تعیین مدل تجربی برآورده کننده اوج لحظه‌ای چند حوزه‌ای آبخیز غرب ایران

تعمیم

چکیده

یکی از عوامل اساسی در طراحی پروازهای آبی، بودن اوج لحظه‌ای سیل است. روش‌های مختلف برای تعیین اوج لحظه‌ای سیل با دوره‌های متغیری مختلف ارائه شده است. در روش‌های سیلایی، عوامل از اصول نحوه غلظتی، آبی‌پوشی و دیده‌نمایی حوزه‌های آبی را به متغیرهای پرداخته می‌شود. این آبی‌پوشی و دیده‌نمایی حوزه‌های آبی را به متغیرهای پرداخته می‌شود. آینده طراحی سیل، سبب سهل‌تری در تصمیم‌گیری خواهد شد.

در تحقیقات مختلف، آب‌پذیری حوزه‌های آبی، انرژی و میزان جریان بسیار اهمیت دارند. کارنامه‌های مختلف در این زمینه بودند. خطرات مختلف در این زمینه بودند.

واژه‌های کلیدی: اوج لحظه‌ای سیل، تحلیل منطقه‌ای، سیلایی، حداکثر به متوسط روزانه

مقدمه

با تحلیل داده‌ها و آمار متغیرهایی که در گذشته اتفاق افتاده و انداده‌گیری شده است، می‌توان به نتایج مفیدی رسید که اگر به

1. استادان آرایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشجوی سیلای کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. کارشناس آموزش پی‌پایان‌دایی، مرکز تحقیقات منابع طبیعی و آموزش دام اصفهان
لحظاتی به بده حداکثر متوسط روزانه (پارامتر R) به خصوصیات زایشگرایی حوزه از ارتباط داده شده و روابط
حفظه‌های آبی‌قیز غرب ایران، شامل حفظه‌های گاماساب، قروسو، سمر، شکر، سزار و آبشین، با حداکثر 31 دیه آماری بوده‌اند لحظاتی و حداکثر به متوسط روزانه
انتخاب گردیده است.

مواد و روش‌ها
برای برآوری بده اوج لحظاتی در حفظه‌های آبی‌قزی فاقد آمار، روش‌های متعددی از آن استفاده شده است. برای جمع‌آوری متنوان به تخمین آماری، روش شاخص سپلی، روش روشن‌پایا سپلی، معادلات تجزیه، روش استدلاری، هیدرولوژی و احتمالی است، هیدرولوژی و احتمالی آب در وضعیت‌های گاماساب، پایه هیدرولوژی مصنوعی و روش شیپوری سازی اشاره کرد. همکام از روش‌های فوق دارای مزایا و معایبی است. روش تحقیق حاضر بدن صورت است که
میانگین و انحراف معیار نسبت به بده اوج لحظاتی به بده حداکثر متوسط روزانه (پارامتر R) به خصوصیات زایشگرایی حوزه، به روش داده می‌شود. با استفاده از خصوصیات زایشگرایی حوزه، میانگین و انحراف معیار پارامتر R محاسبه می‌شود. سپس با استفاده از میانگین و انحراف معیار بده حداکثر روزانه، می‌توان میانگین و انحراف معیار بده اوج لحظاتی را با دقت
نسبت مناسب برآورد نمود.

در این تحقیق برای حفظه‌های غرب ایران، شامل زیر
حفظه‌های گاماساب، قروسو، سمر، شکر، سزار و آبشین،
که در دو استان گاماساب و زنگنه مورد بررسی قرار داده و بده حداکثر متوسط روزانه در
یک دوره آماری 31 سال از سال‌های 1365 واقع نیاز استخراج
گردید. نسبت بده اوج لحظاتی به بده حداکثر متوسط
روزانه (پارامتر R) و میانگین و انحراف معیار بده اوج لحظاتی
و بده حداکثر متوسط روزانه در طول دوره آماری، برای شما
استفاده‌گرانه آبی‌قزی به حفظه‌های مورد تحقیق محسوسیتی گردید.

مقدار بده اوج لحظاتی به دوره‌های پازشکت 3/0، 3/0، 3/0 و
بدين صورت که میانگین و انحراف معیار نسبت به بده اوج

فاصله برای سال 1342، سابقه بدن بده اوج لحظاتی به بده
حداکثر 34 ساله یا راه حل راه حل آمریکا به
ست آورد. لایه‌ای (8) ۱۳۴۳ به استفاده از داده‌های
مربوط به بده اوج و بده حداکثر متوسط روزانه، پارامتر
سیس با استفاده از داده‌های به حداکثر روزانه، ارائه می‌باشد. با داده‌های به حداکثر روزانه، ارائه می‌باشد.

ستگان (9) بر اساس اصول هیدرودینامیک مطلق و با استفاده
از بده حداکثر متوسط روزانه و بده روز قبل و روز بعد به حداکثر
روزانه در این راه حل، چهل و یکی دایره‌ای با نسبت به
و میانگین و احتمالی آب در وضعیت‌های گاماساب، پایه هیدرولوژی مصنوعی و روش شیپوری سازی اشاره
کرد. همکام از روش‌های فوق دارای
میانگین و انحراف معیار بده اوج لحظاتی را با دقت
نسبت مناسب برآورد نمود.

در ایران، عمده آزمایشگاههای برآورده بده اوج
لحظاتی استفاده شده است. عرب خدیم (3) رابطه بین
سیلاب‌های اوج لحظاتی و حداکثر به متوسط روزانه را در
حفظه‌های آبی‌قزی شمالي مورد مطالعه نمی‌دارد. وی
سیلاب‌های اوج لحظاتی را با روش‌های فولر، لایه‌ای، ستگان
و همبستگی آماری برآورده نمود، و نتیجه‌گیری که مناسبی
روش برآورده شده اوج لحظاتی مطرح، روش همبستگی
آماری است. اسلامیان (1) در سال 1369، فرآیند روش‌های
لایه‌ای، ستگان و همبستگی برای حفظه‌های مرزی ایران
مورد بررسی قرار داده و نتیجه‌گیری که روش همبستگی آماری
و روش ستگان بر موانع کوهستانی ایران مناسب است.

با برکری (2) برای حفظه‌های آبی‌قزی فاقد آمار سد رایسبند در
اصفهان، با استفاده از خصوصیات زایشگرایی حفظه و یادداشتی
مدل‌های برای برآورده بده اوج لحظاتی به دوره‌های پازشکت
مختلف ارائه کرد:

در این تحقیق از روش رگرسیون چندگانه استفاده شده است.
تشییع مدل تجربی برآورد به هدف لحاظی جنح حوزه آب‌های غرب ایران

با چاپ گیری کردن در رابطه [۵] و [۶] در رابطه [۲] واردانس

\[\text{Var}(Q) = \text{Var}(R)[(\text{Var}(q) + E'(q)) - E'(R)] \text{Var}(q) \] \[\text{Ln}(Q) = \text{Ln}(R) + \text{Ln}(q) \]

مشخصات عمومی حوزه‌های آب‌های مورد مطالعه

حوزه‌های در چین غربی زاگرس میانی قرار داشته و به یک چهار درست آن‌ها از کوهستانی و مرتفع شکل که می‌گذارد، که در دو ناحیه شمال‌غربی حوزه، در ناحیه شمالی حوزه شمالی که می‌گذارد، حوزه در جنوب از این این از ۵۰۰ متر، کازنشینی با ارتفاع ۲۴۰۸ متر و ارتفاعات گیره با ارتفاع ۳۶۴۵ متر است. حوزه‌های مورد تحقیق عبارتند از: جنح حوزه‌های کوهستانی، قری، روده و کشیان در حوزه‌های زیر حوزه سزار در حوزه دار، و زیر حوزه آب‌یابی سزار در حوزه‌های شمالی. جدای از ۱ و ۲ مشخصات و خصوصیات فیزیوژانیکی حوزه‌های مورد مطالعه را نشان می‌دهد.

نتایج و بحث

اثاث به‌ویژه آماری مشترک، به منظور کاهش دادن تأثیر

زمانی نیاز به کنونواختی برای آماری می‌پذیرد. در نتیجه با

اثاث به‌ویژه مشترک، اثر عوامل هیدرودوومولوژیک، که از

سالی به سال دیگر تغییر می‌کند، کاهش یافته و تفاوت عوامل

جوی برای هر سال در سطح حوزه‌های مختلف، به عنوان

پارامتر تصادفی در نظر گرفته می‌شود. در این تحقیق طول دوره

روابط بین به‌ویژه لحاظی و به‌ویژه حداقل متوسط روزانه

اگر به‌ویژه لحاظی با Q و به‌ویژه حداقل روزانه با Q و تستین بین

\[Q = RQ \]

\[E(Q) = E(R)E(q) \]

\[\text{Var}(Q) = E(R^2)E(q)^2 - E(R)E(q)^2 \]

\[\text{Var}(q) = E(q^2) - E(q)^2 \]

\[\text{Var}(R) = E(R^2) - E(R)^2 \]

1. HYFA 2. STATGRAPHICS
جدول 1. حوزه‌های آبخیز و استگاه‌های هیدرومتری واقع در منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>استگاه‌های هیدرومتری</th>
<th>موقعیت جغرافیایی</th>
<th>زیروزوح</th>
<th>حوزه</th>
<th>طول عرض</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوآب - پل چهار</td>
<td>۴۷°۴۰' ۳۳و۵۸'</td>
<td>۹۰°۱۲'</td>
<td>گاماسیب</td>
<td>۴۷°۴۰' ۳۳و۵۸'</td>
</tr>
<tr>
<td>قرهسو</td>
<td>۴۴و۵۶'</td>
<td>۳۳و۵۳'</td>
<td>گاماسیب</td>
<td>۴۴و۵۶'</td>
</tr>
<tr>
<td>قربانی</td>
<td>۴۸و۳۱'</td>
<td>۳۳و۵۷’</td>
<td>قرخه</td>
<td>۴۸و۳۱'</td>
</tr>
<tr>
<td>سیروه</td>
<td>۵۶و۷’</td>
<td>۳۹و۴۳'</td>
<td>گاماسیب</td>
<td>۵۶و۷’</td>
</tr>
<tr>
<td>پل‌کرمان - آستانه - پل دختر</td>
<td>۴۳و۳۱'</td>
<td>۴۳و۳۱'</td>
<td>پل‌کرمان</td>
<td>۴۳و۳۱'</td>
</tr>
<tr>
<td>زیروزوح</td>
<td>۴۳و۹۱’</td>
<td>۴۳و۹۱’</td>
<td>پل‌کرمان</td>
<td>۴۳و۹۱’</td>
</tr>
<tr>
<td>حوزه</td>
<td>۴۶و۷’</td>
<td>۴۳و۹۱’</td>
<td>پل‌کرمان</td>
<td>۴۶و۷’</td>
</tr>
</tbody>
</table>

جدول 2. خصوصیات فیزیوگرافی زیر حوزه‌های آبخیز مورد مطالعه

<table>
<thead>
<tr>
<th>ایستگاه هیدرومتری</th>
<th>خصوصیات فیزیوگرافی</th>
<th>طول آب‌های اصلی</th>
<th>ارتفاع متوسط</th>
<th>شیب متوسط</th>
<th>طول مستطیل معادل</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوآب - پل چهار</td>
<td>۵۰۷و۰۸</td>
<td>۲۱۹/۲</td>
<td>۲۰۷/۲</td>
<td>۲۰۷/۲</td>
<td>۱۸۵/۷</td>
</tr>
<tr>
<td>قرهسو</td>
<td>۵۲و۳۰</td>
<td>۲۱۸/۵</td>
<td>۲۱۷/۵</td>
<td>۲۱۷/۵</td>
<td>۱۹۵/۵</td>
</tr>
<tr>
<td>قربانی</td>
<td>۶۲و۰۵</td>
<td>۲۵۰/۵</td>
<td>۲۵۰/۵</td>
<td>۲۵۰/۵</td>
<td>۲۱۶/۵</td>
</tr>
<tr>
<td>سیروه</td>
<td>۵۰و۵۲</td>
<td>۲۵۰/۵</td>
<td>۲۵۰/۵</td>
<td>۲۵۰/۵</td>
<td>۲۲۰/۵</td>
</tr>
<tr>
<td>پل‌کرمان - آستانه - پل دختر</td>
<td>۴۸و۵۸</td>
<td>۲۲۰/۵</td>
<td>۲۲۰/۵</td>
<td>۲۲۰/۵</td>
<td>۱۹۵/۵</td>
</tr>
<tr>
<td>حوزه</td>
<td>۴۶و۷’</td>
<td>۴۶و۷’</td>
<td>۴۶و۷’</td>
<td>۴۶و۷’</td>
<td>۴۶و۷’</td>
</tr>
</tbody>
</table>

\(1\) در مورد واحد پارامترهای مورد استفاده در جدول فرق، به جدول ضمیمه مقاله مراجعه گردد.
شکل 1. حوزه‌های آبخیز مورد مطالعه

شکل 2. موقعیت حوزه آبخیز
آماری 21 سال از سال آن 47-46 تا سال آی 68-67 انتخاب گردید. با توجه به هشته تابع تتوزیع احتمال، شامل توابع نرمال، لوگ نرمال، پیرسون نوع 1، لوگ پیرسون نوع 3، گامبل، لوگ گامبل، لوگ گامبل، مقدار بده اوج لحظهای برای روش‌های مورد تحقیق، در مورد دهای برکشنش 3، 15، 50 و 100 سال تعیین شد. سپس با میانگین و درجه‌بندی بهترین تابع تتوزیع احتمال برای بازرسی به بده اوج لحظهای در روش‌های مقدار ارزش داده شدند. روش‌های کلی و اسکوک از نظر دانگی متوسط، کای اسکوکتو و روش دانگی می‌توانند در استفاده آیین‌نامه مورد تحقیق، میانگین‌گذاری و انحراف معیار پایان تئوری و سطح R نسبت به روش اوج لحظهای به داده‌ها متوسط روزانه، با استفاده از معادله الگوسایش پایین‌تر گذاری کرده و از خصوصیات خطی بهره می‌برد. در این بحث، نسبت SE سطح تئوری مستقل با چند تناوب وارد رشته‌های کمیتی است. گرافیک شده، و با توجه به حالت‌های مختلف از قبیل پیش رو 1، پیش رو 2، پیش رو 3، رگرسیون خطی و نگریزی، دقیقه ثابت و بدون دقیقه ثابت، و با وارد و خارج کردن یک متغیر مستقل با صورت دخوآه در مدل، انتخاب گردید. در تهیه بهترین مدل برای پارامتری و انحراف معیار پایان تئوری به صورت زیر تعیین شد:

\[E(R) = \frac{1}{3} R + 0.3 \]
\[SE = 0.152 \]

\[S(R) = \frac{98}{185 R + 0.3} \]
\[SE = 0.14 \]

جدول 3. آزمون پرزندگی و توانی توزیع منتخب در حوزه‌های آبیاری غرب ایران

<table>
<thead>
<tr>
<th>آزمون پرزندگی</th>
<th>توزیع منتخب</th>
<th>خاک‌گرفتگی - اسمان‌نورد</th>
<th>کلیم‌ها</th>
<th>دوآب</th>
<th>دوآب</th>
<th>دوآب</th>
<th>دوآب</th>
<th>دوآب</th>
</tr>
</thead>
<tbody>
<tr>
<td>اول بام</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
</tr>
<tr>
<td>اول برخوردار</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
</tr>
<tr>
<td>اول بام</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
</tr>
<tr>
<td>اول برخوردار</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
<td>لگو نرمال</td>
<td>لگو کامیل</td>
</tr>
</tbody>
</table>

جدول 4. خصوصیات جریان در آب‌سنجی حوزه‌های آبیاری غرب ایران تعیین

<table>
<thead>
<tr>
<th>E(Q)</th>
<th>S(Q)</th>
<th>E(R)</th>
<th>S(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/52</td>
<td>0/49</td>
<td>0/53</td>
<td>0/56</td>
</tr>
<tr>
<td>0/56</td>
<td>0/53</td>
<td>0/50</td>
<td>0/47</td>
</tr>
<tr>
<td>0/50</td>
<td>0/47</td>
<td>0/52</td>
<td>0/55</td>
</tr>
<tr>
<td>0/47</td>
<td>0/55</td>
<td>0/52</td>
<td>0/50</td>
</tr>
</tbody>
</table>

جدول 5. پارامترهای بداء اوج لحظاتی با استفاده از مدل

<table>
<thead>
<tr>
<th>E(q)</th>
<th>S(q)</th>
<th>E(R)</th>
<th>S(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/50</td>
<td>0/47</td>
<td>0/52</td>
<td>0/55</td>
</tr>
<tr>
<td>0/55</td>
<td>0/52</td>
<td>0/50</td>
<td>0/47</td>
</tr>
<tr>
<td>0/47</td>
<td>0/55</td>
<td>0/52</td>
<td>0/50</td>
</tr>
<tr>
<td>0/50</td>
<td>0/47</td>
<td>0/52</td>
<td>0/55</td>
</tr>
</tbody>
</table>
جدول ۶: خطای متوسط در دوره‌های بازگشت مختلف

<table>
<thead>
<tr>
<th>دوره بازگشت</th>
<th>۱۰۰</th>
<th>۵۰</th>
<th>۲۵</th>
<th>۱۰</th>
<th>۵</th>
<th>۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۷</td>
<td>۱۴</td>
<td>۱۱</td>
<td>۳</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۱</td>
<td>۱۹</td>
<td>۱۱</td>
<td>۱۴</td>
<td>۱۶</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲۴</td>
<td>۱۱</td>
<td>۱۷</td>
<td>۱۱</td>
<td>۱۴</td>
<td>۱۵</td>
<td>۹</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱</td>
<td>۸</td>
<td>۶</td>
<td>۶</td>
<td>۷</td>
<td>۵</td>
</tr>
<tr>
<td>۲۳</td>
<td>۲۲</td>
<td>۲۰</td>
<td>۱۶</td>
<td>۱۵</td>
<td>۱۳</td>
<td>۴</td>
</tr>
<tr>
<td>۸</td>
<td>۱۶</td>
<td>۱۱</td>
<td>۹</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۴</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۱</td>
<td>۹</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۵</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۲</td>
<td>۱۷</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۲</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۲</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
<tr>
<td>۱۴</td>
<td>۱۲</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱۲</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۹</td>
</tr>
</tbody>
</table>

با استفاده از نتایج جدول ۶، بدین ارگ لحظه‌ای برای دوره‌های بازگشت مختلف ۱۲، ۲۰، ۲۵، ۳۰ و ۱۰۰ سال برآورد گردید.

و با بهداشت لحظه‌ای به دست آمده از آمار صاحب ساله مورد مقایسه قرار گرفت. با استفاده از رابطه زیر، خطای متوسط در بازگشت هر کدام از اینگاههای مورد مطالعه، و متوسط خطای بآیم تعداد اسپیدشته و دوره‌های بازگشت مورد نظر محاسبه گردیده‌ببه

تریب جدول ۶ و ۷

\[
e_{i} = \frac{Q_{A} - Q_{M}}{Q_{A}} \times 100
\]

که در آن:

\[d_{i} = \text{درصد خطای مدل} = e_{i}
\]

\[Q_{A} = \text{مقاورد په اوج لحظه‌های با دوره‌های بازگشت ممین، با استفاده از آمار اندیه‌گری شده}
\]

\[Q_{M} = \text{مقاورد تخمینی په اوج لحظه‌های با دوره بازگشت ممین؛ با استفاده از مدل}
\]

\[E = \frac{1}{n} \sum_{i=1}^{n} |e_{i}|
\]

که در آن:

\[n = \text{قد طولی درصد خطا}
\]

\[E_{n} = \text{تعداد اسپیدشته آب سنگی}
\]

نتیجه‌گیری و پیشنهادها

با توجه به مدل به دست آمده (رباطه ۱۰)، ملاحظه می‌شود که بین میانگین پارامتر R و نسبت برجستگی، قطع دارنده هم سطح، نسبت دبیرهی و ضریب گاروینوس حوزه رابطه مستقیم وجود دارد. بنیابا افزایش مقدار هر سیکم از پارامترهای فوق، میانگین پارامتر برجسته بيشترین اثر را در مدل دارد. دریل آن ممکن است که عملکرد مخازن کوچک در افزایش ایین پارامتر در حوزه آبخیز باشد، که باعث نرخ تور نیز می‌شود که بهدیگرفت لحظه‌ای در نهایت بسی افزایش میانگین پارامتر R می‌گردد (۵ و ۶). نسبت برجستگی با میزان فرسایش حوزه آبخیز رابطه

جدول ۷: خطای متوسط مدل برای دوره‌های بازگشت مختلف

<table>
<thead>
<tr>
<th>دوره بازگشت (سال)</th>
<th>خطا متوسط مدل (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰</td>
<td>۲</td>
</tr>
<tr>
<td>۱۴۰</td>
<td>۵</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۷۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۹</td>
<td>۳۰</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۴۰</td>
</tr>
</tbody>
</table>
تمین مدل تجربی برآورد به اوج لحظه‌ای چند حوزه آبخیز غرب ایران

بحث درست است. برای خطا‌های مربوط به حوزه آبخیز ممکن است میزان خطا بخصوصی در حوزه‌های بزرگ کارتستی در حوزه‌های کمتر کارستی در حوزه‌های بزرگ کارتستی در حوزه‌های کمتر کارستی در حوزه‌های کمتر کارستی

قطار داریم هم سطح، نسبت دایره‌ای و ضریب گازولوئوس، هر گذاری به نحوی با شکل حوزه‌ای ارتباط دارد. هر چه حوزه‌کشی‌های باند طیف‌های دیده بوده‌اند، در مرتبه‌های بزرگتر و قطار داریم هم سطح رابطه سطحی مستقیم، و با نسبت طولی حوزه‌ای عکس دارد. برای دلایل ذکر شده در مورد نسبت برخی‌گونه و میانگین باند طیف‌های آبخیز بین 1/47 تا 1/16 می‌باشد.

یک عامل مهم نتیجه‌گیری تحقیق حاضر این است که آمار ایستگاه‌های آب‌سنگی دارای اثر (ایستگاه درجه 2) می‌توان به‌دست آوردن را با دقت نسبتاً خوبی برآورد کرد. بنابراین ایستگاه‌های آب‌سنگی درجه 2 را به عنوان ایستگاه‌های آب‌سنگی مکانیزم‌های دستگاه‌های تغییر می‌کند. این پارامترها مؤثر در آن است که آسان قابل اندازه‌گیری و محاسبه بوده و حداکثر خطای اندازه‌گیری را دارند.

سیستم‌های می‌گردد که با انتخاب تعداد ایستگاه‌های هیدرومتری بیشتر و نیز شرایط اقلیمی مختلف، کارایی روش فوق به طور جامعتری مطالعه شود. همچنین، توصیه می‌گردد تا با انجام تحقیق مشابه در حوزه‌های غیر کارستی، و مقایسه نتایج حاصله با حوزه‌های کارستی، جامعیت روش در سیستم‌های مختلف زمین‌شناسی بیشتر گردد.

منابع مورد استفاده

1. اسلامزی، س. 1369. کاربرد دلهاهای تجربی و احتمالاتی در برآوردهای جریان سطحی و دبی‌های اوج سیالات برای حوزه‌های مرکزی ایران. پایان نامه کارشناسی ارشد دانشکده کشاورزی، دانشگاه تربیت مدرس.

2. نوبی، ر. 1372. تعیین دیب ماکزیمم لحظه‌ای در حوزه‌های آبخیز خاکی آب‌سنگ مدار سد زایین‌رود. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

3. عرب خریز، م. 1373. بررسی رابطه سیالاتی حداکثر لحظه‌ای و حداکثر متوسط روزانه. مجله آب، شماره 10، انتشارات وزارت نیرو، ص 132-131.

4. عرب خریز، م. 1374. برآورد سیالاتی طرح با استفاده از ویژگی‌های حوزه آبخیز. مجموعه مقالات کنفرانس محاسبات مهندسی، ص 137-138.

جدول ضمیمه: اصطلاحات و معادلات به کار رفته در تحقیق

<table>
<thead>
<tr>
<th>معادله</th>
<th>شرح</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = \frac{A}{L}$</td>
<td>ضریب شکل</td>
<td>F</td>
</tr>
<tr>
<td>$Gr = \frac{\sqrt{\frac{A}{L}}}{\sqrt{A}}$</td>
<td>ضریب گرافیروس</td>
<td>Gr</td>
</tr>
<tr>
<td>$B = \frac{Gr\sqrt{A + 3.2GrA - 1/3\sqrt{A} - 1/12}}{\sqrt{\pi}}$</td>
<td>مستقل معادل (کیلومتر)</td>
<td>B</td>
</tr>
<tr>
<td>$Di = \sqrt{\frac{A}{\pi}}, \ (\pi = 3/14)$</td>
<td>قطر دایره معادل حوزه (کیلومتر)</td>
<td>Di</td>
</tr>
<tr>
<td>$Lr = \frac{Di}{Ls}$</td>
<td>نسبت طولی</td>
<td>Lr</td>
</tr>
<tr>
<td>$Cr = \frac{A}{Ac}$</td>
<td>نسبت دایره‌ای</td>
<td>Cr</td>
</tr>
<tr>
<td>Ac</td>
<td>مساحت دایره هم محيط با حوزه (کیلومتر)</td>
<td>Ac</td>
</tr>
<tr>
<td>Ls</td>
<td>طول آب‌های اصلی (کیلومتر)</td>
<td>Ls</td>
</tr>
<tr>
<td>S</td>
<td>شیب متوسط (درصد) - میانگین شیب در دو چهت افقی و عمودی</td>
<td>S</td>
</tr>
<tr>
<td>H_{Max}</td>
<td>ارتفاع حداکثر حوزه (متر)</td>
<td>H_{Max}</td>
</tr>
<tr>
<td>H_{Min}</td>
<td>اختلاف ارتفاع حوزه (متر)</td>
<td>H_{Min}</td>
</tr>
<tr>
<td>$H = H_{Max} - H_{Min}$</td>
<td>اختلاف ارتفاع حوزه (متر)</td>
<td>H</td>
</tr>
<tr>
<td>$Rr = \frac{H}{10\times10}$</td>
<td>نسبت برستگی</td>
<td>Rr</td>
</tr>
<tr>
<td>$T_{C} = \frac{L_{R}^{1/15}}{30.8 \times H^{0.375}}$</td>
<td>زمان تمرکز حوزه (ساعت) - رابطه کریپچی</td>
<td>T_{C}</td>
</tr>
</tbody>
</table>