئات
اموموم (20) تعیین گردیده و بی‌گزه‌های فیزیکی و شیمیایی
خاک در جدول 1 نشان داده شده است.

آزمایش در شرایط غلظت‌دهی (میکائین دمای روز و شب به
ترتبه 24 و 14 درجه سانتی‌گراد) به صورت فاکتوریل 5 در
چارچوب طرح کاملاً تصادفی با چهار تکرار اجرای شد.
نیازمندی مورد استفاده عبارت بودند از نهج سطح فسفر (صفر،
50, 100 و 160 میلی‌گرم فسفر در کیلوگرم خاک) و چهار
سطح آهون (صفر، 75/75, 50/25 و 50/75) کیلوگرم
خاک. فسفر از منبع پتاسیم دی‌هیدروژن فسفات (KH2PO4) و
آهن از منبع سکسرین آهون (FeEDDHA) به شکل آهون گردید.
بیشترین مقدار 50 میلی‌گرم آهون از
کشت و 50 میلی‌گرم کیلوگرم خاک چاه هر پس از
کشت از منبع ارز (NH4)CO3 به عنوان نرک به کلیه
تیمارها اضافه شد. هفت بذر سویا، رضم ویله‌رور در عمق 2
تن 3 سانتی‌متری از سطح خاک کاشته شد.

حدود و فهرست گیاهی کشت‌شده گیاهان به صورت
هشدار داده شد. آبیاری گل‌دانها در طول رشد با آب مethyst نا
حد ظرفیت ذوبه، از طریق توزین گل‌دانها صورت گرفت.
یکسپ از هشتم هفته، گیاهان از محل طوفان (نزدیک سطح خاک)
قطع و پس از شستشو در آن دردیده در مدت 26 روز سانتی‌گراد
تا ثبت شدند و نمونه‌ها خشک گردیدند. نمونه‌های کیاهی
گیاه از توزین به وسیله آبناب پرینی بود. به منظور تجزیه
گیاه، یک گرم ماده خشک گیاه، پس از خشک‌سازی
ارو، منظور از استفاده از دسته گذاب ائهی و غلظت
فسفربه روی رش و رنگ (20) تعیین گردید.

پایه‌ی گیاهی شامل، وزن خشک اندام هواپیمای گیاه
غلظت آهون، فسفر، روز مگنزیوم و مس و جذب کل این عنصر
(حاص ضرب وزن خشک خشک در غلظت انصراف داده‌گیایی) به
وسیله روش‌های آماری و تحلیل MSTATC
و با استفاده از آزمون F
تجزیه واریانس شده، میانگین‌های مربوط به اثر

93
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>ویژگی‌های خاک</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن (درصد)</td>
<td>30</td>
</tr>
<tr>
<td>سیلیت (درصد)</td>
<td>46</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>24</td>
</tr>
<tr>
<td>لوم</td>
<td>بافت</td>
</tr>
<tr>
<td>ب-هاس (خمیر اشباع)</td>
<td>7/5</td>
</tr>
<tr>
<td>قابلیت هدایت الکتریکی (دسی زیمنس بر متر)</td>
<td>0/9</td>
</tr>
<tr>
<td>ماده آلی (درصد)</td>
<td>1</td>
</tr>
<tr>
<td>ظرفیت نیازهای خاک</td>
<td>10/1</td>
</tr>
<tr>
<td>کربنات کلسیم معادل (درصد)</td>
<td>56/5</td>
</tr>
<tr>
<td>فسفر محلول در پی کربنات سدیم (میکروگرم در گرم خاک)</td>
<td>4/5</td>
</tr>
<tr>
<td>نیترژن کل (درصد)</td>
<td>0/54</td>
</tr>
<tr>
<td>نیترژن نیترات (میکروگرم در گرم خاک)</td>
<td>10</td>
</tr>
<tr>
<td>پتاسیم محلول در اسید آمونیوم (میکروگرم در گرم خاک)</td>
<td>250</td>
</tr>
<tr>
<td>آهن محلول در (DTPA) (میکروگرم در گرم خاک)</td>
<td>2/2</td>
</tr>
<tr>
<td>رؤی محلول در (DTPA) (میکروگرم در گرم خاک)</td>
<td>0/96</td>
</tr>
<tr>
<td>مغنیس محلول در (DTPA) (میکروگرم در گرم خاک)</td>
<td>3/5</td>
</tr>
<tr>
<td>مس محلول در (DTPA) (میکروگرم در گرم خاک)</td>
<td>0/87</td>
</tr>
</tbody>
</table>

غلظت و جذب کل آهن در سویا شده است. با افزایش فسفر، میانگین غلظت آهن به طور معنی‌داری نسبت به شاهد کاهش یافت، و کاربرد 160 میلی گرم فسفر در کیلوگرم خاک باعث بیشترین کاهش در میانگین غلظت آهن گردید (جدول 3). دلیل این کاهش را می‌توان به کاهش قابلیت استفاده آهن در خاک در اثر فسفر و کاهش جذب این اثرات فسفر بر انتقال آهن از ریشه به قسمت هواپیمایی نسبت داد.

درصد) در تمام سطوح فسفر بودند. والیس و همکاران (21) گزارش کردند که فسفر افزوده شده به خاک، غلظت فسفر در پنجه رنگ سیاه را به طور معنی‌داری افزایش داده است. با این حال و ارورا (7) نتیجه گرفتند که با افزایش فسفر قبل استفاده، جذب فسفر توسط سویا افزایش یافت، و این افزایش در خاک‌های با میزان فسفر محلول اولیه کمتر آنها، بیشتر بوده است.

طبق جدول 3 افزایش سطوح آهن معنی‌دار مصرفی سبب افزایش معنی‌دار میانگین غلظت و جذب کل آهن نسبت به شاهد شد، و بیشترین افزایش با افزودن 160 میلی گرم آهن در کیلوگرم خاک انجام گرفت. روش‌زاده و کریمیان (29) در پیشنهاد که کاربرد آهن به صورت FeEDDHA سبب افزایش معنی‌دار
جدول 2. تأثیر سطوح مختلف فسفر و آهن بر وزن خشک اندام هویایی غلظت و جذب کل فسفر در سویا

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/60</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>1/61</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک اندام هویایی (گرم در گلدان)</th>
<th>غلظت فسفر (میکروگرم در گرم)</th>
<th>جذب کل فسفر (میلی‌گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/69 H</td>
<td>۸/۷۲ d</td>
<td>۸۵/۷۸ A</td>
</tr>
<tr>
<td>۵/۷۷ A</td>
<td>۷/۹۴ E</td>
<td>۸۶/۹۸ E</td>
</tr>
<tr>
<td>۷/۸۸ H</td>
<td>۱۸/۷۹ b</td>
<td>۱۸/۷۹ b</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، میانگین‌هایی که در هر روزی یا در هر هفته در پیک حرف پرزگ، و یا میانگین‌هایی که در مین‌سیکر در پیک حرف کوچک مشترک هستند، طبق آزمون دانگان در سطح پنج درصد قانونی معنی‌داری ندارند.

این اظهار کردند که این امر احتمالا به دلیل تشكل فسفات آهن یا کل فسفر با دی‌هیدروکسید آهن بوده است.

مقایسه میانگین‌های نسبت فسفر به آهن نشان می‌دهد که کاهش غلظت فسفر سبب افزایش معنی‌دار این نسبت در سویا زده است (جدول 3). این کاهش معنی‌دار است برای کل فسفر در اندازه‌گیری نیست.

آهن در بارگ سویا، شد، ولی در مقایسه با کاربرد فسفر به نهایی افزودن آهن سبب کاهش غلظت فسفر در گیاه پیچ و شده، و
جدول 3 تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل آهن و نسبت فسفر به آهن در سویا

<table>
<thead>
<tr>
<th>میکروگرم (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>[22/30]</td>
<td>13/39 a</td>
</tr>
<tr>
<td>[37/50 c]</td>
<td>12/37 b</td>
</tr>
<tr>
<td>[44/68 b]</td>
<td>12/34 c</td>
</tr>
<tr>
<td>[49/50 a]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[5/50 a]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[9/50 c]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[19/60 b]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[24/65 a]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[189 a]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[88 b]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[69 c]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[27 d]</td>
<td>12/30 d</td>
</tr>
<tr>
<td>[167 a]</td>
<td>12/30 d</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های کیفی، میانگین‌های که در هر دیدی با دیگر ستون در یک حرکت یک گرایش مشترک هستند و طبق آزمون دانک در سطح پنج درصد تقریب معنی‌داری دارند.

ان افزایش کمتر است (جدول 3، دکا (15 و 16) گزارش داد که افزایش چشمگیر این نسبت نشان‌دهنده اختلالات شدید تغذیه‌ای آهن در گیاه می‌باشد. با این حال، تغییرات نسبت فسفر به آهن با مصرف مناسب و همزمان فسفر و آهن قابل توصیه است. با توجه به این که حاکمیت عملکرد مصرف سویا در سطح 0.4 میلی گرم فسفر و 0.2 میلی گرم آهن در کیلوگرم خاک به دست آمد، مناسب‌ترین نسبت به دست آمد است. به آهن در پژوهش حاضر را می‌توان حدود 0.2 ذکر کرد. بصورتی ممکن است که در مثاب 30 تا 40 به دست آمد. به طور معمول دارای نسبت به شاهد کاهش یافته بیش از 60 درصد بالای فسفر باعث کاهش غلظت روز در بریج شد. آن‌انه اظهار داشتند که جای کاهش غلظت

با افزایش سطح فسفر و آهن در سطح 0.4 میلی گرم فسفر و 0.2 میلی گرم آهن در کیلوگرم خاک به دست آمد، مناسب‌ترین نسبت به دست آمد است. به آهن در پژوهش حاضر را می‌توان حدود 0.2 ذکر کرد. بصورتی ممکن است که در مثاب 30 تا 40 به دست آمد. به طور معمول دارای نسبت به شاهد کاهش یافته بیش از 60 درصد بالای فسفر باعث کاهش غلظت روز در بریج شد. آن‌انه اظهار داشتند که جای کاهش غلظت
پاسخ سوآ به کاربرد آهن و فسفر در یک خاک آهنکی

سوآ در کاهش معنادار غلظت و جذب کل منگنز شده است. آنان دلیل این را محدودیت بوده و توسط آهن در انتقال منگنز غلظت و جذب و از ریشه آن ادامه‌های وسیع‌تری کیا شده کردن. لطفاً اطمینان حاصل کنید که هرندی در خاک‌های آهنکی سکترین آهن مناسب‌ترین کود آهن است و لی‌بند انتخاب شده که استفاده از مقادیر زیاد آن می‌تواند تخریب بر روی کمیته منگنز در گیاه سوآ شود.

در پژوهش حاضر افزودن آهن سبب افزایش معنادار

میانگین نسبت آهن به معنادار شد (جدول 5). به طوری که

میزان این نسبت در تمام سطوح با کبک‌بی‌ها و باکتری

نگاه متغیر بوده. در نتیجه کاربرد آهن در گیاه است. نسبت کم آهن به معنادار در محلول فسفر می‌شود و به نظر می‌رسد که این دو بروز بر می‌رسد به اختلال در

فعلات آنزیمی آهن باشد (1). با بررسی برهمکنش فسفر و

آهن بر نسبت آهن به معنادار، می‌توان نتیجه گرفت که نسبت

مناسب آهن به منگنز در گیاه سوآ در پژوهش حاضر برابر

تولید حادثه عملکرد وزن خشک، در حدود 1/5 می‌باشد.

پژوهشی تحقیقاتی معنادار دیده شد و سطح بالاتر آن

با معنادار به فسفر به ترتیب به میزان‌های 2/5 و 80 میلی‌گرم در کیلوگرم خاک به دست آمده است.

با گواهی‌های معنادار غلظت مس (جدول 6) نشان می‌دهد

که با افزایش سطح فسفر، آهن نسبت آهن میانگین تا سطح 60 میلی‌گرم فسفر در کیلوگرم خاک به معنادار کاهش یافته، و لیست سطوح بالاتر است فسفر افزایش معنادار آن نسبت به شاهد شده است. هرندی میانگین‌های غلظت مس در سطح

120 و 160 میلی‌گرم فسفر در کیلوگرم خاک تفاوت معناداری

با یکدیگر نداشته. تا کاربرد 40 میلی‌گرم فسفر در کیلوگرم

خاک باعث افزایش معنادار میانگین جذب کل منگنز شده به

شاهد شده، ولی این بخش میانگین‌ها با یکدیگر و با شاهد بستگی ندارند.

میزان داده‌ها (جدول 3) نشان می‌دهد که در غلظت فسفر سبب کاهش مس در

می‌تواند معنادار به‌هم‌کننده این دو عنصر در خاک، تأثیر فسفر بر

مانیول آهن در گیاه یا اثره گیاه. فرخزاد و سرمایان (17) گزارش دادند که کاربرد فسفر سبب کاهش غلظت و جذب کل

روی در گلد کردن. کاربرد فسفر سبب افزایش معنادار نسبت

فسفر به روی در سوآ داده شد (جدول 4). سپس (5) نشان گزارش

که افزودن فسفر به خاک سبب افزایش معنادار این نسبت

شهده است، که دلیل آن را افزایش غلظت فسفر و کاهش غلظت

روی در گیاه کرد. است. کاربرد آهن تأثیر معنادار بر

میانگین غلظت روی در گیاه نداشت، ولی افزودن 60/5 میلی‌گرم

آهن در کیلوگرم خاک سبب افزایش معنادار میانگین جذب

کل گیاه، درد که به دلیل افزایش نسبت غلظت است، هرندی

روی داده‌ها و کریمیان (29) نشان داده که کاربرد آهن در

غلظت فسفر اثر مصرف آهن کلیک (جدول 2).

با مصرف فسفر تا سطح 80 میلی‌گرم فسفر در کیلوگرم

خاک میانگین غلظت مسکن به طور معنادار افزایش پیدا

می‌کند که بیش از سطح مصرفی 40 و 80 میلی‌گرم فسفر در

کیلوگرم خاک اختلاف معنادار دیده شد و سطح بالاتر آن

را کاهش داد (جدول 5). میانگین‌های کل منگنز با افزایش

سطح فسفر به طور معنادار افزایش نسبت به شاهد افزایش پیدا

بیشتر افزایش را به سطح 80 میلی‌گرم فسفر در کیلوگرم

خاک ایجاد کرد، ولی سطح بالاتر سبب کاهش آن شد (جدول 5).

کاربرد فسفر به طور کلی نسبت آهن به معنادار را به طور

معنادار نسبت به شاهد کاهش داد. این تغییرات در نتیجه

تأثیر فسفر بر غلظت آهن و منگنز می‌باشد (جدول‌ها 3 و 5).

کاربرد آهن در تمام سطوح مصرفی سبب کاهش معنادار

غلظت و جذب کل منگنز گردیده (جدول 5)، ولی بیشتر کاهش

را تیمیار 10 میلی‌گرم آهن در کیلوگرم خاک ایجاد کرد.

رومی زاده و کریمیان (29) گزارش کردند که کاربرد آهن در

| 97 |
جدول ۴. تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل روي و نسبت فسفر به روي در سویا

<table>
<thead>
<tr>
<th>جذب کل روي (میکروگرم در گلدان)</th>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>۷۶/۰۴</td>
<td>۷۶/۳۱</td>
<td>۷۶/۵۵</td>
</tr>
<tr>
<td>۷۶/۴۲</td>
<td>۷۶/۴۲</td>
<td>۷۶/۴۲</td>
</tr>
<tr>
<td>۷۶/۵۵</td>
<td>۷۶/۵۵</td>
<td>۷۶/۵۵</td>
</tr>
<tr>
<td>۷۶/۷۰</td>
<td>۷۶/۷۰</td>
<td>۷۶/۷۰</td>
</tr>
<tr>
<td>۷۶/۸۰</td>
<td>۷۶/۸۰</td>
<td>۷۶/۸۰</td>
</tr>
<tr>
<td>۷۶/۰۴</td>
<td>۷۶/۰۴</td>
<td>۷۶/۰۴</td>
</tr>
</tbody>
</table>

پایه هر یک از پایه‌های گلیسی، میانگین‌هایی که در هر ردیف یا در هر ستون در یک حرف یک گرگ سایه و ریشه سویا شده است. کاربرد آهن تأثیر معنی‌داری بر میانگین غلظت منس نداشت، ولی کاربرد ۲/۵ میلی گرم آهن در کیلوگرم خاک سبب افزایش معنی‌داری میانگین جذب کل منس نسبت به شاهدش (جدول ۴). میزان جذب کل منس ۱/۹ درصد افزایش یافت. میانگین تأثیر آهن بر غلظت و جذب کل مس در سویا نداشت. میانگین تأثیر ۲/۵ میلی گرم آهن بر غلظت و جذب کل مس در سویا نداشت.
جدول ۵. تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل متفاوت و نسبت آهن به متفاوت در سویا

<table>
<thead>
<tr>
<th>میانگین</th>
<th>غلظت مگنزیوم (میلی‌گرم در گرم)</th>
<th>سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/01 A</td>
<td>73/12 d</td>
<td>122/7 a</td>
<td>83/43 c</td>
</tr>
<tr>
<td>32/05 B</td>
<td>27/94 b</td>
<td>60/35 bi</td>
<td>23/02 gi</td>
</tr>
<tr>
<td>22/05 C</td>
<td>11/34 f</td>
<td>20/94 fg</td>
<td>19/84 rp</td>
</tr>
<tr>
<td>18/15 D</td>
<td>37/19 c</td>
<td>18/00 k</td>
<td>18/05 k</td>
</tr>
<tr>
<td>37/01 C</td>
<td>40/14 B</td>
<td>46/75 A</td>
<td>32/17 C</td>
</tr>
<tr>
<td>40/64 A</td>
<td>33/69 c</td>
<td>17/17 a</td>
<td>21/88 b</td>
</tr>
<tr>
<td>18/71 B</td>
<td>50/58 c</td>
<td>42/80 b</td>
<td>17/87 c</td>
</tr>
<tr>
<td>99/04 C</td>
<td>31/71 g</td>
<td>14/91 fg</td>
<td>51/04 j</td>
</tr>
<tr>
<td>79/05 D</td>
<td>88/76 jk</td>
<td>12/31 gh</td>
<td>61/78 km</td>
</tr>
<tr>
<td>17/61 D</td>
<td>20/20 C</td>
<td>33/76 A</td>
<td>13/17 E</td>
</tr>
</tbody>
</table>

جدول ۶. تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل مس در سویا

<table>
<thead>
<tr>
<th>جذب کل مس</th>
<th>غلظت مس (میلی‌گرم در گرم)</th>
<th>سطح فسفر (میلی‌گرم در کیلوگرم)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/66 B</td>
<td>5/49 A</td>
<td>0</td>
<td>فسفر</td>
</tr>
<tr>
<td>23/29 A</td>
<td>4/88 B</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>21/18 AB</td>
<td>4/14 C</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>22/4 A</td>
<td>4/65 B</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>22/09 AB</td>
<td>4/33 B</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>21/4 B</td>
<td>4/74 A</td>
<td>0</td>
<td>آهن</td>
</tr>
<tr>
<td>20/1 A</td>
<td>4/94 A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>21/94 B</td>
<td>4/74 A</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، میانگین‌های که در هر رده‌ای در هر سطح در یک حرف بزرگ و یا میانگین‌های که در میان جدول در یک حرف کوچک مشترک هستند، طبق آزمون دانکن در سطح پنج درصد تفاوت معنی‌دار دارند.

برای هر یک از پایه‌های گیاهی، میانگین‌های که در هر سطح در یک حرف بزرگ مشترک می‌باشند، طبق آزمون دانکن در سطح پنج درصد دارای تفاوت معنی‌دار نمی‌باشند.
مبانی است. البته به توجه به فاوت شرایط مزرعه و گلخانه، بایستی از هر گونه توسعه کودی یا مشابه عبت که مصرف آن ممکن است ریشه نابودی خاک را بیش از آن در شرایط مزرعه در خاک‌های مختلف و با واریتی‌های مختلف سویا بررسی گردد.

منابع مورد استفاده

1. رومی، س. س. ۱۳۳۳. ارزیابی وضعیت آهون قابل استفاده، گیاهی به روش‌های مختلف آزمایشگاهی و گلخانه‌ای در خاک‌های آهکی منطقه زیر سد درودزن استان فارس، پایان‌نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز.
2. سالاردینی، ع. ه. ۱۳۷۹. حاصل‌برداری خاک انتشارات دانشگاه تهران.
3. سالاردینی، ع. ه. ۱۳۷۹. حاصل‌برداری خاک انتشارات دانشگاه تهران.
4. قنبری، ع. ه. ۱۳۷۱. ارزیابی گلخانه‌ای و آزمایشگاهی چندین عصاره برای جهت تعیین فاوت قابل استفاده در بعضی از خاک‌های آهکی مهم استان فارس، پایان‌نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز.