ارزیابی سیستم‌های آب‌پیایی قطره‌ای
مطالعه موردی با‌گاه‌های مکان‌دار داراب

چکیده
در این بررسی، تعادل فلت‌باه در نقاط مختلف شهرستان داراب به عنوان نموده انتخاب و با هدف ارزیابی سیستم‌های آب‌پیایی قطره‌ای مورد مطالعه قرار گرفت. علاوه بر این، با استفاده از چهار دیتال، بلندی - کریمی، مارگریز، - سامانی، تخت تیغ‌پیکر کلاس 8 و سولونم - کودما آب مورد نیاز مراتب بازرسی گردید. بر پایه نتایج حاصل از شیوه مارگریز - سامانی با میزان 195 میلی‌متر نیاز سالانه آب‌پیایی، مقایسه‌ی بین مصرف آب فعلی و آتشفه‌های پایه در شرایط مطلوب مصرف شود به عمل آمد.

نتایج اکنون گزارش‌هایی نشان داده که در تمام با‌گاه‌های مورد مطالعه دی‌تی‌ع چنانچه به میزان قابل ملاحظه‌ای به دلیل بارندگی بودن نیاز به گرفتن‌کارختی دی‌تی‌ع. با توجه به این امر، نیاز به مراقبت بهتری از شیوه‌های بازرسی در شرایط نیاز به بازرسی گزینه‌ای به شیوه می‌باشد. این مطالعه نیاز از ۱۲۰ نمونه آب‌گیری در شهرستان داراب، با مصرف آب مورد مطالعه از ۲۲ تا ۶۵٪ نتایج داشته که در نهایت مصرف آب مورد مطالعه در شهرستان داراب به ۱۲۰۰ نمونه آب‌گیری، با همین نتایج در شرایط مناسب است که در نهایت مصرف آب مورد مطالعه به ۱۲۰۰ نمونه آب‌گیری، با همین نتایج در مطالعه و وضعیت مطلوب بود.

واژه‌های کلیدی: آب‌پیایی قطره‌ای، ارزیابی، مدیریت آب‌پیایی، نیاز آب مکان‌دار

مقدمه
یکی از معیارهای مدیریت صحیح منابع آب، صرف‌جویی در مصرف آب، جلوگیری از تلفات و افزایش تولید محصول به

1. به ترتیب استدلال و استاد آب‌پیایی، دانشکده کشاورزی، دانشگاه شیراز
محاسبه تغییرات دریا قطع‌رطوبی‌ها پیشنهاد کردن. اشکال
عمده این روش عدم ملاحظه فاکتورگیری قطع‌رطوبی‌ها و
ضریب تغییرات دریا ساخته‌اند. این‌ها همچنین کی روش
ساده‌تری را دارای ارزیابی آب‌های قطع‌رطوبی پیشنهاد نمودند.
ویراست و دووندل (17) یک هدف صرف‌جویی درآم، مواد
شیمیایی و انزیمی، یک روش ارزیابی آب‌های قطع‌رطوبی از دنده.
اگر یک موضوع پذیرفته داده که تغییرات دریا قطع‌رطوبی‌ها به ضریب
ساخت هیدرولیکی کارنگه ساندی، گرفته نموده‌اند و
 تنوع قطع‌رطوبی‌ها هر گیاه به‌سنجی دارد. مسئولی باریک و
روشنوجویی کولو تغییرات قطع‌رطوبی‌ها معچرچیده می‌گردد که همه آنها
توسط دانه‌های درجه بندی‌های آبی و پروپوزیک و عوامل‌های شیمیایی، که
عموماً در آب آبی وجود دارند، مسئول می‌گردد (14). به‌طور
مدیریت سیستم و کاربرد آب در مزرعه، با هر صرف‌جویی در
آب، صرف‌جویی در نیرو کار و انرژی، حفاظت از خاک و
افزایش محصول می‌گردد. آنچه از دریا پذیرش مورد نظر بوده
ارزیابی واقعی سیستم‌های قطع‌رطوبی در حال کار محوری‌است. این نوع
مطالعه از آن جهت اهمیت دارد که مشخص کند آیا مدیریت
سیستم با شیوه‌های مختلف صرف‌جویی می‌باشد یا نه. بنابراین، اشکال
موجود در مزرعه و در سیستم‌های صرف‌جویی می‌توانید از
تصمیم‌گیری لازم به عمل می‌آید. در این شرایط آبیاری، جوئ آب
با فشار نسبتاً کم از قطع‌رطوبی‌ها که دریای مجاری
کوچک می‌باشد، به صورت آهسته خارج می‌گردد. گرفتن
قطع‌رطوبی از جهت تأثیر این عوامل در یک‌کانال کاربرد
آب گردد (11 و 12). از طرفی جوی خورش از قطع‌رطوبی‌ها
به فشار نیز بستگی دارد، تغییرات فشار تأثیر عمده‌ای بر آب‌زاده
قطع‌رطوبی‌ها دارد. به‌همنه جهت بزرگ بیشتر باید تغییر فشار در شیب
تعیین یک‌کانال آب در سطح مزرعه، کاسته خسارت‌دند.
اطرف هر گیاه، زمان و یکدی آبیاری و مصرف میزان آب از اهم
ازای مصرف در واحد آب می‌باشد. در ایران بیش از ۸۵ آب
در بخش کاشت‌های به مصرف می‌رسد (13)، این اثر به‌طور
شیوع در این‌ها و انرژی‌های قطع‌رطوبی برخوردار است. سیستم
مدیریت قطع‌رطوبی از هیچ‌یک نیز بی‌ربط است. آب‌های
نوین آبیاری است که در آن بر ساخته کم و با کاهش، از قطع
خارجی‌های که قطع‌رطوبی نام دارند، را یکی قرار می‌گیرد.
محاسبه و سیاست‌های قطع‌رطوبی توصیف‌های مختلفی
گزارش شده است (17). یکی از اهداف مهم در هر نوع آبیاری است، به‌ین‌کننده خروجی آب
از قطع‌رطوبی‌های اصلی دارد که شوش تابعی از فشار و ساخته
داخلی قطع‌رطوبی‌ها می‌باشد. آب سرد نیازگاه به توصیف
قطع‌رطوبی‌ها و یا به نسبت می‌باید (مثلاً ۴۳ و ۱۵ بیلی در
ساعت) به‌ین‌کننده گیاهان هنگامی که خروجی‌های به
گونه‌ای طراحی می‌شوند که در آن مستلزم نمودن فشار، آب را
با دید کم در حد امکان به‌ین‌کننده یکوبکن از پای گیاه قرار
دهند (14). آب خروجی از قطع‌رطوبی‌ها در اطراف گیاه تأثیر
یک پایز رطوبی می‌دهد که شکل آن بستگی به این خاک،
بیاب خروجی قطع‌رطوبی‌ها و زمان آبیاری دارد (9 و ۱۵). هر چه
خاک سخت‌تر و یا کمتر باشید پایز‌بندی از سمت عرض
کمتری بخوردار خواهد بود و رطوبیک
به طور کلی تحلیل هر سیستم آبیاری راک که از ادغام‌های در
شرایط واقعی مزرعه و در حین کار طبیعی سیستم استوار باشد
ازرسایی‌های می‌باشد (11). ویراست و دووندل (17) معقدم
ارزیابی آبیاری قطع‌رطوبی به‌ین‌کننده طراحی این
می‌گردد که آنی تأسیس ظرفیت پاسخ‌دهی است یا
ن تأثیر این امر، است. اب‌یک در آبیاری قطع‌رطوبی
خطای کاری آبیاری قطع‌رطوبی و تفسیری بیاب این آب و تغییرات و توزیع یک‌کانال آب
از سطح مزرعه، گسترش حیاتی‌زندگی
ارزیابی بر اساس تعیین حداکثر و حداقل فشار رسید و سپس

مواد و روش‌ها
طرح حاضر در محدوده شهروندان داراب به اجرا درآمده است. در آغاز، یکی از مناطق مستعد تولید مربوطات در استان فارس می‌باشد که در فاصله 265 کیلومتری جنوب شرقی شیراز در خط شرقی 44°34′00″ غربی 37°26′00″ شرقی در دامنه ۱۱۰۰ متر از سطح دریا قرار دارد. این منطقه در زمینه آب و هوای گرم و خشک می‌باشد که اقلیم غابی آن به حساب می‌آید. مربوطات از تولیدات عمده شهروندان این است که از عظم و طعم خاص برخوردار می‌باشند. بیش از ۹۰٪ ناخالصی مصرف‌کننده در این منطقه مربوطات، که حدود ۶۰۰ هکتار مساحتی کوه‌های زیر پوشش آبیاری قطعات قرار دارد.
تعداد هفت باغ در نزدیکی مختلف شهرستان به گونه‌ای که حتی اکثر از لحاظ توریستی خانه و نوع آب منابع باشند، انتخاب گردید. ارزیابی نیز بر منابع سطحی نیز بر مورد کل (11) انتخاب شد. انتخاب آب و اندازه‌گیری اطلاعات مورد نیاز ارزیابی کامل، عکس‌برداری شده به‌صورت تصویری به‌طور مداوم مطالعه شده‌است. به عوامل اقلیمی محل مورد مطالعه، با چهار شیوه مختلط گردید. شیوه هایگرزبوس - سامانی اصلاح شده برای بررسی مناطق خشک و نیمه خشک (13) به‌طور حاضر با توجه شیوه هایگرزبوز سامانی اصلاح شده برای بررسی مناطق خشک و نیمه خشک (13) به‌طور حاضر با توجه مورد نیاز ارزیابی کامل، عکس‌برداری شده به‌صورت تصویری به‌طور مداوم مطالعه شده‌است. به عوامل اقلیمی محل مورد مطالعه، با چهار شیوه مختلط گردید. شیوه هایگرزبوس - سامانی اصلاح شده برای بررسی مناطق خشک و نیمه خشک (13) به‌طور حاضر با توجه شیوه هایگرزبوز سامانی اصلاح شده برای بررسی مناطق خشک و نیمه خشک (13) به‌طور حاضر با توجه
جدول 1. برخی اطلاعات آب و خاک با آگاهی مورد مطالعه

<table>
<thead>
<tr>
<th>شماره</th>
<th>بافت خاک شوری آب (دسی‌زمینس بر متر)</th>
<th>شوری خاک خاک سانتی متر</th>
<th>محدود عمق</th>
<th>مالک بلاغ (سانتی متر)</th>
<th>مالک بلاغ (سانتی متر)</th>
<th>شماره بلاغ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>لوییم 0/479</td>
<td>0/9</td>
<td>0/15</td>
<td>سلامی (شماره 1)</td>
<td>سلامی (شماره 1)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>لوییم 0/479</td>
<td>1/2</td>
<td>0/10</td>
<td>سلامی (شماره 2)</td>
<td>سلامی (شماره 2)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>لوییم 0/574</td>
<td>1/9</td>
<td>0/20</td>
<td>مهندس خورسن (شماره 1)</td>
<td>مهندس خورسن (شماره 1)</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>لوییم 0/601</td>
<td>5/4</td>
<td>0/20</td>
<td>مهندس خورسن (شماره 2)</td>
<td>مهندس خورسن (شماره 2)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>لوییم 0/489</td>
<td>1/5</td>
<td>0/20</td>
<td>مهندس خورسن (شماره 3)</td>
<td>مهندس خورسن (شماره 3)</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>لوییم 0/297</td>
<td>7/34</td>
<td>0/20</td>
<td>مقدس</td>
<td>مقدس</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>لوییم 0/75</td>
<td>2/22</td>
<td>0/20</td>
<td>احمد علی‌پور</td>
<td>احمد علی‌پور</td>
<td>7</td>
</tr>
</tbody>
</table>

جدول 2. مشخصات عمومی خاک با آگاهی مورد مطالعه

<table>
<thead>
<tr>
<th>PWP</th>
<th>FC</th>
<th>فضای مربوط به سطح درخت (دسی‌زمینس بر متر)</th>
<th>فضای مربوط به وزنی (سانتی‌متر)</th>
<th>عمق درخت (سانتی‌متر)</th>
<th>پرگر (سانتی‌متر)</th>
<th>شماره بلاغ</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>9/58</td>
<td>15/75</td>
<td>0/40</td>
<td>0/60</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>9/58</td>
<td>15/75</td>
<td>0/40</td>
<td>0/60</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>9/64</td>
<td>13/60</td>
<td>1/50</td>
<td>0/40</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>9/64</td>
<td>13/75</td>
<td>1/50</td>
<td>0/40</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>9/64</td>
<td>13/60</td>
<td>1/50</td>
<td>0/40</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>9/64</td>
<td>13/60</td>
<td>1/50</td>
<td>0/40</td>
<td>6</td>
</tr>
</tbody>
</table>

کودا (16)، بر اساس پارامترهای اقلیمی منطقه محاسبه گردید. در شیوه هارگریوز - سامانی اصلاح شده به سپس عدم دسترسی به اطلاعات سرعت متوسط باد برای یک دره قابل قبول، وجود اطلاعات درجه حرارت از ایستگاه‌های غیر مرجع از معادله اصلاح شده هارگریوز - سامانی (بر اساس معادله پنمن - سانان) که مناسب مناطق خشک و نیمه خشک با اطلاعات حاصل از ایستگاه‌های غیر مرجع می‌باشد (27) استفاده گردید. در آبثار قطعیه، آب مصرفی غیر مقید به حداقلی کاهش می‌یابد. به همین خاطر تعریف از گیاه‌اصلی

فقط چکان (مترا)

هیچ‌چیز، هیچ تغییرات ایجاد و گزارش نمی‌شود. نه یک تغییر، نه انتظار دوی تمایل. تعیین گردید.

محاسبه نیاز آبی مکان

تغییر آبی مکرات در داراب از چهار شیوه مختلف: پلاستی- کریز

اصلاح شده قطعیه، هارگریوز - سامانی اصلاح شده برای منطقه گرم و خشک (13) نشته تیپ‌های کلاس A و مدل سولومون -
ارزیابی سیستم‌های آبیاری تطریز

بلیستر براز شاخه‌های نسبتاً درشت با عمق متوسط برابر 0/51 است، در نظر گرفته شد. مقدار تخلخل آبیاری در این پروژه از رابطه زیر پیروی گردید:

\[
D_s = \frac{D_n \times T_s}{E_a}
\]

که:

- \(D_s\): نیاز تخلخل آبیاری (میلی متر)
- \(T_s\): نسبت تعریق در دوره حداکثر مصرف
- \(E_a\): بازخاک کرده (درصد)

شاخص ذکر است که در محاسبه نیاز آبی اکثر مقدار T برای 0/51 با فرض 0/10 درصد آب برای 90 درصد سطح سایه اندیز (P_d) برای یک درخت باغ و کامل 80 درصد فرود شده است.

به منظور بررسی بیشتر نیاز نیاز به مورد مطالعه، نیاز آبیاری در چهار وضعیت مختلف: نیاز آبیاری در شرایط معرض، نیاز آبیاری بر اساس آنتن، نیاز آبیاری بر اساس حاضر عامل می‌شود. نیاز آبیاری بر اساس طرح گردید.

نتایج و بحث

در آبیاری که در نظر گرفته می‌شود باید از نظر نیاز به مقادیر آبیاری به طور دقیق تعیین شود. این نیاز به محاسبه میزان از داشتن یک سیستم انتقال آبیاری. سیستم در زمینه توزیع با لوله‌های فرعی (کل انتیل 16 میلی متری) با مقدار متوسط ۳۰ متر است و هر کدام به طور متوسط پنج یا شش درخت آبیاری می‌نماها. با

\[
T_d = U_d \left(\frac{1}{\lambda P_d}\right)^{1/6}
\]

که:

- \(T_d\): تعریق متوسط روزانگی در آبیاری که در طول ماه وسط روز
- \(U_d\): تعریق گیاه در ماه حداکثر مصرف (میلی متر روزانگی)
- \(P_d\): درصد سطح سایه اندیز گیاه در سال

مقدار خاص آبیاری (D_n) به باید بسیاری از نیاز تعریق در طول دو رشد گیاهی باشد. عامل مهمی در تعیین نیاز سالانه آبیاری است که مقدار آن با احتساب پزلنگی مؤثرات رشد گیاهی کاهش می‌یابد، و از رابطه یک قابل محاسبه و تعیین می‌باشد.

\[
D_n = (U - R_n - W_s) \left(\frac{1}{\lambda P_d}\right)^{1/6}
\]

که:

- \(U\): تعریق و تعریق گیاه در طول دو گیاه (میلی متر)
- \(R_n\): پردازش مؤثر در طول آن دوره (میلی متر)
- \(W_s\): رشد گیاهی در طول ماه در خاک در نظر نگرفته شده است.

کمیت آب که در آن حالات بهتر از پایدار تر شد، به‌طور کلی به این طکمی که بر اساس آبیاری و عامل تعلیق تولید دارد (10). حداکثر مقدار خاص آبیاری، مقداری از آبیاری دسترسی است که باید در خاک جای خود گیاه و تقابل ضریب کمیبود رطوبت برای کاهش رشد از نظر ذهنی به‌طلایی می‌باشد. لیست حداکثر حداکثر خاص آبیاری برای کل مزارع محاسبه می‌گردد که درصد نسبت می‌گردد در آبیاری مقادیر اکثر باید بر اساس میزان دیدگی در آبیاری مورد طراحی (P_d) مقدار باید از سیستم‌های آبیاری پرازامتر نسبت تعریق در دوره حداکثر مصرف، که برای پایه پیشنهاد گردید و
آزمایش و حداقل فشار ورودی ولوعهای جانی بِر روی مانیفلد‌هایی در حال کار نشان داده شده است. توصیه می‌شود اول‌اً به صورت سه‌تایی در آنها پایین می‌باشد، نسبت به اندازه طبقات پنبه توربینی اقدام شود و فشار متوسط در حدود 15 متر در شکه تأمین گردد. ثانیاً در چنین باعث‌هایی که اختلاف فشار در مانیفلد‌ها هر بلوک زیاد می‌شود در فشار‌نشان استفاده شود. در دو هر فشار‌شکنک یک فشارسنج نیز نصب گردد تا قدر مقدار فشار نسبت به معادله گردند در مقادیر ماده شماره ۸ و ۴۲ دارای فشار سیستم‌ها مورد استفاده قرار می‌گیرند. به علت مثال، شیمی‌دانان نظی‌می‌ند شده دی‌اپ (تانزانیا گیری شده) باعث شماره ۱/۵۵ و شماره ۲/۸۲ لیتر در ساعت به دست آمده در صورت که به‌سبب این قطع‌های کمپرسور چهار لیتر در ساعت می‌باشد. در دو بلوک شماره ۷ و ۸ نیز به دلیل تغییرات فنی و نحوه آراپای ولوعهای مانیفلد، اختلاف فشار قابل ملاحظه‌ای بین مانیفلد‌ها و ولوعهای فرعی آنها مشاهده شد. مثال در بار شماره ۷ حداقل فری فرعی مانیفلد مورد آزمایش ۵/۸ کمترین آن ۵/۸ و متوسط حداصل فشار نرده ۸۵ متر اندوزه گیری شد. با وجود آن‌ها، یک فشار مانیفلد‌ها در راستای شبب تند قرار داشته و همچنین شیر کنترل فشار برای آنها پیش‌بینی نشده بود. خود باعث روش‌های اختلاف فشار قابل ملاحظه‌ای در ورودی فری و اندازه‌گیری شده بود. ولی جنح لوله‌های فری در جهت عمود بر شیب قرار داشته و طول آنها نیز نسبتاً کوتاه می‌باشد، اختلاف فشار قابل ملاحظه‌ای در آنها مشاهده نشد.

در جدول ۳ فشار در نقاط مختلف سیستم از جمله ورودی و خروجی صاف‌گرفته، ابتدای انتهای ولوعهای فری او مورد

1. Coefficient of Variation 2. Emission Uniformity
جدول 4. میانگین دیگ تنظیم شده و اخری پایین هر ساعت با فشار موجود و دیگ تنظیم شده کارخانه در فشارهای مختلف

<table>
<thead>
<tr>
<th>فشار</th>
<th>فشار موجود (لیتر در ساعت)</th>
<th>فشار موجود (لیتر در ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>یک</td>
<td>1/72</td>
<td>2/02</td>
</tr>
<tr>
<td>دو</td>
<td>1/47</td>
<td>2/07</td>
</tr>
<tr>
<td>سه</td>
<td>1/28</td>
<td>2/18</td>
</tr>
<tr>
<td>چهار</td>
<td>3/27</td>
<td>4/07</td>
</tr>
<tr>
<td>پنج</td>
<td>4/00</td>
<td>4/07</td>
</tr>
<tr>
<td>شش</td>
<td>4/00</td>
<td>4/07</td>
</tr>
<tr>
<td>هفت</td>
<td>4/00</td>
<td>4/07</td>
</tr>
<tr>
<td>سه</td>
<td>5/33</td>
<td>5/33</td>
</tr>
<tr>
<td>چهار</td>
<td>5/23</td>
<td>5/23</td>
</tr>
<tr>
<td>پنج</td>
<td>5/13</td>
<td>5/13</td>
</tr>
<tr>
<td>شش</td>
<td>4/00</td>
<td>4/00</td>
</tr>
<tr>
<td>هفت</td>
<td>4/00</td>
<td>4/00</td>
</tr>
</tbody>
</table>

ولی متوسط دیگ خروجی قطره‌های کهکانه مورد آزمایش در این
بیشتر پایین و در حدود 1/16 لیتر بر ساعت است. همین
اصل کاهش شدید دیگ، گرفتگی قطره‌های کهکانه است. این
ساده قطره‌هایی که در این با غریب به حذف شدید است که
دارای آب و فاصله می‌باشند. باقی شماره 7 زی در شمار
مترا 7/50 متر، دیگ متوسط 2/32 لیتر در ساعت یا 7 می‌باشد.
گرفتگی دانه‌های بیشتر، فشار موجود جهت باین در این
دست که فشار باید بیش از ینکه قطره‌های باشد.

نتکه شایان توجه، پایین بودن مقدار شهر آب در باغهای
مورد بررسی است که در حدود 1/16 نشا داده شده است. به
این اتفاق سبب گردیده که این آب مورد استفاده آنها شور
نیست، بنابراین نقص صافی‌های جنین مهم نیست نتایج باشد. اما نتایج
اندازه‌گیری هر لحظه این تصور را حاصل می‌دهد. مثل شوری آب
باغ شماره 5/299 دمی زیست بر متر و جزو آب‌های با
کیفیت بالا به حساب می‌آید. به دلیل عدم استفاده از صافی،
برغم تأمین فشار کافی (5/14 متر)، کاهش دیدی 24% در آن
منشأ داشت. بنابراین، نتایج توجه سرعت گرفتگی است.
چون بیشتر شماره 5 ساله و مبتن در حجم آبی که در این 16 مدت از
قطره‌های بیشتر مورد نموده، نسبت به باعیدی قابلیکی است
یک‌تایی. درصد گرفتگی نسبتاً کم بوده است. به همین دلیل باعید شماره
این نتایج به منظور به دست آوردن آب‌های با شماره
است. به رغم اینکه فشار متوسط در حدود 5 متر تأمین شد،

بی‌هویت و یا چون در سطح فشار را بیشتر از صافی در مدت 5 ماه و گرفتگی
تداوی آنها باید.
<table>
<thead>
<tr>
<th>آماره‌ی نکاتی</th>
<th>1/77</th>
<th>1/61</th>
<th>1/27</th>
<th>1/18</th>
<th>1/41</th>
<th>1/32</th>
<th>1/41</th>
<th>1/27</th>
<th>1/32</th>
<th>1/18</th>
<th>1/41</th>
<th>1/41</th>
<th>1/77</th>
</tr>
</thead>
<tbody>
<tr>
<td>بهترین روز</td>
<td>0/11</td>
<td>0/08</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>1/67</td>
<td>1/76</td>
<td>1/67</td>
<td>1/76</td>
<td>0/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
<tr>
<td>بهترین سه روز</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
</tr>
<tr>
<td>بهترین روز</td>
<td>0/08</td>
<td>0/11</td>
<td>0/08</td>
<td>0/11</td>
<td>0/11</td>
<td>1/67</td>
<td>1/76</td>
<td>1/67</td>
<td>1/76</td>
<td>0/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
<tr>
<td>بهترین سه روز</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
</tr>
<tr>
<td>بهترین روز</td>
<td>0/08</td>
<td>0/11</td>
<td>0/08</td>
<td>0/11</td>
<td>0/11</td>
<td>1/67</td>
<td>1/76</td>
<td>1/67</td>
<td>1/76</td>
<td>0/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
<tr>
<td>بهترین سه روز</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
</tr>
<tr>
<td>بهترین روز</td>
<td>0/08</td>
<td>0/11</td>
<td>0/08</td>
<td>0/11</td>
<td>0/11</td>
<td>1/67</td>
<td>1/76</td>
<td>1/67</td>
<td>1/76</td>
<td>0/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
<tr>
<td>بهترین سه روز</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
<td>1/61</td>
<td>0/11</td>
</tr>
</tbody>
</table>

(این نیازمند یک توضیحات بررسی شده کامل و دقیق برای تفسیر نتایج و مشخص کردن پاسخ‌های مناسب باشد.)
در پرورشی ها می‌شود، به تعداد نه تعداد قابل توجهی از قطعه‌های حمل در حال گرفتن گرفتگی و یا به الگوی قابل گرفتن گرفتگی مستند باشد. باعث افزایش از اولویت‌های فرعی 16 میلیمتر نیز مسود شدن‌اش و حسی از انتها به بخش از اولویت‌های 5 میلیمتر روابط وارد جدول.

نتایج ارزیابی‌ها که به‌باید بازه پایین سیستم (یک‌نواختی) پخش 40 درصد آن باشد که باعث افزایش در بالاگیر و کاهش جواب یا یک حذف آن در مدار شبکه به منظور جلوگیری از رشد جلبک و دیگر علائم آرتی. بپوشان کامی مسیر آب از محل خروجی آب از چشمه‌ها تا محل صرف.

ج) ایجاد یک حوضه‌آب ارامش رسوب‌های سروباریک در ابتدای مسیر و نصب آشغال‌گیر در داخل ورودی آب چشمه به لوله انتقال.

د) نصب صافی شنی و انفراش تعداد صافی‌های دورانی (هیدروسیستم) و صافی‌های نو می‌باشد. نسبت تصنیفی
هم تغییر قطعه‌گیری‌ها و جایگزین آنها با قطعه‌گیری‌های تنظیم شده (قابل‌پذیری‌های که از آب‌های بالاتری برخوردار

می‌باشد و نسبت به گرفتگی نیز حساسیت مکنی دارند. به رسمی یکی از برترین های آب‌پیمای قطعه‌ای که خیس شدن
نها بخش از خاک است، باعث گرسنگی شماره ۱ و ۲ با وجود کاهش
زا و آب‌پیمای قطعه‌ای دارای ۱۰۰ سطح خرس شده
همدان می‌باشد. علت آن تعداد زیاد قطعه‌گیری (۱۶ عده)، زمان نسبتاً
طول جز اپارتمان (۴ ساعت)، در کوتاه‌تر مدت کار نسبتاً
سگن جاک می‌باشد. الله‌나زی ۱۵ دارای سطح خرس شده
پر از ۱۷٪ است. این مقدار بسیار کمتر از مقدار حداکثر
است که برای مناطق خشک پیشنهاد شده است. علت آن تعداد
عملکرد ۱۶ ساله که با میان‌مرد در حدود ۷۴٪ را تراز می‌دهد،
که بیشتر از این گرفتگی‌ها می‌توانند به ذهنی برود آب
این باعث نسبت به باغ‌بسته ۴۰.۲۰.۲۰۰۰ دمی زمین بر متر
باشد. این در حقیقت است که در باغ‌بسته ۳۰۰۰.۳۰۰۰ دمی
سال عمده، گرفتگی بسیار ناپایدار در حدود ۷% (با شوری
۷۰۰۰۰ دمی زمین بر متر) دارد. دو بانه پایین داده‌ها این
شره آب بررسی باید گرفتگی گواهی آن است که حمایت
گرفتگی بیشتر در مکاتبه‌های فیزیکی در آب و نه شوری است.

باغ‌بسته ۶ از لحاظ گرفتگی‌ها و وضعیت بسیار نامطلوب
برخوردار بود. در ۳۰ مورد اندازه‌گیری در چهار مورد (۲۰٪)
گرفتگی کامل (آب‌دهی صفر) مشاهده شد و ب‌بی‌بیه
قطعه‌گیری‌ها نیز سیستم‌های تر از حد ایرانی شده کرده‌اند بود. مثلاً ۷۵۰۰۰.۰۷۵۰.۰۷۵۰.۰۷۵۰ لیتر بر ساعت نیز
مشاهده شد. در حالی است که شماره کافی (۱۰٪) در
سیستم شایسته به مد نظر می‌رسد. انتظار می‌رود که
۷۰٪ گرفتگی در این باعث وجود دارد. در مرد استفاده نیز از کمیت عالی،
شوری پایین و همچنین مسیر متسوک برخوردار بود (شوری
۱۵۵۰۰۰ دمی زمین بر متر در حد)
۱۵۰۰۰۰۰ دمی زمین بر متر و سختی در حد
۱۵۰۰۰۰۰ دمی زمین بر متر و سختی در حد

مسبک صافی‌های زیر نقش بودن در شبکه وجود داشت، اما
صحب‌بایی از سرعت بالای گرفتگی (ماهی‌یک بار) شکایت
دارد. در پرورشی دقیقتر، نتایج شاخص‌های توخه‌ای به شرح زیر

مشاهده شد: می‌باشد آب مورد استفاده از چند چشم تشکیل شده و آب
پس از اطر فرود به صورت سریا وارد لوله اصلی
می‌شود.

آب قبل از ورود به صفحه‌ها در یک استخراج سیروز به ابعاد
۱۸۰۰۰۰.۰۱۸۰۰۰.۰۱۸۰۰۰ متر مربع از ورود به صفحه

می‌باشد، بدون صافی شی است و صافی‌های دورانی و توری
نیز نسبت به حجم و کدرک آب کافی نیست. داشت.

قطعه‌گیری‌ها از نوع "تنامی" داخل با دیبی ۴ لیتر در
ساعت می‌باشد و نسبت به گرفتگی حساس هستند.
جدول ۶. رنگ و وضعیت مختلف نیاز آبیاری برای باغ‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شماره باغ</th>
<th>وضعیت براساس شرایط موجود</th>
<th>وضعیت مطابق براساس چهار رنگ</th>
<th>(آنچه که عمل می‌شود)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شماره باغ (در رون)</td>
<td>(در رون)</td>
<td></td>
</tr>
<tr>
<td>۲۸۵/۵۵</td>
<td>۱۸۵</td>
<td>۷/۴</td>
<td>۲۵۹</td>
</tr>
<tr>
<td>۲۸۸</td>
<td>۹۱/۲</td>
<td>۳/۹</td>
<td>۲۸۶/۱۲</td>
</tr>
<tr>
<td>۲۷۶/۵</td>
<td>۲۰/۱۱</td>
<td>۶/۸</td>
<td>۲۸۳/۵</td>
</tr>
<tr>
<td>۲۷۴/۵</td>
<td>۹/۵۵</td>
<td>۵/۲۳</td>
<td>۲۶/۹</td>
</tr>
<tr>
<td>۸۶/۷۵</td>
<td>۵/۲۵</td>
<td>۷/۵۵</td>
<td>۱۲/۷۵</td>
</tr>
<tr>
<td>۲۸۸</td>
<td>۲۰/۱۱</td>
<td>۶/۸</td>
<td>۲۸۳/۵</td>
</tr>
<tr>
<td>۴۴۸</td>
<td>۱۱۶/۶۸</td>
<td>۵/۸۳</td>
<td>۱۸۲/۷۸</td>
</tr>
</tbody>
</table>

بیش از نیاز آبیاری می‌شوند. مثلاً در باغ شماره ۱ که با ۲۳۴ لیتر آب در روز برای حرکت آب در روز مورد نیاز بوده، ۲۵۹ لیتر آب مصرف می‌گردد که حداکثر در روز‌های بارانی است و اگر با وضعیت مطابق (بازده ۹۰٪) مقایسه گردد نیاز به ۱۸۵ لیتر آب برای حرکت در روز کافی خواهد بود. در حالی که اکثر حدود ۴/۲ لیتر برای این مقدار تأمین می‌شود. حال جنبه مقایسه آب مصرفی فعلی با حداکثر مقداری که بر پایه توصیه‌های نگهداری خاک می‌توان آبیاری نمونه‌ها مقایسه هدایت ممکن می‌شود که برای حرکت در روز ۲۸۳/۵ لیتر آب باید از طرف نگهداری خاک تأمین می‌شود. این مقدار به‌صورت تبلیغات فوریت عمقوس از دست می‌رود. همین اضاحیات آبیاری، علت خرس‌دگی کم قطع‌چکانی‌ها (سطح حدود برای هر حرکت) گرفتگی قطع‌چکانی‌ها و فاصله خاک (یکم شنی) می‌باشد.

سطح خش خاک باغ شماره ۶ و ۲۵/۲٪ اندلاع‌گیری شده. در این باغ بیشترین این که در ده‌ها هر روز گزارش می‌شود، فشار نیز به اندامه‌ها کافی وجود داشته است. تعداد قطع‌چکانی‌ها در دندان‌های ۲۷/۵ لیتر باغ مورد مطالعه در دامنه قابل قبول است. دامنه تغییر از حد ۱٫۵ بایین قابل قبول (۴۳٪) با باغ شماره ۶ تا حداقل ممکن که کمتر می‌باشد. در باغ است (۱۰۰٪)، با باغ‌های شماره ۱ و ۲ بی‌آب‌تری شده. در آب‌یاری قطع‌چکانی بیشتر گزارش‌ها از آب‌یاری کم است آب‌یاری زیاد. (۱۵).

به منظور بررسی مصرف آب و باره‌های آبیاری، اقدام به محاسبه نیاز آب مربوط به چهار شیوه گردید. سپس نتایج به‌دست آمده از شیوه‌های پیشنهاد شده (جدول ۵)، با آنچه که در عمل از طریق اندلاب‌گیری حاصل شد مورد مقایسه قرار گرفت (جدول ۶). این چهار وضعیت آبی به‌صورت ترسری در شکل ۱ نشان داده شده است. مقایسه این چهار وضعیت نشان می‌دهد که همه باغ‌ها، بجز باغ شماره ۵ و ۶
لیتر بیشتر از نیاز. همین‌ین باعث شد در شرایط مطلوب ۲/۰۶ لیتر در روز آب‌نیاز دارد. حداقل آن‌ها بر پایه‌ای که بر اساس ظرفیت فنی‌های خداک‌می‌می‌توان به این باعث ۷/۲۷ لیتر سی‌اچ‌وی با آب‌نیاز موجود ۳/۵ لیتر از آب آبیاری به صورت فورش شیطان تلفات این باعث به حساب می‌آید (۵۰%). باعث شده ۲ لیتر حدوداً دریای و وضعیت شباهت است. اما باعث شماره ۶ وضعیت متغیری با یک‌دستی در ان باعث عملاً به سه عدد قطعه‌های سیستمی که گرفته‌ه و ۱۱ ساعت آب‌نیاز یک روز در این باعث نیاز مطلوب گردیده، با ۱۱۷ لیتر در روز برای هر درخت تأمین می‌گردد. در حالی که با توجه به باعث کاربرد، برای بر فاصله ۱۰۰ لیتر در روز به‌کارگیری سیستم مطلوب (با بودن کاربرد ۹۰%) به مساحت لایه‌ای (فیلی) تا نشان که کاربردهای گرفته‌ه از انرک‌های تدریجی است. پرو آب باعث با توجه به شرایط فنی ویژه‌های سیستم صافی کامل نصب گردد تا گرفته چکنان‌ها به دیس اسیمی برپس. در غیر این شرایط خطر قطعه که یک ۳ به ۵ عدد افزایش یابد.

در باعث شماره ۴ نیاز به رقم تعداد زیاد قطعه‌های باعث که جایگزین روزه و فشار کامیاب باشد با شرایط فعلی ۲/۰۶، ۰۳ لیتر در روز برای هر درخت آب‌نیاز گردید. در حالی که عملاً ۱۷۸ لیتر (یکند) ماویه‌ها چنانچه در این باعث شرایط مطلوب ایجاد شود، می‌توان با ۱۲۶ لیتر در روز نیاز واقعی را تأمین نمود. به‌نظر می‌رسد با توجه به شرایط غالب در باعث شماره ۴ به وجود آید. بنابراین، مشکل اساسی باعث گرفته‌ه قطعه‌کن‌های است. چنانچه ۱۱ طبقه‌کن‌ه می‌توان با ۱۲۵ لیتر آب تأمین می‌شود. همچنین انتخاب می‌تواند بر اساس‌های از ۱۲۵ لیتر آب تأمین خواهد شد که به‌پیش در ۱۳/۲۶ لیتر نیاز فنی است. به‌نظر می‌رسد.

1. Potential Efficiency of Low Quarter 2. Application Efficiency of Low Quarter
جدول ۷. نتایج محاسبات پارامترهای اصلی ارزیابی باعثهای مورد مطالعه براساس اطلاعات جمع‌آوری شده

<table>
<thead>
<tr>
<th>شماره باعثه</th>
<th>نیازهای معنی‌گذار</th>
<th>میانگین</th>
<th>پیوستن‌نخواسته</th>
<th>ضریب</th>
<th>مقدار کاربرد</th>
<th>بایندهای (AELQ)</th>
<th>پیوستن‌نخواسته (PELQ)</th>
<th>درخت روزانه (میلی‌متر)</th>
<th>درخت روزانه (میلی‌متر)</th>
<th>درخت روزانه (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶/۵۲</td>
<td>۷۱</td>
<td>۷۹</td>
<td>۸۵</td>
<td>۸۶</td>
<td>۸۲</td>
<td>۹۷</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۵/۹</td>
<td>۷۷</td>
<td>۸۵</td>
<td>۸۲</td>
<td>۸۷</td>
<td>۸۳</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۲۲/۵۶</td>
<td>۷۵</td>
<td>۹۱</td>
<td>۹۴</td>
<td>۹۱</td>
<td>۹۷</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۱۹/۸</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۱۶/۱</td>
<td>۹۷</td>
<td>۹۱</td>
<td>۹۴</td>
<td>۹۱</td>
<td>۹۷</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۱۹/۸</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۵/۹</td>
<td>۷۷</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
<tr>
<td>۲۲/۵۶</td>
<td>۷۵</td>
<td>۹۱</td>
<td>۹۴</td>
<td>۹۱</td>
<td>۹۷</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۱۰۷/۳</td>
<td>۱۰۷/۳</td>
</tr>
</tbody>
</table>

در مقدار حداقل فشار ورودی لوله‌های جانبی در منطقه‌ها

و توری در اغلب باعثهای مورد استفاده قرار می‌گیرد. برای افزایش

ضربه‌های اطمینان، استفاده از این نوع صافی حتی برای آب‌های یا

کمیت مطلوب پیشنهاد می‌گردد. نکته شایان ذکر، عدم تناسب

سطح تصفیه صافی‌های موجود با ظرفیت سیستم می‌باشد.

اندازه‌گیری فشار در ابتدا و انتهای سیستم‌های صافی، که همه

آنها به طور متمرکز در واحد گوناگون مزایا، بعد از ایستگاه پمپاج

به همراه ناک و ناک قبلاً شده‌اند، جایگاه‌های که نسبتاً خوب

عمل می‌کنند. در باعثهای مورد بررسی، افت فشار در سیستم

صافی‌ها براساس اندازه‌گیری‌ها بین ۲۲/۰ تا ۲۰/۰ متر می‌گذرد.

سیاست‌گذاری

هزینه‌های انجام این پژوهش توسط مصطلحي‌های مانند جمعیت

بوده‌است. شیار زمین‌شناسی از این اینکه نهایت تشکل به عمل

می‌آید. همکاری‌های ارزیاب‌نشانده تأثیر مهندسی فنی‌نتیجه‌گیری مهندسی

خورشید و مشارکت آنها در استرداد این تحلیل‌های مهندسی تولیدات گیاهی و

تکنولوژی آبیاری آن‌ها که نشان‌دهندهٔ کشاورزی داراب نیز شایان تقدیر

و اسلام است.
منابع مورد استفاده

1. چهارتمی، غ. ۱۳۵۷. چالش‌های مدیریت آب در سال‌های دهمهای آتی. سخنرانی در کارگاه بحران آب، تهران.
2. سپاسخو، غ. ر. ۱۳۷۷. نگرش دویابه بر شیوه‌های محاسبه تبخیر و تعریق گیاهان زراعی. سیمینار کادار آموزشی دانشگاه کشاورزی، دانشگاه شیراز.
3. سهایی، ت. و ر. اصلی. ۱۳۷۷. ارزیابی عملکرد سیستم آبیاری پاتریک در درک. مجله علوم کشاورزی و منابع طبیعی (۲) ۱-۱۵.