بررسی کيفیت و کنیت پکتین‌های استخراج شده از ضایعات فراÎن تولید کنسانتره آب پرتقال

چکیده
آب‌موهی و کنسانتره مركبات از تولیدات مهم صنعتی در کشور است. هم‌زمان با تولید آن، افزایش نرخ‌های تولید کنسانتره مورد استفاده در برخی محصولات غذایی به عنوان زال کندن استخراج کرد. متاسفانه، در حال حاضر تمام پکتین مورد نیاز صنایع غذایی کشور از خارج وارد می‌شود. در این پژوهش به هدف ارتقاء استخراج پکتین از تولید محلی به عنوان نمونه‌های تولید کننده استخراج به کار خورده، چکیده مورد استخراج، توصیف شرایط استخراج و ناحیه آب استخراج، مشخص شده. نمونه‌های تولید از کارخانه تولید کنسانتره نپی، پکتینی که توسط فرآیندهای سولفروکسید، نتیج و به‌روزرسانی‌های استخراج گردید. بررسی‌های کیفی و کنیت، مانند تعیین بازده و هزینه استخراج و جنبه‌های بهداشتی استفاده از اسیدهای فوق‌العاده و هیدروکلرید اسدی به عنوان مناسب‌ترین استخراج پکتین انتخاب گردید. در پژوهش دو روش، اثر درجه حرارت (50 و 70 درجه سانتی‌گراد)، زمان (30 و 60 دقیقه) و (1/1، 1/2) بسیاری که در نتیجه استخراج و نودولای تولید، اثر نتایج پی‌کلنیک‌سایین و درجه استرخپساین پکتین‌های استخراج نهایی بررسی گردید. تجزیه آمیزی باید شناسایی کرد که برای 1/2 درجه حرارت 60 درجه سانتی‌گراد، و زمان 60 دقیقه، بهترین شرایط برای استخراج پکتین از تولیدهای مورد مطالعه می‌باشد.

واژه‌های کلیدی: پکتین، پوست پرتقال، مركبات

مقدمه
وژئ پکتین را که یک نام زنده‌کا (از واژه یونانی پنکستوس به معنی لخته) بوده و به طیف گسترده‌ای از مواد پکتینی گفته می‌شود، نخستین بار بر اساس (Braconnv) شیمیدان فرانسوی (Braconnv) به ترتیب استادی و دانشجوی سابق کارشناسی ارشد علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

(14)

به کار برده‌اند. پکتین در پوست پرتقال، مركبات

(Middle lamella)

به کار برده‌اند. پکتین در پوست پرتقال، مركبات

(14)

به کار برده‌اند. پکتین در پوست پرتقال، مركبات

(14)

به کار برده‌اند. پکتین در پوست پرتقال، مركبات

(14)

به کار برده‌اند. پکتین در پوست پرتقال، مركبات

(14)
است. به‌خیص گروه‌های کربنیک و یک‌دهانه‌گاه‌الکتروریسیک اسید ممکن است با مصالح استریپیفی شده باشد. که میزان استریپیفی برون راه دستان مولکول‌های گردن در ایران سالانه حدود یک برابر شیمیایی در مقدار مصرف می‌رسد. که تمامی از کشورهای آن می‌گردند و یا به‌خیص به‌خیص آن در بارزهای یک‌دهانه‌گاه‌الکتروریسیک نسبتاً چشم‌گیری دارد (1، 2، 3، 4) بررسی‌های پلی‌الیز از داخل کشور می‌تواند از اهمیت زیادی برخوردار باشد. پکینی می‌تواند به عنوان یک محصول جانی، از میان‌شان گاهی مانند تسلیم بی‌درمانی، تقلیل چگونگی قند، طبیعی گل افتاب‌گردان و تقلیل اقدامات استریپیفی کرده (14 و 18). پکینی تقلیل سیب در بازی و در علت استریپیفی از آزمایشات یکپارچه‌ای در حین تولید کنسانتره می‌تواند، و یکپارچه کننده طبق گفته افتاب‌گردان به‌خیص درخواسته مولکول‌های یکپارچه‌ای نیستند؛ در حالتی که پکینی تقلیل گروه کربنیک بی‌ربط مولکول‌های بالا، و قدرت تولید زل قوی به‌خیص منع اقدامات استریپیفی می‌باشد. میزان پکینی بر اساس ماده خشن، در تقلیل سیب درمانی، تقلیل چگونگی قند، طبیعی گل افتاب‌گردان و تقلیل اقدامات به‌خیص ترتیب 15-20 و 30 درصد است (9، 10، 11 و 12).

ایران با تولید 400 میلیون تن انواع مرکبات، شش‌مین تولید کننده مرکبات در جهان است. 18 میلیون تون به صورت تاریخ‌آمیز شده، حدود 700 هزار تن به کارخانه‌های کنسانتره و آب مصرف می‌گردد. و حدود 50 هزار تن تولید مرکبات تولید می‌شود. حدود 10 درصد از تقلیل تولید یکپارچه خشک شدن به مصرف خوراک دام و ریت‌های می‌پرداخته‌اند، در حالتی که می‌توان با استریپیفی یکپارچه از آن حذف کرده 1300 تن پکینی نیاز کشور را به واردات پکینی مرفوع ساخت (13، 14 و 15).

مواد و روش‌ها

نمونه‌های تقلیل پنالت بالا از یکی از کارخانه‌های تولید کنسانتره در شمال کشور به‌خیص، و درصد ماده خشن نمونه‌ها تعیین شده (13). مسپس با حرارت دادن در بخار با دمای 95 درجه

142
سانتی گراد به مدت 10 دقیقه در تونل آگاسی، آنزیم‌های استخراج شده درصد رطوبت و خاکستری‌سازی‌های یک میلی‌لیتر از آن شده‌اند. گالاکتونیک اسید نمونه‌های پیکنیک به مطابق میزان Geometry امکان‌پذیری کرده‌اند. محلول D-قالاکتونیک اسید استاندارد ساخت شرکت آلمانی تهیه، و پس از استرایک یک میلی‌لیتر هیدروکسی مید دی‌ه به سه میلی‌لیتر آب، در حمام آب و میخ قرار داده شد. سپس شش میلی لیتر سولفیوریک اسید غلیظ به آن افزوده شد گراد شده محلول مصرف مورد 3 دقیقه فلز طیف‌سنجی Comspec (استاندارد با غلظت‌های مختلف D-قالاکتونیک است) استاندارد، مقدار گالاکتونیک اسید نمونه‌های یکی استخراج شده مانند فوق اندوزگری کرده‌اند.

یکی از مهم‌ترین ویژگی‌های یکی استخراج‌های استریفیکاسیون آن است. به متد ریتیوم نمونه‌های پیکنیک استخراج شده گروه‌های کربوکسیل پیش و پس از هیدروژن، با یک محلول هیدروکسی سدیم استاندارد تیتر شد و مطلق ذیل محاسبه گردید (19).

درصد متوکسیل

درجه استریفیکاسیون

گرم وزن نمونه

گروه‌های کربوکسیل استریفیکاسیون شده

کل گروه‌های کربوکسیل

قرت زل کندانگی یکی درگیر از ویژگی‌های مهم پیکنیک است. برای ارائه قرت زل کندانگی نمونه‌های پیکنیک استخراج شده، نخست به طریق زیر از آنها ژل تهیه شد: مقدار یک گرم از نمونه یک گرم شکر مخلوط، و پس از افزودن

برای یکی استخراج‌های استریفین‌های گراد 10 درجه هرآکس (Heraeus) ساخت کشور سویس عشک گردید. برای افزایش سرعت استخراج، نمونه‌های کربستاتور آماده با یک میلی‌لیتر از رسوب گردید (Retsh) ساخت آلمانی آماده می‌شود به صورت هوازی در آن محیط به چربیان هواهی گرم (50 درجه سانتی‌گراد).

استخراج یکین در بودن نمونه‌ها به نحو انجم شد که به ازای هر گرم 20 میلی‌لیتر محلول استفاده کرده رفت، و در حمام آب گرم ساخت سویسی در دستگاه Memert هم گردید. به ساخته‌های میزد و با پارچه صاف شد. رسوب روی پارچه به طریق فوق نخستین بار استخراج، و سپس با دور ریخته شد، و روی عصا حامل صفحه سوزیری گرم انجام گردید. پیش از رسوب‌گیری، عصاره به مدت 40 دقیقه در سانیتریفون وزنی (ساخت آلمان) با سرعت 1000 دور در دقیقه سانیتریفون، در این ریز مطلق به دستور کداره به صورت 19 درجه 96 درجه 15 گراد حجم عصاره استفاده شد. پس از افزودن اتانول، مخلوط به مدت یک شب در دی‌ات آتاق نگهداری شد و سپس پکیج کرده، رسوب کرده با پارچه صاف شد.

برای رسوب‌گیری، از اساه 96 درجه و به طور 20 بررسی عصاره استفاده شد. درج نمونه‌ها با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش نمونه‌های پیکنیک حاصل یکسان بود، اما با استفاده از روش

143
برای این‌که هر گونه تغییر مناسب‌ترین نوع اسید معدنی مصرف کنید، بهتر است از سیستم pH استفاده کنید. سیستم pH به طور مستقیم تأثیرگذار بر فعالیت قلیایی‌ها و مواد شیمیایی در حیاتیات می‌باشد. سیستم pH از نظر اندازه‌گیری و پیش‌بینی‌گر زمان‌بندی و حذف مواد شیمیایی می‌باشد.

بعضی از این مواد شیمیایی در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌شوند. این مقدارها به صورت تغییر در محیط‌های مختلف قرار می‌گیرند و به وسیلهٔ pH اندازه‌گیری می‌ش
پرسبسی کیفی و کیفیت پکتین‌های استخراج شده از واسطه‌های تولید کنسانسی اثر رفتار، تبخیر و خارج می‌گردد (32). بنابراین، در این آزمایش از هیدروکراتیک اسید استفاده شد.

پروتوکل طولانی و نسبتی محسوبو توسط محصول اسیدی به صورت عصاره پکتین محلول استخراج می‌شود و یافته‌های تولید پکتین بر اساس رسب دان پکتین به صورت جامد یا با لکه، و مواد تخلیه موجود در عصاره سایر پکتین تقابل پرتقال، حذف می‌گردد (16).

انتخاب نوع حلال مصرفی می‌تواند در مارک زیررسوب گیاهی پکتین

نسبت‌های بیشتر است. انتخاب این نوع منظور استفاده می‌گردد.

از پروپانول از دو حلال دیگر گرانیت بوده، ولی بازده استخراج پکتین متوسط آن از دو حلال دیگر کمتر است. در حالی که بازده استخراج پکتین با استفاده از حلال دیگر است. به علت میزان است. بنابراین آزمایش از انتخاب استفاده شد (33).

میزان رطوبت و حاکمت‌پذیری استخراج شده در سه تکرار

به طور ماده در ترتیب 10/2 و 9 درصد به دست آمد. پس از انتخاب هیدروکراتیک اسید به عنوان اسید و انتخاب به عنوان حلال رسوب گذار، شرایط مختلف استخراج شامل pH دما و زمان بررسی نشان می‌دهد. تاخیر میان با تکرار استخراج شده تحت شرایط

قطر زل حاصل از پکتین استخراج شده تحت شرایط استاندارد، در مقایسه با پکتین تجاری بررسی گردیده و تأثیر pH دما و زمان بر این ویژگی کیفی پکتین سنجیده شد. تاثیح pH تجربه آماری شده، میانگین داده‌ها در جدول 3 آمده است.

قوی ترین گزینه بیشینت تهیه‌کننده استخراج شده در حلال 20 گرم.) را نیاز داشت، در دمای 85 درجه سانتی‌گراد، pH برابر 18 و زمان استخراج 50 دقیقه به دست آمد. بنابراین بهترین زمان استخراج 50 دقیقه، بهترین دمای استخراج 90 درجه سانتی‌گراد 50 درجه سانتی‌گراد در مورد قوی ترین گزینه، و بهترین pH برابر 18 برای بیشترین بازده استخراج و قوی ترین گزینه، و pH برابر 18 برای استخراج خاصیت ترین پکتین با بالاترین درجه استرپروفیکاسیون تعیین شد. pH جدول 3 خلاصه‌ای از نتایج و تأثیر دما و زمان استخراج را نشان داد.

با توجه به نیاز کشور به پکتین و تولید مقدار زیادی تغذیه

مربوط به موارد کاران‌های تولید کننده آب و کنسانتره مربکات، پیشنهد می‌گردد از نتایج حاصل از این پژوهش، که در حذف آزمایشگاهی انجام شد، در تولید بهبود صنعتی و حمایت پکتین از تغذیه مربکات استفاده شده و صنعت تولید پکتین در کشور
جدول ۲. بررسی اثر pH دما و زمان بر پایه استخراج پکتین

<table>
<thead>
<tr>
<th>pH</th>
<th>دما (درجه سانتی‌گراد)</th>
<th>زمان (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>۴۰</td>
<td>۸۵</td>
</tr>
<tr>
<td>۱۶/۷</td>
<td>۱۶/۹</td>
<td>۱۴/۷</td>
</tr>
<tr>
<td>۱۸/۵</td>
<td>۱۹/۱</td>
<td>۱۴/۶</td>
</tr>
<tr>
<td>۲۰/۷</td>
<td>۲۲/۰</td>
<td>۱۷/۹</td>
</tr>
</tbody>
</table>

جدول ۳. جدول ANOVA برای پایه استخراج پکتین مركبات

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>F</th>
<th>MS</th>
<th>SS</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>۱۰۰/۵۰۰</td>
<td>۱۰۷/۴۵۵</td>
<td>۲۱۴/۸۵</td>
<td>۲</td>
</tr>
<tr>
<td>دما</td>
<td>۱۱۰/۵۰۰</td>
<td>۱۱۵/۵۷</td>
<td>۱۳۲/۸۳</td>
<td>۱</td>
</tr>
<tr>
<td>زمان</td>
<td>۳۸/۲۰۰</td>
<td>۸۰/۰۵</td>
<td>۸۰/۰۵</td>
<td>۲</td>
</tr>
<tr>
<td>pH × دما</td>
<td>۱/۰۷</td>
<td>۱/۶۴</td>
<td>۳/۲۸</td>
<td>۳</td>
</tr>
<tr>
<td>pH × زمان</td>
<td>۱۳/۴۰</td>
<td>۱/۴۹</td>
<td>۷/۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>دما × زمان</td>
<td>۱/۰۹</td>
<td>۱/۰۹</td>
<td>۲/۸۲</td>
<td>۵۳</td>
</tr>
<tr>
<td>خطأ</td>
<td>۳۷/۷۲۶</td>
<td>۱۰/۴۸</td>
<td>۲۸۸/۰۲۱۴</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴. بررسی اثر pH دما و زمان بر درصد گالاكتوزونیک اسید پکتین استخراج شده

<table>
<thead>
<tr>
<th>pH</th>
<th>دما (درجه سانتی‌گراد)</th>
<th>زمان (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>۴۰</td>
<td>۸۵</td>
</tr>
<tr>
<td>۷۸</td>
<td>۸۰</td>
<td>۸۲</td>
</tr>
<tr>
<td>۷۴</td>
<td>۷۷</td>
<td>۷۷</td>
</tr>
<tr>
<td>۷۳</td>
<td>۷۶</td>
<td>۷۶</td>
</tr>
</tbody>
</table>

جدول ۵. بررسی اثر pH دما و زمان بر درجه استریفیکاسیون (درصد متواکل) پکتین استخراج شده

<table>
<thead>
<tr>
<th>pH</th>
<th>دما (درجه سانتی‌گراد)</th>
<th>زمان (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>۴۰</td>
<td>۸۵</td>
</tr>
<tr>
<td>۶۵/۵</td>
<td>۷۱/۰</td>
<td>۸۰/۳</td>
</tr>
<tr>
<td>۵۶/۹</td>
<td>۷۰/۸</td>
<td>۷۷/۶</td>
</tr>
<tr>
<td>۵۶/۵</td>
<td>۷۲/۱</td>
<td>۷۱/۷</td>
</tr>
</tbody>
</table>
جدول ۶. پرسی اثر pH دما و زمان برقدرت ذل حاصل از پختن استخراج شده (گرم نیروی ۱۰۰ میلی‌گرم برای رنگ رنگ پرودستگا در ذل)

<table>
<thead>
<tr>
<th>درجه (درصد)</th>
<th>دما (درجه سانتی‌گراد)</th>
<th>زمان (دقیقه)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>۹۰</td>
<td>۷۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>۸۰</td>
<td>۸۰</td>
<td>۶۰</td>
<td>۱۸</td>
</tr>
<tr>
<td>۸۵</td>
<td>۸۵</td>
<td>۶۰</td>
<td>۱۸</td>
</tr>
<tr>
<td>۹۰</td>
<td>۷۰</td>
<td>۷۰</td>
<td>۱۸</td>
</tr>
<tr>
<td>۹۵</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۱۸</td>
</tr>
</tbody>
</table>

جدول ۷. پرسی اثر pH دما و زمان استخراج و خواص کیفی پختن استخراج شده

<table>
<thead>
<tr>
<th>شرایط استخراج</th>
<th>درجه استخراج (گرم نیرویی)</th>
<th>دما (درجه سانتی‌گراد)</th>
<th>زمان (دقیقه)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرسیگرایی</td>
<td>۸۰/۸</td>
<td>۷۷/۰</td>
<td>۱۹/۱</td>
<td>۹۰</td>
</tr>
<tr>
<td>پرسیگرایی</td>
<td>۷۰/۰</td>
<td>۷۴/۰</td>
<td>۱۸/۵</td>
<td>۹۰</td>
</tr>
<tr>
<td>پرسیگرایی</td>
<td>۷۷/۰</td>
<td>۷۴/۰</td>
<td>۱۸/۹</td>
<td>۸۵</td>
</tr>
<tr>
<td>پرسیگرایی</td>
<td>۷۵/۰</td>
<td>۷۵/۰</td>
<td>۱۹/۶</td>
<td>۹۰</td>
</tr>
<tr>
<td>پرسیگرایی</td>
<td>۷۹/۲</td>
<td>۷۵/۰</td>
<td>۲۲/۰</td>
<td>۹۰</td>
</tr>
</tbody>
</table>

سپاسگزاری
پژوهندگان این آزمایش بر خود لازم می‌دانند از همکاری‌های ارزشمند جنب آقای دکتر شهرام دخانی تجلیل و قدردانی کنند. همچنین، از جنب آقای سید جهانپور بهره‌مند، به خاطر زحمات و کمک‌هایی که در انجام این پژوهش سپاسگزاری و تشکر می‌شود.

تأسیس گردید. این به نیازهای آنلاین این تولید را به مرحله اقتصادی‌تر می‌کند.

ارسلان و طغرل (۹) با استفاده از روش مشابه، بازده استخراج را گرمی از ۱۰۰ گرم پودر تالاگه گریپ فروه گزارش دادند. گریپ فروه به دست آمده در این پژوهش (۲۲ گرم از ۱۵۰ گرم پودر تالاگه گریپ فروه) هم‌پردازی دارد.

همچنین، اصل (۲۰) میزان درجه استریفیکاسیون و خلولش پکت استخراج شده را در شرایط مشابه استخراج، برای نتیجه‌گیری این آزمایش (۸۰/۸ درصد) گزارش داد.

منابع مورد استفاده
1. انتشارات مرکز گمرک ایران. ۱۳۷۲. آمارنامه واردات و صادرات ایران. مرکز گمرک ایران، تهران.
2. خواجه‌پور، م. ر. ۱۳۷۰. تولید نباتات صنعتی: جهاد دانشگاهی دانشگاه صنعتی اصفهان.
3. خوئینی، س. ۱۳۷۱. اصول تغذیه مکانیک. سازمان چابک و انتشارات وزارت فرهنگ و ارشاد اسلامی، تهران.

۱۴۷
4. شاهین، م. 1375. بررسی اثرات چند افزودنی آنزیمی-بیولوژیکی (بنزیل سیدم-لیزین) و مشابهات آن، پایان‌نامه دکتری داروسازی، دانشکده داروسازی، دانشگاه علوم پزشکی اصفهان.
5. طرفان، ج. 1374. کشت میکروبی، انتشارات، شیراز.
6. عظیمی، ح. 1360. بررسی گیاهان موسیل‌دار، پایان‌نامه دکتری داروسازی، دانشکده داروسازی، دانشگاه علوم پزشکی اصفهان.