مدل‌های برآورد حداقل دری میانگین روزانه با برخوردی از ویژگی‌های فیزیوگرافیک
برای حوزه‌های آب‌زیر غرب ایران

محمدرضا ایزدی‌خسح، سیدسعید اسلامیان و سیدفرداد موسوی

چکیده
سیل از جمله پدیده‌های است که معمولاً مورد توجه پژوهشگران هیدرولوژی قرار دارد. در این پژوهش، مدل پرآورد یکی از شاخص‌های مهم بیان کننده سیلاب، به‌نام حوزه‌های میانگین روزانه در جنگ حوزه‌های آب‌زیر غرب ایران تعیین گردید. زیر حوزه‌های مورد بررسی قرار گرفتند از گام‌سپارها، قروص سیبمک، شبکه‌ها (حوزه‌های آب‌زیر کره)، سزار (حوزه‌های آب‌زیر ظریف)، و آب‌نیمه (حوزه‌های آب‌زیر قاره). پس از تهیه آمار دیت‌های میانگین روزانه ایستگاه‌های هیدرودینامیکی، از سال‌های مورد نظر موجود ۳۰ سال دوره مشترک آماری انتخاب شد و با کمک ترم‌های افزایشی TR و HYFA و با کمک ترم‌های زمانی تحلیل فرآیندهای دویدی سیلاب انجام گرفت. بیشترین توزیع آماری توسط آزمون‌های نمایندگی TR و HYFA و با کمک ترم‌های زمانی تحلیل فرآیندهای دویدی سیلاب انجام گرفت. می‌توان این گزارش، شباهت مهمی داشته باشد و ضریب نسبی اصلی بوده و سطح متنی دار بودن، خطای استاندارد و نمودارهای دیش مشاهده شده و محاسبه شده، در سطح مدل را کنترل شده‌شد. به‌دنبال ترتبیه مدل‌های پرآوردی با شکل‌ها و تاریم‌های معنی‌دار خود، محاسبه انتخاب شد و در حال توافقی بیشتر از دیگر مدل‌ها برای پیش‌بینی حداکثر بن‌رسید. برای آزمون‌های ترکم‌های زمین و زمان تمرکز بشتری کرده و هم‌زمان با بهترین راه‌حل داشتند. از تحلیل خصت این راه‌حل عناصر زیست‌بنا کننده میانگین خطای برآورد مدل‌ها نیز افزایش داده بود و گونه‌های که در دوره‌های پرآورد ۱۰۰ ساله مقدار خطای به ۶/۳ درصد رسید.

واژه‌های کلیدی: سیل، حوزه‌های آب‌زیر، حداقل دری میانگین روزانه، تحلیل فرآیندهای، مدل سیلاب، ویژگی‌های فیزیوگرافیک

مقدمه
هم‌ساله در گروه و کنار جهان، مانند مناطق غرب ایران جنوب و شمال شرقی از مردم ترس می‌شود به خاطراته می‌افتد. بنابراین، یکی از پارامترهایی که در بررسی روندی مشابه آب کاربرد

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استاد بیزیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

سیلاب‌های طبیعی، به‌عنوان است که شاخص‌های بیان سیلاب

بررسی گردید.

چه از نظر طراحی تأسیسات آب‌رسانی و چه از نظر مهارت
شده است، زیرا ویژگی‌های مؤثر در طول‌دست سیلاب (به‌رغم مشکلات موجود در محاسبه برخی از آنها) در آن به کار رفته است.

شکل دیگری از حداقل دی‌میانگین روزانه این است. به‌سبب اینکه برای ابعاد سیلابی، مدل‌های آب‌زیرهای 11 حوزه آبریز

یکناره داده‌اند:

\[Q = \frac{2}{\sqrt{\pi}} \times 10^{-3} \left(A \right)^{1/3} \left(P \right)^{1/6} \left(S \right)^{1/3} \left(t \right)^{1/6} \]

[\(F \)]

که در آن:

\[P = \text{بارندگی میانگین سالانه} \]

\[S = \text{شیب میانگین اصلی} \]

\[A = \text{مساحت حوزه آبخیر} \]

\[t = \text{[Math] مترکمرب (مترکمرب در ثانیه) = a_a \times 10^{-8} \times (S_0)^{-1/10} (L_a + 10^{-8})^{1/10} x \]

[\(C \)]

که در آن:

\[Q = \text{حداقل دی‌میانگین روزانه با دوره بازگشت \([\text{مترکمرب}]\)} \]

\[C = \text{ضریب منطقه‌ای} \]

\[A = \text{مساحت حوزه آبخیر (کیلومتر مربع)} \]

\[R = \text{ارتفاع بارندگی یک روز با دوره بازگشت پنج ساله، منتهی به کمبوش رطوبتی مؤثر خاک (میلی‌متر)} \]

\[F = \text{فرکانس آب‌ریزی (تافت در هر کیلومتر مربع)} \]

\[S_0 = \text{شاید خاک نشان خاک} \]

\[L_a = \text{شیب ۱۰ تا ۸۵ درصد آب‌ریزه (متر در کیلومتر)} \]

\[S = \text{سیبی از سطح حوزه که توسط دوبنج‌های آب‌زیرهای فیزیکی}} \]

\[C = \text{ضریب عنوان منطقه‌ای با دقت قابل قبولی استفاده}

می‌میکو و گوردونس (۹) مدل زیر را برای 11 حوزه آبریز

یونان ارائه دادند:

\[Q = a_a \times a_d \times P^{0.4} \]

[\(Q \)]

که در آن:

\[Q = \text{حداقل دی‌میانگین روزانه با دوره بازگشت \([\text{مترکمرب}]\)} \]

\[a_a = \text{ضربacb و} \]

\[a_d = \text{ضربacb و} \]

\[P = \text{مساحت حوزه آبخیر (کیلومتر مربع)} \]

\[S = \text{بازندگی میانگین سالانه} \]

\[a_b = \text{ضریب و نمای متغیرهای فندقی از پوشش حاضر پیشین حداکثر دی‌میانگین روزانه برای برخی از حوزه‌های آبریز غرب ایران، شامل زیرحوزه‌های گاماسپاب، قوسو، سیمره و کشکان (حوزه آبریز کرخه)، زیرحوزه سازر (حوزه آبریز دز) و زیرحوزه آپشه‌های (حوزه آبریز قومچای) است. این پیش پیش پیش از راه ایجاد ارتباط بین دی‌های دی‌میانگین روزانه با ویژگی‌های فیزیوگرافیک حوزه‌ها انجام گیرد.

مواد و روش‌های

در منطقه‌های که آمار سیلاب موجود باشد، می‌توان حداکثر دی‌
مدل‌های برآورد حداکثر دی‌میانگی‌های روزانه با برخوردی از

میانگین روزانه را به سادگی تعیین کرده و لیند در مناطق بدن آمار

پایدار از روش‌های برآورد سیلاب استفاده نمود. بعضی از

روش‌هایی که در حال حاضر برای پیش‌بینی سیلاب در مناطق

بدون آمار استفاده می‌شوند عبارتند از:

1- روش شاخص سیل
2- روش‌های سیل
3- مدل‌های تجربی
4- هیدرولوژیک و احتمالات
5- هیدرولوژیک و احتمالات

روش آمار و احتمالات

از بین گینه‌های مذکور باید روشی انتخاب گردد که دارای

شرایط زیر باشد:

الف) نیاز به داده‌های پیچیده و غیرقابل دسترسی نداشته باشد
ب) قابلیت نیاز به داده‌های شخصی نباشد
ج) از لحاظ توزیع محدود داشته باشد
د) زمان نیاز

با توجه به ویژگی‌های منطقه مورد بررسی و داده‌های موجود و

پس از بررسی‌های لازم، بهترین روش در برآورد حداکثر دینی

میانگین روزانه، روش آمار و احتمالات انتخاب گردید.

برای

انجام این روش با استقامت این مراحل را گذاردها

تهیه متاب و مدارک و تحقیقات موجود در منطقه طرح

کلیه مداخله‌های برای برآورد دینی‌های روزانه در منطقه موجد

است، مانند تشکیل ترکیب‌های منطقه مطالعه، جمع

آوری شده و استخگاههای هیدرومتری روي نقشه پایه

می‌شوند. هم چنین، آزمایش‌های استخگاههای هیدرومتری برپزیده

فرآمی‌گردد.

کنترل تصحیح و تحمیل آمار

برای آن که تحلیل‌های آماری معیار باشد، باید سری داده‌های

هیدرولوژیک کنترل گردد. هم چنین آمار از بین رفته، توسط

روابط هم بستگی میان استغراض به مجاور دارای آمار کامل را به
|------------|
مدل‌های برآورد حداکثر دیگ میانگین روزانه با برخوردی از

از روی متغیرهای مستقل حوزه تخمین زده و یافته مانده‌ها را به عنوان عامل شانس به حساب می‌آورد (11). برای ویژگی توزیع رگرسیون، باید به دو پرسش مهم پاسخ داد: آیا آن که چه متغیرهایی باید وارد مدل شوند و دیگر آن که شکل مدل انتخابی چگونه باشد؟ در پاسخ به پرسش نخست، باید گفت که در بسیاری از موارد دسته متغیرهای که می‌باشد در مدل گنجانده شوند از پیش تعیین شده نیستند، بنابراین باید متغیرهای وارد مدل شوند که بیشترین سهم را در تولید سیلاب داشته و نیز کمترین ویژگی را نسبت به هم داشته باشند. در انتخاب شکل مدل باید دقت کرد مدلی انتخاب شود که افروز بر ساختمان بُرخ پایپ که نیاز به داده‌های گزارش شده از هر منبع دارد. در این پیوسته از هر شکل مدل به سوئیچ مدل‌های منتا استفاده می‌گردد. که عباراتی از مدل‌های خفی، نماهای گلاسرینی و توانی، به ترتیب معادلات زیر:

\[Q = B_0 + B_1 X_1 + B_2 X_2 + \ldots + B_k X_k \]
\[Q = \exp \left[B_0 + B_1 X_1 + B_2 X_2 + \ldots + B_k X_k \right] \]
\[Q = B_0 + B_1 L \ln X_1 + B_2 L \ln X_2 + \ldots + B_k L \ln X_k \]
\[Q = B_0 (X_1)^{B_1} (X_2)^{B_2} \ldots (X_k)^{B_k} \]

معیارهایی در تغییر مدل‌ها ضریب تبیین (r²) و ضریب تبیین اصلاح شده (r² c) است (6). هم چنین، معیارهای سطح معنی‌دار بودن، خطای استاندارد مدل و نمودارهای آمیزشی شده و محاسبه شده به عنوان کننده مورد استفاده قرار گرفتند.

تحلیل خطا

به منظور برآورد خطای حاصل از برآورد دنبال توزیع معادله رگرسیون، از تحلیل خطای استفاده می‌گردد. این کار به دو صورت انجام می‌گردد:

- کرار و راتنر (به نقل از 3) روش‌های گوناگون را برای تحلیل سیل‌های منطقه‌ای بررسی نموده و این گونه نتیجه گرفته که روش رگرسیون چندگانه برای پیش بینی سیلاب بهتر از روش‌های دیگر است. روش رگرسیون چندگانه در واقع دیگ را
الف) خطای استاندارد برآورد

\(SE = \sqrt{\frac{\sum (Q_i - Q_E)^2}{n - p - 1}} \) \[8\]

ب) میانگین خطا مدل

در این روش ابتدا درصد خطا محاسبه شده و سپس میانگین درصد خطا به عنوان میانگین خطا مدل مورد استفاده قرار می‌گیرد:

\(E_i = \frac{Q_i - Q_E}{Q_i} \times 100 \) \[9\]

\(ME = \frac{1}{n} \sum E_i \) \[10\]

خطای استاندارد

\(SE = \text{ME} \)

\(Q_i = \text{دبی گزارش شده} \)

\(Q_E = \text{دبی محاسبه شده} \)

با ترتیب تعداد ایستگاه‌های هیدروماتیک و پارامترهای مدل

\(E_i = \text{درصد خطا} \)

نتایج و بحث

پس از تکمیل و تکنیک آمار، دوره پاهای آماری ۳۰ سال برای مدیریت ویژگی‌های راهانگیرانه انتخاب کرد. تحلیل نقاط

سبلاب توسعه افزایش و HYFA TR توسعه احتمال بر داده‌های سبلاب برای مشاهده شد. نتایج آزمون

بازرس توانایی توانایی بر داده‌های سبلاب در جدول ۲ اثر دوره شده

است. همان گونه که در این جدول دیده می‌شود، معیار گزارش

تابع توسعه، مقدار آماده

(M الحرف این پارامتر کمتر باشد) توان آماری

متناصر است. معیارهای کلم‌گرو惩罚-اسمیرف و کاچ

مقرر می‌شود.

۲. فرض ممکن دارد بودن ضرایب معادله رگرسیون را محقق

نماید. این کار توسط مقایسه F فیشر محاسبه شده از مدل، و

F فیشر به دست آمده از حدود تعداد گروه‌های

۳. خطای معیار آن کار

۴. در صورت تحقق‌یابی مقدار دیگر گزارش شده در مقابل دیگر

محاسبه شده، خط راست برازش داده شده بین نقاط، دارای

شرايطی باشد.

الف) خط تریف خوری از پراکنش نقاط باشد.

ب) شیب خط رسم شده به یک، و مقدار عضو از میدان با

در صورت رسم منحنی های دانه‌ای اعتماد، مقدار ادعاهای

خارج از این منحنی کمترین باشد.

۵. مدل ساده (دارای کمترین تعداد متغیر مستقل) باشد.

با توجه به آنچه گفته شد، یک چند ضمیمه مهندسی میان

معیارهای پای داده ارجاع گرفت و بهترین مدل پرگزیده شد.
جدول ۲. نتایج آزمون برازندگی توان‌های حداکثری میانگین روزانه

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>مجموع مربوطه</th>
<th>دستگاه‌های کامپیوتر</th>
<th>دستگاه‌های لپ‌تاپ</th>
<th>ویرایشگر</th>
<th>پرینتر</th>
<th>پیشرفته‌ترین نوع</th>
<th>پیشرفته‌ترین نوع</th>
<th>پیشرفته‌ترین نوع</th>
<th>پیشرفته‌ترین نوع</th>
<th>پیشرفته‌ترین نوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسکیپ</td>
<td>۴/۸۱</td>
<td>۳/۸۱</td>
<td>۲/۸۱</td>
<td>۱/۸۱</td>
<td>۰/۸۱</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
</tr>
<tr>
<td>پیشرفته</td>
<td>۵/۹۹</td>
</tr>
<tr>
<td>پیشرفته‌تر</td>
<td>۷/۸۱</td>
</tr>
<tr>
<td>پیشرفته‌تر‌تر</td>
<td>۹/۸۱</td>
</tr>
</tbody>
</table>
شکل 1 گونه مدل با دوره بازگشت دو ساله را انتخاب می‌دهد. در این گونه مدل خطی و نمایی با هم مقایسه شده است. گرچه مدل نمایی دارای ضریب تبیین 99% و مدل خطی دارای ضریب تبیین 96% است، اما مدل خطی انتخاب می‌گردد، زیرا مدل خطی مثال‌های دیگر های گزارش شده و محاسبه شده دارای شرایط بهتر است (ضریب زاویه یک و عرض از میدا نزدیک به صفر دارد). مهم‌ترین، تعداد نقاط بایوز از محتوایی دانه‌ای باعث مدل خطی کمتر از مدل نمایی است. و سرانجام اینکه مدل خطی سادتر از مدل نمایی است. پیش‌بینی‌های این مدل به مدل‌های مطرح‌ترهای بحرانی نسبت (مقدار توانوانگی به کننده نسبت).

جدول 2 نشان‌دهنده، ویژگی‌های معنی‌داری چهارگانه پایه برای دوره‌های بازگشت گوناگون و نحوه گوناگونی آنها می‌باشد. همان‌گونه که دیده می‌شود، معیار اصلی گونه گردی مدل، ضریب تبیین اصلاح شده است و مقدار F لغو و تعداد پارامترهای مدل به صورت کمتری عمل نموده.

این نتایج نشان‌دهنده مدل‌های جداکننده گونه‌های روتان دو مدلی هستند. یکی از آنها به صورت دو گونه را توضیح می‌دهد. در این جدول دیده می‌شود که جداکننده ساده گروه‌های با دوره‌های بازگشت دو نشان‌دهنده مدل‌های همبستگی و نمایی و دوره‌گردی دیگر بازگشت توسط مدل معمولاً بهتر است. پارامترهای طول آرامه اصلی و تراکم زاویه بیشتر سهم را در تولید دیب یکپارچه می‌دهند. این نتیجه ممکن است به دلیل کوهستانی بودن منطقه به دست آمده باشد. پارامتر زمان تکرار در برخی معادلات با توان منفی نمایان شده است. با توجه به شکل کشیده (عرض کم) و در یک سطح محاصره، میزان دیب تولید شده کمتر از خرده‌های پهن و ناهدازین است. همان‌گونه که دیده می‌شود، شکل مدل‌های به دست آمده با مدل‌های پژوهشگران دیگر (مقدار معادلات 1 تا 3 تفاوت

1. Tolerance
جدول 3. ویژگی‌های مدل‌های چهارگانه و گزرگه بهترین مدل برای دیه‌های روژانه

| ویژگی‌های مدل | طبقه‌بندی | حمایت | ضریب تی‌ت استاندارد | ضریب تی‌ت استاندارd | ضریب تی‌t استاندارd | ضریb تی‌t استاندارd | ضr...
جدول 4. مدل‌های انتخابی حداکثر دیبی میانگین روزانه

<table>
<thead>
<tr>
<th>معادله</th>
<th>ضریب تئیین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_1 = -0.03 + \frac{1}{4} L + \frac{1}{2} (S) - \frac{1}{6} V + \frac{1}{8} (D))</td>
<td>0.940</td>
</tr>
<tr>
<td>(Q_2 = \exp\left(\frac{7}{3} \cdot \frac{1}{8} \cdot \frac{9}{11} \cdot R_4 + \frac{5}{11} (S) - \frac{1}{8} (D) + \frac{2}{5} (R_9) \right))</td>
<td>0.988</td>
</tr>
<tr>
<td>(Q_3 = \frac{2}{9} \cdot \frac{1}{10} \cdot (L)^{2/7} \cdot (D)^{-1/31})</td>
<td>0.972</td>
</tr>
<tr>
<td>(Q_4 = \frac{3}{7} \cdot \frac{1}{10} \cdot (L)^{2/10} \cdot (D)^{-1/51})</td>
<td>0.975</td>
</tr>
<tr>
<td>(Q_5 = \frac{4}{11} \cdot \frac{1}{10} \cdot (L)^{2/11} \cdot (D)^{-1/39})</td>
<td>0.967</td>
</tr>
<tr>
<td>(Q_6 = \frac{5}{12} \cdot \frac{1}{10} \cdot (L)^{2/10} \cdot (D)^{-1/50})</td>
<td>0.965</td>
</tr>
<tr>
<td>(Q_7 = \frac{6}{13} \cdot \frac{1}{10} \cdot (L)^{2/12} \cdot (D)^{-2/11})</td>
<td>0.964</td>
</tr>
<tr>
<td>(Q_8 = \frac{7}{14} \cdot \frac{1}{10} \cdot (P)^{2/13} \cdot (T_C)^{-2/10})</td>
<td>0.968</td>
</tr>
</tbody>
</table>

\(Q_i = \) حداکثر دیبی میانگین روزانه با دوره بازگشت آسانه (مترمکعب در ثانیه)
\(L = \) طول آبراه اصلی (کیلومتر)
\(S = \) شبیپ میانگین جوزه (درصد)
\(D = \) تراکم زه کشی (کیلومتر در کیلومتر مربع)
\(R_4 = \) نسبت برجهستگی
\(R_9 = \) نسبت کشیدگی
\(T_C = \) زمان تمرکز (ساعت)
\(P = \) محیط حوزه (کیلومتر)

ندارد، زیرا زمان تمرکز فقط تابعی از طول آبراه نیست و به پارامترهای دیگری نیز بستگی دارد. نیاز به پارامتر میانگین نمای منفی بی یک شاخات سیل مؤثر است. وجود پارامترهای زمان تمرکز و طول آبراه در فرمول دبی 50 ساله اشکالی
شکل 2. رابطه درصد خطای دوره‌های بازگشتی حوزه‌های آب‌خرش مورد بررسی خود با چنین مسئله‌ای وابسته به شدت.

منابع مورد استفاده

1. باقری، ر. ۱۳۷۲. تعبین دیبی ماکزیمموم لحظه‌ای در حوزه‌های آب‌خرش فاقد آمار سد زاینده رود. پایان نامه کارشناسی ارشد آبیاری و زیست‌کننده‌ها. دانشگاه صنعتی اصفهان.
2. کاپت، ج. دیلیو (ترجمه ژرژ گیمینا، ا.ا.ا. علومی، م. نیبی‌نزده و ج. خیابانی). ۱۳۶۹. تحلیل وقایع و ریسک در هیدرولوژی. انتشارات آستان قدس رضوی؛ جبع، اول، ۳۱۰ صفحه.
3. مهدودی، م. ۱۳۷۲. هیدرولوژی کاربری. جلد اول: انتشارات دانشگاه تهران، ۱۹۸ صفحه.
4. موسوی، ه. و. سیاوش‌خواه. ۱۳۶۸. تخمین دیبی حداکثر روزانه در حوزه‌های آب‌خرش فاقد آمار در استان فارس. مجموعه مقالات پنجمین کنفرانس هیدرولوژی ایران، شرکت مهندسین مشارکت مهندسین مهندسین، صفحه ۲۱۵-۲۱۶.