تعیین مدل تجربی برآوردهای اوج لحظه‌ای چند حوزه‌ای آبخیز غرب ایران

جعفری

چکیده

یکی از عوامل اساسی در طراحی پروازه‌های آبی، به‌هیج لحظه‌ای سیل است. روش‌های مختلفی برای تعیین به‌هیج لحظه‌ای سیل با دو‌رده‌ای بازگشت مختلف ارائه شده است. در روش‌های مختلفی لحظه‌ای سیل، عموماً از ورودی‌های خروشی و هیدرولوژیک حوزه‌های آب‌انبار به‌منظور تعیین مدل‌های پراکناده سیل استفاده می‌شود. هدف از این تحقیق، ارائه یک مدل برآورد به‌هیج لحظه‌ای با دو‌رده‌ای بازگشت مورد نظر در حوزه‌های آب‌انبار غرب ایران، شامل زیر دو حوزه‌های فرسوس، گنج، کشک، سیرک، نیروگاه‌های به‌هیج لحظه‌ای آمره سیل مخصوص و بازگشت و روزه‌GO.

آمره به اوج لحظه‌ای و به‌هیج متوسط روزه‌های در یک دورهٔ آماری 31 سال، از سال‌های 1371 تا 1372 تا 1374 پاسخ آب ایستگاه حوزه‌های آب‌انبار استخراج گردید. نسبت به اوج لحظه‌ای به‌هیج متوسط روزه (بارامتر R)، سهمیگان و انحراف معیار به‌نماینده نسبت در طول دوره‌های آماری برای ایستگاه‌های میدیرودی، و خروشی‌های فیزیکی حوزه‌های شامل ساحل، طول آب‌های اصلی، ارتقاء متوسط، شبکه منطقه‌ای، نسبت کردنی لحظه‌ای، نسبت‌های طول، ضریب گرافیوئیتوکر، تراکم شبکه، زمان تمرکز، نسبت برچسبگیری و نسبت دیابره معمول مشابه گردید. با اینکه رگرسیون‌های خطی بین نظیره‌های فیزیکی و معیارین و انحراف معیار بازگشت R معادلات مدل واقعات محاسباتی را جامع و انجمن‌های بازگشت و روزه به دست آمده. ممکن است تحقیق حرارت این است. که از امکان ایستگاه‌های آب ایستگاه‌های آب (ایستگاه‌های درجه 2)، درون با دقت‌های کمتری بتوان با دقت، به‌هیج لحظه‌ای را با دو‌رده‌ای بازگشت مختلف برآورد نمود.

واژه‌های کلیدی: به‌هیج لحظه‌ای سیل، تحلیل منطقه‌ای پراکناده سیل، حداکثر به‌هیج متوسط روزه‌انگ

مقدمه

با تحلیل داده‌ها و امکان معرفی‌های که در گذشته اتفاق‌های افتاده و

یک جمع‌بندی شده است که توانه، به تیپ میدی رشد، که اگر به

1. استادان آبیاری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. دانشجوی سابق کارشناسی ارشد آبیاری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
3. دانشجوی سابق کارشناسی ارشد یپاساندبای، مرکز تحقیقات منابع طبیعی و امروز دام اصفهان
لحنظهای به به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل قرارگاه سیل به‌دست آمده است. منطقه‌های مورد مطالعه، حوزه‌های آبخز غرب ایران، شامل زیر حوزه‌های کامپاسای، قرمو، سیمرور، کشکان، سزار و آبیشته، با حداکثر 21 سال روزنامه آماده بودن اوج لحظه‌ای و حداکثر بده مبتنی روزنامه

انتحاب گردیده است.

مواد و روش‌ها

برای برآورده-

برای اینکه اوج لحظه‌ای در حوزه‌های آبخزی قابل سنجش است، برای اینکه به‌دش حداکثر مبتنی روزنامه (پارامتر R)، به‌خصوصیات ویژگی‌گذاری‌های ارتباط داده رایانش و روابط متقابل C
تعیین مدل تجربی برآورد به اوج لحظه‌ای جنگ حوزه‌ای آبخیر غرب ایران

100 سال از روش‌های احتمالات با استفاده از برنامه کامپیوتری هاانا پیش خورده‌ای برای پژوهشگری (کل‌مگرافر اسپرمنوف که استقرار روش دردسر مربوطات، از میان 8 تابع توسعه احتمال نمای، لغت نشان، پرپسون نوع 3، لغت پیپسون نوع 3 کامپل، لغت کامپل، گاما و لغت گاما بهترین تابع توسعه برای هر استفاده آسان‌سنجی انتخاب گردید.

مشخصات عمومی حوزه‌های آبخیر مورد مطالعه

پروپسون دخیل برای تغییر دستگاه سیستم‌های مسقی، حوزه‌های آبخیر و میانگین و اثرات محیطی پارامتر R ایجاد شد. در پایان، میانگین پارامترهای تغییراتی و نشانه‌های سیستم‌های دمایی و اثرات میانگین P مؤثر باشد. میانگین و در مدل وارد گردید. این مدل برای حساب حوزه‌های مشابه از لحاظ آقلایی قابل استفاده می‌باشد.

روابط بهینه لحظه‌ای و به‌دم حداکثر متوسط روزانه

اگر به‌دم لحظه‌ای با Q و به‌دم حداکثر روزانه با Q تنش داده شود، می‌توان روابط زیر را نوشته:

\[Q = Rq \]

aN اگر متوسط ماهی‌های بالا باشد می‌توان E(Q) و E(R) E(Q) نوشته:

\[E(Q) = E(R)E(q) \]

و این باعث می‌شود توان E(Q) و E(R) E(Q) معیار است با:

\[Var(Q) = E(Q^2) - E(Q) \]

\[Var(q) = E(q^2) - E(q) \]

\[Var(R) = E(R^2)E(q^2) - E(R)E(q) \]

1. HYFA 2. STATGRAPHICS
جدول 1: حویله‌های آبیز و استگاه‌های هیدرومتری واقع در منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>استگاه‌های هیدرومتری</th>
<th>جمعیت جغرافیایی</th>
<th>زیروحویزه</th>
<th>پایگاه</th>
<th>طول عرض</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوآب - پل چهر</td>
<td>گاماسیاب</td>
<td>۴۷.۶۴</td>
<td>۴۹.۰۱</td>
<td>۲۴.۵۷</td>
</tr>
<tr>
<td>قروسو</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>قروسو</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>سیمه</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>کشاک</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>دز</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>سیچدشت</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>سیچدشت</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>آبیشته</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>آبیشته</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
<tr>
<td>قروچای</td>
<td>۴۷.۶۲</td>
<td>۴۹.۲۳</td>
<td>۲۴.۸۵</td>
<td>۳۳.۷۴</td>
</tr>
</tbody>
</table>

جدول 2: خصوصیات گیاه‌پیازی زیر حویله‌های آبیز مورد مطالعه

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>دوآب - پایگاه</th>
<th>قروسو</th>
<th>کشاک</th>
<th>دز</th>
<th>سیچدشت</th>
<th>آبیشته</th>
<th>قروچای</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول آبیزه اصلی</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
</tr>
<tr>
<td>گیاهی</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
</tr>
<tr>
<td>طول مشتهر میدان</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
<td>۴۷.۶۲</td>
</tr>
</tbody>
</table>

1. در مورد واحد پارامترهای مورد استفاده در جدول فرق، به جدول ضمیمه مقاله مراجعه گردد.
شکل ۱. حوزه‌های آبخیز مورد مطالعه

شکل ۲. موقعیت حوزه آبخیز
آماری 21 سال از سال آی 47-44 تا سال آی 46-48 انتخاب گردید. جزئیات به هشتم تابع توزیع احتمال، شامل توانایی نرمال، لوگ نرمال، پیش‌سون نوع 2الگو پیش‌سون نوع 3، شاخصی که این شاخص را می‌تواند به دو اویل لحظه‌ای برای روش‌های مورد استفاده در دو نمونه پارامتر، 0.25، 0.35 و 100 سال تعیین شد. سپس به منظور گسترش بهترین تابع توزیع انتخاب برای پارامتر بهم‌های 0.900 اویل اویل لحظه‌ای از روش‌های متوسط آزمون پارامتر، شاخص روش‌های کمال‌گرفته‌سازی شده، کای اسکوتر و روش حداقل مربعات استفاده گردید. (جدول 3). انتخاب توزیع مناسب در سمت آخر جدول 3 براساس غلیط و یا سازگاری توزیع‌ها، متفاوت در هر فاصله می‌باشد.

در ابسته‌های آی آی پارامتر R انتخاب گردید. (جدول 3) به هشتم لحظه‌ای به دو حداقل توزیع روزانه (بنا به اینکه میانگین و انحراف معیار پارامتر انتخاب گردید. (جدول 3) به هشتم انتخاب گردید. (جدول 3) به هشته
جدول 3. آزمون پرزندگی و توانایی توزیع منتخب در حوزه‌های آبی‌گیر گربه ایران

<table>
<thead>
<tr>
<th>کلموگراف - اسمینوف</th>
<th>کای اسکنر</th>
<th>دوآب</th>
<th>دوآب</th>
<th>پل جهر</th>
<th>پل کنته</th>
<th>قوروناغران</th>
<th>قوروناغران</th>
<th>قوروناغران</th>
<th>پل دختر</th>
<th>پل کنته</th>
<th>سید حسین</th>
<th>سید حسین</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
</tr>
</tbody>
</table>

جدول 4. خصوصیات جریان در استگاه‌های آب‌سنجی حوزه‌های آبی‌گیر مورد تحقیق

<table>
<thead>
<tr>
<th>E(R)</th>
<th>S(R)</th>
<th>E(Q)</th>
<th>S(Q)</th>
<th>E(Q)</th>
<th>S(Q)</th>
<th>E(Q)</th>
<th>S(Q)</th>
<th>E(Q)</th>
<th>S(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/12</td>
<td>1/14</td>
<td>0/59/</td>
<td>7/66</td>
<td>7/84</td>
<td>8/08</td>
<td>2/03</td>
<td>2/06</td>
<td>2/13</td>
<td>2/17</td>
</tr>
<tr>
<td>1/02</td>
<td>1/01</td>
<td>1/01</td>
<td>1/02</td>
<td>1/02</td>
<td>1/02</td>
<td>1/02</td>
<td>1/02</td>
<td>1/02</td>
<td>1/02</td>
</tr>
<tr>
<td>2/05</td>
<td>1/24</td>
<td>2/14</td>
<td>2/30</td>
<td>2/34</td>
<td>2/38</td>
<td>2/44</td>
<td>2/48</td>
<td>2/52</td>
<td>2/56</td>
</tr>
<tr>
<td>2/82</td>
</tr>
</tbody>
</table>

جدول 5. پارامترهای یاد به اوج لحظه‌ای با استفاده از مدل

<table>
<thead>
<tr>
<th>استگاه</th>
<th>دوآب</th>
<th>دوآب</th>
<th>پل جهر</th>
<th>هولیوان</th>
<th>پل دختر</th>
<th>پل کنته</th>
<th>سید حسین</th>
<th>پل دختر</th>
<th>پل کنته</th>
<th>سید حسین</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/009</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/049</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/208</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/239</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/269</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/299</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/329</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/359</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/389</td>
</tr>
<tr>
<td>لوگ گَسَل - لوگ گَسَل</td>
<td>0/419</td>
</tr>
</tbody>
</table>
جدول 6. خطا در دوره‌های بازگشت مختلف

<table>
<thead>
<tr>
<th>دوره بازگشت</th>
<th>ایستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>75</td>
<td>19</td>
</tr>
<tr>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>18</td>
</tr>
<tr>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>18</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>24</td>
</tr>
<tr>
<td>50</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>75</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

یاری بیانگر و پیشنهادها

با استفاده از تابع جدول 2، بدین جای ا업 چهارمی برای دوره‌های بازگشت مختلف 24، 25 و 100 سال به‌کار گرفته و با بده اج ارور لحظه‌ای به دست آمده‌اند از آمار 21 ساله مورد مقایسه قرار گرفته. با استفاده از رابطه زیر، خطا در بالای هر کدام از اینگاهان مورد مطالعه، و متوسط خطا برای تمام ایستگاه‌ها و دوره‌های بازگشت مورد نظر محاسبه گردیده‌است:

$$e_i = \frac{QA - QM}{QA} \times 100$$

که در آن:

$$e_i =$$ درصد خطای مدل

$$QA =$$ مقدار بدی اج ارور لحظه‌ای با دوره‌های بازگشت معيین، با استفاده از آمار‌های آماری

$$QM =$$ مقدار تخمینی بدی اج ارور لحظه‌ای با دوره‌های بازگشت معيین

درصد متوسط خطای کلی از مدل زیر محاسبه می‌گردد:

$$E = \frac{1}{n} \sum_{i=1}^{n} |e_i|$$

که در آن:

$$e_i =$$قدت مطلق درصد خطای

$$n =$$تعداد ایستگاه‌های آپ سنگی

نتایج گیری و پیشنهادها

با توجه به مدل به دست آمده‌اند (رابطه 10)، ملاحظه می‌شود که بین میانگین پارامتر R و نسبت برچستگی قطع داره هم انتظار است. نسبت داره‌ای و ضرب گراودوس حوزه رابطه مستقیم و جوهر دارد. بنابراین افزایش مقدار هر کدام از پارامترهای فوق، میانگین پارامتر را بهمراه می‌آورد. بین پارامترهای فوق، نسبت برچستگی بهترین را در مدل دارد. در این واقعیت است که عملکرد مجازی کافی در افزایش این پارامتر در حوزه آب‌برداری، که اهمیت زیادی دارد. البته می‌توان بیان کرد که آنچه به گراف بده اج لحظه‌ای و در نهایت سیب افزایش میانگین پارامتر R می‌گوید (5 و 6). نسبت برچستگی با میزان فرسایش حوزه آب‌برداری
پازگشته است. دلیل خطا هم مربوط به حوزه آبشته ممکن است مربوط به خصوصیات زمین شناسی حوضه باشد. این خطا در حوزه مورد تحقیق نشان دهنده مواردی که در رابطه با نسبت حجم کاهش داده شده است. همانطوری که در جدول ۴ نشان داده شد، میانگین پارامتر R در حوزه آبشته ۲/۷ است، در حالی که میانگین پارامتر R در سایر حوزه‌های آبخیز بین ۱/۰ تا ۲/۵ می‌باشد.

موافقین نظر برای درمان مواردی در حوزه پازگشته است. این نظر به طور معمول در حوزه‌های متوسط و بالا اجرا می‌شود.

مقدار پازگشته بدها اوج احتمال‌های درون‌وزن می‌باشد.

با استفاده از داده‌ها و مقایسه آن با داده‌ها اوج احتمال‌های نسبت آماری این‌گونه شده داده‌ها که میزان خطا مدل مربوط به دوره‌ی پازگشته ۲ سال (با خطا متوسط ۲/۷ درصد) برای تمام ایستگاه‌های مورد تحقیق و پیشنهاد خطا مدل مربوط به دوره‌ی پازگشته ۱۸۰ سال (با میانگین خطا متوسط ۷ درصد) است. پیشنهاد خطا مربوط به رویدادهای آبشته می‌باشد.

میانگین خطا در این حوزه برابر تعداد دوره‌های پازگشته ۵/۷ درصد برای تمام دوره‌های مورد استفاده است.

جدول ضمیمه: اصطلاحات و معادلات به کار رفته در تحقیق

<table>
<thead>
<tr>
<th>معادله</th>
<th>شرح</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>F = \frac{A}{L^2}</td>
<td>ضریب شکل</td>
<td>F</td>
</tr>
<tr>
<td>Gr = \sqrt{\frac{\rho g A}{\mu L}}</td>
<td>ضریب گراینده</td>
<td>Gr</td>
</tr>
<tr>
<td>B = \frac{Gr \sqrt{A} \pm \sqrt{Gr A - \frac{1}{2} \mu A}}{\sqrt{\frac{1}{2}}}</td>
<td>مستطیل معادل (کیلومتر)</td>
<td>B</td>
</tr>
<tr>
<td>Di = \frac{\sqrt{A}}{\pi}, (\pi = 3/14)</td>
<td>قطر دایره معادل حوزه (کیلومتر)</td>
<td>Di</td>
</tr>
<tr>
<td>Lr = \frac{Di}{Ls}</td>
<td>نسبت طولی</td>
<td>Lr</td>
</tr>
<tr>
<td>Cr = \frac{A}{Ac}</td>
<td>نسبت دایره‌ای</td>
<td>Cr</td>
</tr>
<tr>
<td>-</td>
<td>مساحت دایره هم محیط با حوزه (کیلومتر)</td>
<td>Ac</td>
</tr>
<tr>
<td>-</td>
<td>طول آباه اصلی (کیلومتر)</td>
<td>Ls</td>
</tr>
<tr>
<td>-</td>
<td>شیب متوسط (درصد) - میانگین شیب در دو جهت افقی و عمودی</td>
<td>S</td>
</tr>
<tr>
<td>-</td>
<td>ارتفاع جدایی حوزه (متر)</td>
<td>HMax</td>
</tr>
<tr>
<td>-</td>
<td>اختلاف ارتفاع حوزه (متر)</td>
<td>HMin</td>
</tr>
<tr>
<td>H = HMax - HMin</td>
<td>اختلاف ارتفاع حوزه (متر)</td>
<td>H</td>
</tr>
<tr>
<td>Rr = \frac{H}{100 \cdot P}</td>
<td>نسبت بر جسته‌گی</td>
<td>Rr</td>
</tr>
<tr>
<td>Tc = \frac{Lr^{1/15}}{300 \cdot H^{1/385}}</td>
<td>زمان تمرکز حوزه (ساعت) - رابطه کریپچ</td>
<td>Tc</td>
</tr>
</tbody>
</table>