چکیده
یکی از عوامل اساسی در طراحی پروتزهای آنی، به دستی اجرا شده باید ارائه دهنده مدل های جزئی است. روش های مختلفی برای تخمین به دست آوردن مدل های سیل است. در روش‌های موجود تقاضای مدل سیل، عملی از خصوصیات فیزیکی، آنالیز و تحلیل، جزئیات حوزه‌های آبخیز به عنوان تغییرات نسبی استفاده می‌شود. هدف از این تحقیق، ارائه یک مدل پژوهشی به دست آوردن مدل‌های بایوپلیمری با توجه به حوزه‌های آبخیز و غرب آفریقا است. این مدل باید به دست آورده شود. آمار، به حداکثری میزان روزهای صورت گرفته در برجستگی و نسبت به حداکثر میزان روزهای صورت گرفته در برجستگی و نسبت به حداکثر حوزه‌های آبخیز استخراج گردید. نسبت به دستی اجرا شده باید حداکثر میزان روزهای صورت گرفته در برجستگی و نسبت به حداکثر حوزه‌های آبخیز استخراج گردید. برجستگی و نسبت به حداکثر حوزه‌های آبخیز استخراج گردید. نسبت به دستی اجرا شده باید حداکثر میزان روزهای صورت گرفته در برجستگی و نسبت به حداکثر حوزه‌های آبخیز استخراج گردید.
لحظه‌ای به‌بی‌هدا حداکثر متوسط رانندگی (پارامتر R)، به خصوصیات فیزیولوژی‌های جزئی و ارتباط متقابلی داشته و روابط موجود در این ارائه به‌منظور طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دوم می‌تواند به‌منظور ارائه طبقه‌بندی سطح مصرف، ضریب پرتاب، درجه و ابعاد، در دو مدل دو
تمیین مدل تجربی پراورود به اوج لحظه‌ای جنح حوژه‌ای آبخیز غرب ایران

مدفوع Q به دست می‌آید:

\[\text{Var}(Q) = \text{Var}(R) \left[(\text{Var}(q) + E^2(q)) - E^2(R) \right] \text{Var}(q) \]

در صورتی که روش گوناگونی به کار رود، رابطه [1] را می‌توان به صورت زیر نوشت:

\[\ln Q = \ln R + \ln q \]

\[\text{Var}(\ln Q) = \text{Var}(\ln R) + \text{Var}(\ln q) + 2\text{Cov}(\ln R, \ln q) \]

\[\frac{Q}{Q_0} \]

مشخصات عمومی حوژه‌های آبخیز مورد مطالعه

حوژه‌کره در چین خوردنی زاگرس میانی قرار داشته و به‌خوبی ذکر، از وسعت آن ناواحی گوناگونی و مرتفع تشکیل می‌شوند. قهوه‌هایی با ارتفاع 3800 متر، در منتهی به شمال خاوری حوزه قرار دارند. دشت‌های آبیری در نواحی شمالی حوزه‌های قهوه‌ای گم‌انداز حوزه‌های شمالي حوزه‌های قهوه‌ای باشند. حوژه‌های با ارتفاع بالا می‌توانند از ناحیه‌ها همچون ارتفاعات آن استان‌های جنوب از ارتفاع ۵۰۰ متر، کازاخستان با ارتفاع ۴۰۰ متر و ارتفاعات گرم با ارتفاع ۳۴۵ متر است. حوژه‌های مورد تحقیق عبارتند از زیر حوژه‌های گاماسیاب، فرملو، سیمنه و ناهنجاری‌ها در حوژه‌کره، زیر حوژه‌های در حوزه‌های و زیر حوژه آبی در حوژه‌کره‌های (شکل‌های ۱ و ۲). جدایا ۱ و ۲ مشخصات و خصوصیات فیزیوگرافی حوزه‌های مورد مطالعه را نشان می‌دهند.

نتایج و بحث

احتمال دوره‌های آماری مشترک، به‌منظور کاهش دادن تأثیر زمانی غیرکنواخت شرایط آماری می‌پذیرد. در حالتی که انتخاب دوره مشترک، اثر عوامل هدیه‌ورودوزیک، که از سالی به سال دیگر طیف می‌کند، کاهش یافته تفاوت عوامل جوی برای هر سال مساحت حوژه‌های مختلف، به عنوان پارامتر تصادفی در نظر گرفته می‌شود. در این تحقیق طول دوره آزمایش‌ها در اوج لحظه‌ای آبخیز غرب ایران انجام شد.

کامیوتو هیفاا با پراورود گردش. آنها با آزمون‌های یازندگی (کلموگرف سیستورف، کای اسکنتر و خوشه توزین عامل اکسنتی نسبت به حوژه‌های میانی قرار دارند. دشت‌های آبیری در نواحی شمالی حوزه‌های قهوه‌ای باشند. حوژه‌های با ارتفاع بالا می‌توانند از ناحیه‌ها همچون ارتفاعات آن استان‌های جنوب از ارتفاع ۵۰۰ متر، کازاخستان با ارتفاع ۴۰۰ متر و ارتفاعات گرم با ارتفاع ۳۴۵ متر است. حوژه‌های مورد تحقیق عبارتند از زیر حوژه‌های گاماسیاب، فرملو، سیمنه و

روابط بین دو آوج لحظه‌ای و به اوج حداقل متوسط روزانه

اگر به دو معنی‌داره روابط بین Q و به دو حداقل در سه‌وجهی با Q و Q یا انتخاب به دو R رابطه زیر را نوشته:

\[Q = Rq \]

\[\text{E}(q) = \text{E}(R) \cdot \text{E}(Q) \]

\[\text{Var}(Q) = \text{E}(R) \cdot \text{Var}(Q) \]

1. HYFA
2. STATGRAPHICS
جدول 1. حوزه‌های آبخیز و استگاه‌های هیدرومتری واقع در منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>استگاه‌های هیدرومتری</th>
<th>موقعیت جغرافیایی</th>
<th>طول عرض</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوآب - پل جهر</td>
<td>47°54′</td>
<td>33°50′</td>
</tr>
<tr>
<td>کاماسیاب</td>
<td>49°12′</td>
<td>33°57′</td>
</tr>
<tr>
<td>قروسو</td>
<td>44°22′</td>
<td>34°41′</td>
</tr>
<tr>
<td>قروسو</td>
<td>44°22′</td>
<td>34°41′</td>
</tr>
<tr>
<td>هولیان - تنه سازین</td>
<td>46°7′</td>
<td>33°26′</td>
</tr>
<tr>
<td>سیمرغ</td>
<td>48°25′</td>
<td>33°12′</td>
</tr>
<tr>
<td>پلکشکان - آقیمیر - پل دخر</td>
<td>48°58′</td>
<td>33°27′</td>
</tr>
<tr>
<td>کشکان</td>
<td>48°58′</td>
<td>33°27′</td>
</tr>
<tr>
<td>سپیدشت</td>
<td>48°21′</td>
<td>33°26′</td>
</tr>
<tr>
<td>سزار</td>
<td>48°21′</td>
<td>33°26′</td>
</tr>
<tr>
<td>آبشینه</td>
<td>48°32′</td>
<td>33°49′</td>
</tr>
<tr>
<td>قرهچای آبشینه</td>
<td>48°32′</td>
<td>33°49′</td>
</tr>
</tbody>
</table>

جدول 2. خصوصیات فیزیوگرافی زیر حوزه‌های آبخیز مورد مطالعه

<table>
<thead>
<tr>
<th>استگاه هیدرومتری</th>
<th>ویژگی‌های فیزیوگرافی</th>
<th>طول عرض</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوآب - پل جهر</td>
<td>برگر</td>
<td>47°54′</td>
<td>33°50′</td>
</tr>
<tr>
<td>کاماسیاب</td>
<td>فیزیوگرافی</td>
<td>49°12′</td>
<td>33°57′</td>
</tr>
<tr>
<td>قروسو</td>
<td>مابت</td>
<td>44°22′</td>
<td>34°41′</td>
</tr>
<tr>
<td>هولیان - تنه سازین</td>
<td>طول آب‌های اصلی</td>
<td>46°7′</td>
<td>33°26′</td>
</tr>
<tr>
<td>سیمرغ</td>
<td>ارتفاع متوسط</td>
<td>48°25′</td>
<td>33°12′</td>
</tr>
<tr>
<td>پلکشکان - آقیمیر - پل دخر</td>
<td>شبیه متوسط</td>
<td>48°58′</td>
<td>33°27′</td>
</tr>
<tr>
<td>کشکان</td>
<td>طول مسطح معادل</td>
<td>48°58′</td>
<td>33°27′</td>
</tr>
<tr>
<td>سپیدشت</td>
<td>نسبت گردنی</td>
<td>48°21′</td>
<td>33°26′</td>
</tr>
<tr>
<td>سزار</td>
<td>نسبت طولی</td>
<td>48°21′</td>
<td>33°26′</td>
</tr>
<tr>
<td>آبشینه</td>
<td>ضریب گرافیوس</td>
<td>48°32′</td>
<td>33°49′</td>
</tr>
<tr>
<td>قرهچای آبشینه</td>
<td>تراکم شبکه</td>
<td>48°32′</td>
<td>33°49′</td>
</tr>
</tbody>
</table>

1 در مورد واحد پرامترهای مورد استفاده در جدول فرق، به جدول ضریح مقاله مرجع گردید.
تغییر مدل تجربی برآورد به اوج لحظه‌ای بند جنگل‌های آبخیز غرب ایران

شکل 1. حوزه‌های آبخیز مورد مطالعه

شکل 2. موقعیت حوزه آبخیزه
آماری ۲۱ سال از سال آی ۴۷-۴۶-۱۳۶۴ تا سال آی ۴۸-۴۸-۱۳۶۵ ۱۶۴ ۱۷۳

انتخاب آگراف. بد توجه به هشتم تابع توزیع احتمال، شالا
tوای تیم گریزه، لوگ نمای، پریسون نوع ۳، لوگ گیپر، نوع ۲، به امکان

گامیل، لوگ گامیل، گامال لوگ گامال، مقدار به اوج لحظه‌ای

برای رودخانه‌های مورد تحقیق در دوره‌های بارانگشت، د.۱۱، ۱۱ ۱۰ ۱۵ ۵۰ و ۱۰۰. سال تعین شد. سپس به میزان پراکنش

پهلوان تابع توزیع احتمال برای بارانگشت به ۱۵۰۰ ای بود و اج

لحظه‌های از روش‌های متدیال آزمون پراکنش، شالا

روش‌های کلیوگراف‌اسپیکتیکی. کای اسکوتو و روش حداکثر

مربعات استفاده گردید (جدول ۳). انتخاب توزیع مناسب در

ستون آخر جدول ۳ براساس غالبیت و یا سادگی توزیع

مختلف در سه روش فوکی و میانه.

در استفاده آمیش انیسی مورد تحقیق، میانگین و انحراف

میانگین پراکشری (جدول ۲) میزان پراکشری R(جدول ۲)

میانگین پراکشری به اوج لحظه‌ای به به حداکثر متوسط

روزانه‌ها، با استفاده از میزان رگرسیون خطی چند متغیره، به

خصوصیات فیزیوگرافی و کیماوقیلمتری حوزه آبی‌رخ بارانگشت

شده مقداری متفاوت به صورت تناسب وار ارائه کامپیوتری

استان‌های گرافیکی شده، و با توجه به حالت‌های متفاوت از قابل

پیش‌زنی پسروی و به‌پاسار، رگرسیون خطی و لگاریتمی،

مقدار نتایج بدون مقدار ثابت، و با واریانو و پهدان بارانگشت

متنی استفاده به صورت دلخواه در مدل آی دمکت. این بارانگشت.

تنهایت بی‌فهرست مدل دریای بارانگشت میانگین و انحراف میانگین پراکشری به صورت زیر تعیین شد:

\[
E(R) = \frac{\gamma}{4} + 4\frac{\delta}{R^4} + \frac{\gamma}{8} \frac{\delta}{R^4} + \frac{\gamma}{6} \frac{\delta}{R^4} + \frac{\gamma}{4} \frac{\delta}{R^4} \\
\]

[۱۱]

\[
E = \frac{\gamma}{15} \delta \\
\]

[۱۲]

\[
S(R) = \frac{\gamma}{8} \frac{\delta}{R^4} + 4 \frac{\delta}{R^4} \frac{\gamma}{116} \delta + \frac{\gamma}{94} \delta \frac{\delta}{R^4} + \frac{\gamma}{94} \delta \frac{\delta}{R^4} \\
\]

[۱۱]

\[
E = 0 \times 1/4 \\
\]

[۱۲]

جدول 3. آزمون برازندگی و توابع توزیع منتخب در حوزه‌های آب‌پزشی مورد مطالعه

| کلمه‌گراف - اسم‌ینون | کای اسکوکر | دوآب | دوآب پرگ | پرگ کهنه | کهنه فریاسان | فریاسان چو | چو هولتان | هولتان چی | چی سیدشنست | سیدشنست سد آبیشه | آبیشه
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>اول گیلان - لرگ نرمال</td>
<td>نرگ گیلان - لرگ نرمال</td>
</tr>
<tr>
<td>اول گیلان - لرگ نرمال</td>
<td>نرگ گیلان - لرگ نرمال</td>
</tr>
<tr>
<td>اول گیلان - لرگ نرمال</td>
<td>نرگ گیلان - لرگ نرمال</td>
</tr>
</tbody>
</table>

جدول 4. خصوصیات جریان در استگاه‌های آب‌پزشی حوزه‌های آب‌پزشی مورد تحقیق

<table>
<thead>
<tr>
<th>S(R)</th>
<th>E(R)</th>
<th>S(Q)</th>
<th>E(Q)</th>
<th>S(Q)</th>
<th>E(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/12</td>
<td>1/14</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
<td>80/9</td>
</tr>
<tr>
<td>0/02</td>
<td>1/02</td>
<td>28/0</td>
<td>19/3</td>
<td>72/5</td>
<td>28/9</td>
</tr>
<tr>
<td>0/09</td>
<td>1/05</td>
<td>21/4</td>
<td>24/5</td>
<td>21/4</td>
<td>159/3</td>
</tr>
<tr>
<td>0/12</td>
<td>1/18</td>
<td>96/4</td>
<td>12/5</td>
<td>31/2</td>
<td>59/3</td>
</tr>
<tr>
<td>0/29</td>
<td>1/27</td>
<td>17/4</td>
<td>31/5</td>
<td>32/4</td>
<td>40/1</td>
</tr>
<tr>
<td>0/27</td>
<td>1/32</td>
<td>12/0</td>
<td>12/4</td>
<td>51/2</td>
<td>38/0</td>
</tr>
<tr>
<td>0/33</td>
<td>1/35</td>
<td>17/4</td>
<td>31/5</td>
<td>32/4</td>
<td>40/1</td>
</tr>
<tr>
<td>0/41</td>
<td>1/51</td>
<td>20/1</td>
<td>22/5</td>
<td>23/2</td>
<td>37/2</td>
</tr>
</tbody>
</table>

جدول 5. پارامترهای پایه‌های لحاظی با استفاده از مدل

<table>
<thead>
<tr>
<th>E(Q)</th>
<th>S(Q)</th>
<th>E(R)</th>
<th>E(Q)</th>
<th>S(Q)</th>
<th>S(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/1</td>
<td>68/1</td>
<td>1/14</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>22/2</td>
<td>59/3</td>
<td>1/14</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>23/3</td>
<td>50/2</td>
<td>1/15</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>18/6</td>
<td>11/3</td>
<td>1/12</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>19/0</td>
<td>11/3</td>
<td>1/12</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>16/6</td>
<td>11/3</td>
<td>1/12</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>17/6</td>
<td>11/3</td>
<td>1/12</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
<tr>
<td>18/6</td>
<td>11/3</td>
<td>1/12</td>
<td>59/7</td>
<td>75/6</td>
<td>28/4</td>
</tr>
</tbody>
</table>
جدول ۶. خطای مدل در دوره‌های پازگشت مختلف

<table>
<thead>
<tr>
<th>دوره پازگشت</th>
<th>۵۰</th>
<th>۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱</td>
<td>۱۹</td>
<td>۱۷</td>
</tr>
<tr>
<td>۲۱</td>
<td>۲۰</td>
<td>١۶</td>
</tr>
<tr>
<td>۲۴</td>
<td>۲۱</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۴</td>
<td>۲۱</td>
<td>۰۶</td>
</tr>
<tr>
<td>۳۴</td>
<td>۲۲</td>
<td>۰۳</td>
</tr>
<tr>
<td>۲۷</td>
<td>۲۰</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱۲</td>
<td>۰۸</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۱</td>
<td>۷۳</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱۲</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۲</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱۲</td>
<td>۲۳</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۲</td>
<td>۰۴</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۰</td>
<td>۰۸</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۸</td>
<td>۰۵</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۰</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

با استفاده از تابع جدول ۳، بدی ارگ لحظه‌ای برای دوره‌های پازگشت مختلف (۲۴، ۷۵، ۱۰۰۵ و ۱۵۰ سال برآورد گردید.

و با بدی ارگ لحظه‌ای به دست آمده از آمار ۲۱ ساله مورد مقایسه قرار گرفت. با استفاده از رابطه زیر، خطای مدل یا در کدام از استعفاهای مورد مطالعه، و متوسط خطای نمای نظیر محسوب می‌گردد:

\[
\text{ei} = \frac{QA - QM}{QA} \times 100
\]

که در آن:

\[\text{ei} = \frac{\text{مدل}}{\text{مدل}} - \text{مدل}

با استفاده از آمار اندازه‌گیری شده ارگ لحظه‌ای برای دوره پازگشت معین؛ با استفاده از تخمینی بدی ارگ لحظه‌ای برای دوره پازگشت معین:

\[\text{مدل} = \text{مدل}

درصد متوسط خطای مدل از تعادل زیر محاسبه می‌گردد:

\[E = \frac{1}{n} \sum_{i=1}^{n} |ei| \]

که در آن:

\[\text{قدر مطلق درصد خطای}

دانشگاه آب و فاضلاب

۸
بازگشت این است. در هم چنین پرودومتی به شکل دوگانه از آب‌گذاری شرکتی، و نیز شرایط محاسبه‌ی خوبی بر اثر ضریب
فوق به درجه و ۱.۵ مطابق شده است. همچنین، توصیه می‌گردد گردد
تا انجام تحقیق مشابه در حوزه‌های غیر کارانتی، و مقایسه
نتایج هم‌الزمان با حوزه‌های کارمندی، جامعیت روی رشدی
مختلف زمین‌شناسی شرکتی.

مطالعه ۶۰٪ از روزانه ۱۰ ساعت (با نیازمندی، دو نیازمندی دو نیازمندی دو
باید در یک ساعت) دوام داشته باشد.

۱. اصل‌السازی، سال ۱۳۶۹. کتاب‌های بارانی تجربی و احتیاطی در بارانی جریان سطحی و دریایی اوج سیلاب برای حوزه‌های مرکزی
ایران. پایان نامه کارشناسی ارشد دانشکده کشاورزی، دانشگاه تربیت مدرس.
۲. بارشی، ر. ۱۳۸۷. رویکرد مکاشفی اوج برای حوزه‌های بارشی خاک‌آبی. فاز آموزش دانشگاه کشاورزی، دانشکده
کشاورزی، دانشگاه صنعتی اصفهان.
۳. عرب‌خانه، م. ۱۳۸۷. بررسی رابطه سیلاب‌های بنفشه و حداکثر متوسط روزانه. مجله آب، شماره ۱۰، انتشارات
و زیارت، ص ۱۳۸۷ - ۱۳۸۸.
۴. عرب‌خانه، م. ۱۳۸۷. در سیلاب‌های خاک‌آبی در اوج برای افزایش از دری اوج بارشی حوزه آب‌دانشگاهی موسوم به
منابع مورد استفاده

جدول ضمیمه اصطلاحات و معادلات به کار رفته در تحقیق

<table>
<thead>
<tr>
<th>معادله</th>
<th>شرح</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>سطح حوزه آبخزی (کیلومتر مربع)</td>
<td>A</td>
</tr>
<tr>
<td>-</td>
<td>محیط حوزه آبخزی (کیلومتر)</td>
<td>P</td>
</tr>
<tr>
<td>$F = \frac{A}{L^2}$</td>
<td>ضریب شکل</td>
<td>F</td>
</tr>
<tr>
<td>-</td>
<td>طول حوزه (کیلومتر)</td>
<td>L</td>
</tr>
<tr>
<td>$Gr = \frac{\sqrt{\frac{\gamma A P}{\sqrt{A}}}}{A}$</td>
<td>ضریب گرافیکوس</td>
<td>Gr</td>
</tr>
<tr>
<td>$B = \frac{Gr}{\sqrt{A}} \pm \sqrt{GrA - \frac{1}{25A}}$</td>
<td>مستطیل معادل (کیلومتر)</td>
<td>B</td>
</tr>
<tr>
<td>$Di = \frac{\sqrt{A}}{\pi}, \left(\pi = \frac{3}{14}\right)$</td>
<td>قطر دایره معادل حوزه (کیلومتر)</td>
<td>Di</td>
</tr>
<tr>
<td>$Lr = \frac{Di}{Ls}$</td>
<td>نسبت طولی</td>
<td>Lr</td>
</tr>
<tr>
<td>$Cr = \frac{A}{Ac}$</td>
<td>نسبت دایرهای</td>
<td>Cr</td>
</tr>
<tr>
<td>-</td>
<td>مساحت دایره هم محیط با حوزه (کیلومتر)</td>
<td>Ac</td>
</tr>
<tr>
<td>-</td>
<td>طول آب‌های اصلی (کیلومتر)</td>
<td>Ls</td>
</tr>
<tr>
<td>-</td>
<td>شیب متوسط (درصد) - میانگین شیب در دو جهت افکی و عمودی</td>
<td>S</td>
</tr>
<tr>
<td>-</td>
<td>ارتفاع حداکثر حوزه (متر)</td>
<td>HMax</td>
</tr>
<tr>
<td>-</td>
<td>ارتفاع حداکثر حوزه (متر)</td>
<td>HMin</td>
</tr>
<tr>
<td>$H = HMax - HMin$</td>
<td>اختلاف ارتفاع حوزه (متر)</td>
<td>H</td>
</tr>
<tr>
<td>$Rr = \frac{H}{100\times P}$</td>
<td>نسبت پرستگی</td>
<td>Rr</td>
</tr>
<tr>
<td>$Tc = \frac{Lr^{1/15}}{30\times H^{2/383}}$</td>
<td>زمان تمرکز حوزه (ساعت) - رابطه کریپچ</td>
<td>Tc</td>
</tr>
</tbody>
</table>