ارزیابی سیستم‌های آب‌یاری قطره‌ای
مطالعه موردی با‌غذای مرکبات داراب

چکیده
در این بروز، تعداد فلتخاب یا فلتخاب متفاوت شرکت داراب به عنوان نمونه انتخاب و به‌منظور ارزیابی سیستم‌های آب‌یاری قطره‌ای مورد مطالعه قرار گرفت. خلاصه برآوردها، با استفاده از چهار مدل: بلانس -کریپل، فلتخابی، هارگریتز - سامانی، نشان‌دهنده‌ی کلاس 8 و سولومون - کودامی آب مورد نیاز مرکبات بارولد گردید. بر اساس نتایج حاصل از شبیه‌سازی‌های سامانی با میزان 1296 میلی‌متر نیاز سالانه آب‌یاری، مقایسه‌ی بین مصرف آب فعلاً و آنچه که با استفاده از شرایط مطلوب مصرف شود به عمل آمد.

نتایج: انتقادهایی در مورد با‌غذای مرکبات این مورد مطالعه دید قطع‌گیری‌ها به‌صورت قابل ملاحظه‌ای به دلیل یک‌پای بودن نشان می‌داده. گرفته‌گر، کمتر از نیم‌ام این آنلایت‌ها. با توجه به آنالیز میدان آب‌یاری، کاملاً تا حدی شبیه‌سازی‌های تحقیقاتی در خود و نتایج ارزیابی زمان اب‌یاری، کاملاً حتی پیش از 0/5 نتایج کم‌گیری را بیماری در نیاز آب برای مصرف درخت تأمین می‌کند. به این ترتیب در نیاز مناسب اب‌یاری در شرایط بیشتر، پیش‌بینی نشان‌دهنده‌ی نتایج خوبی دارند. ولی به دلیل تفاوت فاصله در حداکثر فاصله لوله‌های جانبی در مختلف‌ها دارای یک باره بازه کاربردی آب‌یاری می‌باشد. دانه تغییرات ضریب یکنواخت دارای نتایج مورد مطالعه از 0/5 تا 0/91 و دانه تغییرات بازه کاربردی آب‌یاری می‌باشد. 80% تا 88% نیاز بازه‌های کاربردی آب‌یاری از نیاز درختان در وضعیت مطلوب بود.

واژه‌های کلیدی: آب‌یاری قطره‌ای، ارزیابی، مدیریت آب‌یاری، نیاز آب مرکبات

مقدمه
یکی از محیط‌های مدیریت صحیح منابع آب، صرفه‌جویی در مصرف آب، جلوگیری از تلفات و افزایش تولید محصول به

1. به‌ترتیب استاندارد استاد اب‌یاری، دانشکده کشاورزی، دانشگاه شیراز
مصادع تصمیمات دیپ قطع‌های‌کاها پیش‌نهاد کردن. اشکال
عمده این روش عدم ملاحظه فاکتور وقایعی قطع‌های‌کاها و
ضریب تصمیمات دیپ ساخته‌اند هم‌اکنون به روش
ساده‌گیری‌کردن ارزیابی آبیای قطع‌های‌کاها پرشک‌نشا نمودند.
و نیستند و دندان (17). به‌هدف یافتن جویی‌ها در آب، مواد
شیمیایی و اتیزی، یک روش ارزیابی آبیای قطع‌های‌کاها ارائه داده.
اگر یکپارچه وضعیت داده که تصمیمات دیپ قطع‌های‌کاها به ضریب
ساخته‌گیری‌کردن کارهای ساختنی، گرفته می‌شود. به‌طور گسترده‌تر
تقدیر قطع‌های‌کاها مهم‌ترین باشگاه‌های شیمیایی، که
عموماً در آب آبیای وجود دارد، مسئول گرفته نشده (16).
جهت مدیریت سیستم و کاربر آب در مزرعه، باعث صرف‌جویی در
آب، صرف‌جویی در نور کار و انرژی، حفاظت از خاک و
آب‌زایی محسوس می‌گردد. آنچه در این پژوهش مورد نظر بوده
از ارزیابی و انتقال قطع‌های‌کاها در حال کار می‌باشد.
این نوع
مطالعه از آن جهت امکان دارد که مشخص می‌گردد آن با مدیریت
سیستم با به‌کارگیری صحیح روشی باشد. و چنان‌البت‌های
موجود جدی‌شان در مورد این امر به‌طور متناسب سیستم
تصمیم‌گیری لازم به عمل می‌آید. در این شرایط آبیایی، پروآب
با فشار نسبتاً کم از طرف قطع‌های‌کاها، که در ایالات
کرک‌می باشد، به‌صورت آزمایش گردد. گرفته‌کننده
قطع‌های‌کاها از جهت تهیه زیاده یکپارچه کاربرد
آب گردد (11 و 12). از طرفی، این جزءی چرخ آب از قطع‌های‌کاها
به فشار نیز بستگی دارد. تغییرات فشار تأثیر عمده‌ای بر آب‌های
قطع‌های‌کاها دارد. به‌همین جهت بررسی تغییر فشار در شیکه
تغییر دی‌گر قطع‌های‌کاها و بررسی رابطه آن با تغییر فشار یک
توسعی یکپارچه آب در سطح مزرعه، گسترش خیس‌شدن
اطراف هر یک از زمان و دور آبیایی و مصرف میزان آب از اهم
ازای مصرف هر واحد آب می‌باشد. در این روش یکه از 80 آب
در یکپارچه قطع‌های رنگ می‌رود (13). این روش انتخاب
شیمیایی و انتزاع آبیای قطع‌های پیش‌نگه‌نامه است. یکی از
شیوه‌های آبیایی به صورت کمترین مقدار آب و به‌طور
کنترل صفحه‌چکی بالا می‌باشد در مصرف آب
می‌باشد. شیوه فنری‌است. آبیایی قطع‌های کمی از شیوه‌های
نوین آبیایی است که در آب با سرعت کم و باکتری، از شیوه‌های
خیزه‌های قطع‌های که قطع‌های نام‌دارند، در یکی چهار می‌گیرد.
مکانیسم و مسایل آبیایی قطع‌های توسط پژوهشگران مختصی
گزارش شده است (16 و 18). یکی ناچیز پخش آب، که کمی
از اهداف مهم در نوع آبیایی است به یکی‌نخاتی که بی‌کار
از قطع‌های‌کاها است، در کود تابی از فشار و ساخته
داخلی قطع‌های‌کاها می‌باشد. آب سری‌زدایی، توسط
قطع‌های‌کاها از یکی نبسته که (مثلاً 3/4 و 10 بسته در
ساعت) به‌طور نیازی بیشتری در می‌شود. خروجی‌ها به
گونه‌ای طراحی می‌شوند که مسیر نهایی، مورد نگهداری، آب را
به‌طور کامل در حد امکان به بستگی یک‌پایه یا به سپر می‌شود.
دندان (10) آب خروجی از قطع‌های‌کاها در اطراف یکی از
پایه‌های واحد که شکل آن بستگی به بافت خاک،
دبی خروجی قطع‌های‌کاها و زمان آبیاری دارد (9/15).
هر چه
خاک سیکتروی و کمری باشد، یکی‌پایه یا به روش‌های
کنترل با مصرف جویی‌ها به طور کلی تحلیل هر سیستم آبیایی راکه بر انتزاع‌گر در
شرایط واقعی مزرعه و در هر کار طبیعی سیستم استوار باشد
ازیرایی آبیایی سیستم مقدماتی (11) و تحقیق و
دوشان (17) معتقدند ازیرایی آبیایی به وسیله دلیل اهمیت دارد، طراح مطمئن
می‌گردد که آن اثر وی مزیتی یکپارچه آبیایی است با
نه استفاده کرده و که چگونه گایک کار سیستم آبیایی، از
اطلاعات جامعی آوری شده می‌توان برای ارزیابی قسمت‌های
گوناگون سیستم به‌کار گیری کرد و گیتیک (18) یک روش
ازیرایی بر اساس تمیزی حداقلی و حداکثر پروآب را و سپس

14
م ана روش‌ها
طرح حاضر در محدوده شهرستان داراب به اجرا درآمد. داراب‌کی از مناطق مستعد تولید مركبات در استان فارس می‌باشد که در فاصله ۲۵۰ کیلومتری جنوب شرقی شیراز در طول شرقی ۱۷°۳۵ تا ۳۳°۵۵ و عرض شمالی ۳۵°۱۰ تا ۳۵°۵۰ در ارتفاع متوسط ۱۱۰۰ متر از سطح دریا قرار دارد. این منطقه دارای آب و هوای گرم و خشک می‌باشد که اقلیم غاب آن به حساب می‌آید. مركبات از تولیدات عمده شهرستان است که ان عظیم‌ترین نوع‌ها از محصولات این شهرستان که از عقب و ریز نیز خروج‌‌خوردار می‌باشند. بیش از ۳۹٪ نیز مکاتبه مارک‌های کنونی ۹۰۰ ماهانه می‌باشد، زیرا شرایط آماری تقریبی قرار دارد.

تعداد هفت باغ در فضای مختلف شهرستان به گونه‌ای که حتى الکن از لحاظ توریستی خیال با عنوان آب‌می‌بافت باشد. انتخاب گردید. ارزیابی نیز بر مبنای دستورالعمل مهندس و کل (۱) انجام شد. ازون بر جمع آوری و انتخاب‌گیری اطلاعات مورد نیاز ارزیابی کامل، عقدام به برآورد نیاز آیآی مراکز با توجه به عوامل اقلیمی محل مورد مطالعه با چهره شهری مختلط گردید. شیوه هاگریوز - سامانی اصلاح شده برای برای مناطق خشک و نیمه خشک (۱۲) به لحاظ ساختاری بیشتر با شرایط موقعیت منطقه (۲) مناسب می‌باشد قرار گرفت. در هر باغ، ابتدا نقشه کرویی شبکه ولورهای انتقال و توزیع آب، شامل اینشگاه پمپ‌ها و واحد‌کنترل منطقه تهیه گردید. سپس ولوره مانند موردن آزمایش از بین مانندی‌های یک باغ، کافی در دو واحدهای انتخاب شد. بعد از آن تعداد چهار ولوره قرار از یک سوی مانند مورد آزمایش مشابه می‌شد، انتخاب گردید. به

گونه‌کی که یک لوله در ابتدا مانندی، یک لوله در فاصله، یکی در فاصله و یکی در فاصله در امکان مانندی را داشت. به طور هر ولوره قرار چهار درخت، یکی در ابتدا، یکی در فاصله، یکی در فاصله و یکی در فاصله در دو طرف مدرج
جدول 1. برخی اطلاعات آب و خاک با گه‌ای مورد مطالعه

<table>
<thead>
<tr>
<th>شماره گه‌ای</th>
<th>شماره گه‌ای</th>
<th>شماره گه‌ای</th>
<th>شماره گه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری آب (دسی‌زیمنس بر متر)</td>
<td>لومی</td>
<td>لومی</td>
<td>لومی</td>
</tr>
<tr>
<td>34/79</td>
<td>0/9</td>
<td>1/2</td>
<td>0/8</td>
</tr>
<tr>
<td>0/74</td>
<td>1/9</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>0/701</td>
<td>1/5</td>
<td>7/6</td>
<td>0/6</td>
</tr>
<tr>
<td>0/289</td>
<td>7/6</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>0/875</td>
<td>2/2</td>
<td>0/93</td>
<td>0/6</td>
</tr>
</tbody>
</table>

جدول 2. مشخصات عمومی خاک با گه‌ای مورد مطالعه

<table>
<thead>
<tr>
<th>سطح مربوط به</th>
<th>درصد سطح PWP</th>
<th>FC</th>
<th>چگالی ظاهری</th>
<th>شماره گه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایبان‌زنا (درصد و وزنی)</td>
<td>سایبان‌زنا (درصد و وزنی)</td>
<td>گرم بر (سانتی‌متر)</td>
<td>عمق ریشه (سانتی‌متر)</td>
<td></td>
</tr>
<tr>
<td>(سانتی‌متری)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>90</td>
<td>9/82</td>
<td>16/25</td>
<td>1/4</td>
</tr>
<tr>
<td>25</td>
<td>90</td>
<td>9/82</td>
<td>16/25</td>
<td>1/4</td>
</tr>
<tr>
<td>30</td>
<td>78</td>
<td>7/61</td>
<td>15/69</td>
<td>1/5</td>
</tr>
<tr>
<td>40</td>
<td>71</td>
<td>7/61</td>
<td>15/69</td>
<td>1/5</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>12/84</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>12/84</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

کودا: (16)، بر اساس پاساژرهای اقیمی منطقه محاسبه گردید. در شبیه‌های آزمایش - سامانی اصلاح شده به سبب عدم دسترسی به اطلاعات مربوط به فرآیند برای یک سایبان قابل قبول، و وجود اطلاعات درجه حرارت از ایستگاه‌های غیر مرجع از معادله اصلاح شده هارگیوز - سامانی (بر اساس معادله پنمن - ماتنیت) که مناسب مناطق خشک و نیمه خشک با اطلاعات حاصل از ایستگاه‌های غیر مرجع می‌باشد (2)، استفاده گردید. در ایپاری فیزیک‌آبی مصرف غیر‌نظیر به حداقل کاشت می‌یابد. به همین دلیل تعرق از گیاه اصلی

= فشار قطره‌چکان (متر)
= همچنین، ضریب تغییرات کارخانه‌های (Cv) قطره‌چکان‌ها، با استقرار ۵۰ قطره‌چکان نو در یک فشار ثابت و اندازه‌گیری دی‌بین تعیین گردید.

محاسبه نیاز آبی مرکبات

در نظر آبی مرکبات در داراب از چهار شبیه مختلف: بانی - کریستال اصلاح شده قاطع - هارگیوز - سامانی اصلاح شده برای مناطق گرم و خشک (16)، نشان داد که کلاس A و بخشی کلاس A و مدل سولون -
آزمایش سیستم‌های آبیاری برای آب‌رسانی خاک‌های نسبتاً درشت با عمق متوسط پرتاب 1/5
است. در نظر گرفتن شوید مقدار ناخالص آبیاری در این پروپتی
از رابطه زیر برآورد گردید:
\[
D_g = \frac{D_n \times T_r}{E_n}
\]
که:
\[
D_g = \text{نیاز ناخالص آبیاری (میلی‌متر)}
\]
\[
T_r = \text{نیست تعریف در دوره حداکثر مصرف (ثانیه)}
\]
\[
E_n = \text{شیان ذکر است که در محاسبه نیاز آبی در مقدار} T_r/100
\]
با فرض 10% ثلث آب پرتاب 90% و درصد سطح سایه اندام، \(P_2)\)
برای یک درخت بالغ و کامل 85% فرض شده است.
به نظر می‌رسد بیشتر نیاز نیاز آب‌رسانی مورد مطالعه، نیاز
آبیاری که در چاه و ضخت مخلوط: نیاز آبیاری در شرایط جریان،
نیاز آبیاری براساس آنچه که در حال حاضر عمل می‌شود، نیاز
آبیاری برای شرایط مطلوب و نیاز آبیاری براساس ظرفیت
نگهداری خاک محاسبه گردد.

نتایج و بحث
در آبیاری قطره‌ای هر چه دیگر خروجی قطره‌چکن‌ها
یکنواخت‌تر باشد باید سیستم پانل‌های خورشیدی بود. سه عامل
هم بر این یکنواختی مؤثرند: فشار و وزن‌های فیزیکی
قطره‌چکن‌ها و گرمایشی. علاوه بر این عوامل، مدیریت سیستم
نیز عامل مهمی است که باید مورد ارزیابی قرار گیرد. مدیریت
سیستم در زمینه تنظیم سیستم آبیاری، دور آبیاری، کنترل
فشارها، نظارت کلی بر عملکرد سیستم و کاربرد صنعت کود و
دیگر موارد شیمیایی نیز مهمی دارند. نیاز باید کاربرد و عملکرد
اقتصادی سیستم دارد.

در توزیع قطره در میان فشار و تغییرات افزایش
خاصی برخوردارند. در یکه‌های مورد مطالعه، سیستم سیستم
نیاز آبیاری قطره‌ای (پلی اتیلن 16 میلی‌متری) 53 متر است و هر
کدام به طور متوسط پنج الی شش درخت آبیاری می‌باشد. با

معمولاً مساحت آب مصرفی خواهد بود (10). در آبیاری قطره‌ای
متوسط تعریف روزانه در محاصره مصرف، تابعی از حدکثر تبخیر
و تعریف روزانه گیاه در طول ماه و سطح پوشش ناج‌گیاه (ساها و
می‌باشد که از رابطه زیر محاسبه می‌گردد (3 و 10):
\[
T_d = U_d \left[\sqrt{/(P_a)^{1/5}}\right]
\]
که:
\[
T_d = \text{تعریف متوسط روزانه گیاه در آبیاری قطره‌ای برای ماه}
\]
حداکثر مصرف (میلی‌متر در روز)
\[
E_n = \text{تبخیر و تعریف گیاه در محاصره حداکثر مصرف (میلی‌متر}
\]
روزانه)
\[
P_a = \text{درصد سطح سایه اندام‌گیاه در محوطه روز}
\]
\[
D_n = \text{قطره‌چکن‌های در محوطه شهری (میلی‌متر)}
\]

که:
\[
U = \text{تبخیر و تعریف گیاه در طول دوره رشد (میلی‌متر)}
\]
\[
R_n = \text{بارندگی مؤثر در طول آن دوره (میلی‌متر)}
\]
\[
W_g = \text{رطوبت ذخیره شده در خاک در خارج از نسل رشد (میلی‌متر)}
\]
که در اینجا مقدار آن برای مراکز صفر فرض شده است.

کم‌میزان آبیاری باید شروع شود، به‌طور
به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
 به‌طور کلی در این حالات آبیاری باید ضعف شود، به‌طور
توجه به نوع آراپی قطع‌چک‌ها (حلقوی) و تعداد متوسط آنها (15 عدد) با دیدن امکان بهبود در ساخت و کاهش ترددی در طول لوله‌های فرعی، افزایش مقدار فشار در لوله‌های فرعی در انتهای لوله‌های فرعی باید چنانی باشد که ملاحظه نشست. ولی فشار لوله‌های فرعی مانند برای لوله‌های دیگر باید باید بررسی شود.

در جدول ۳ فشار در نقاط مختلف سیستم از جمله خروجی و ورودی و خروجی مصایحی، ابتدای انتهای لوله‌های فرعی مورد

1. Coefficient of Variability
2. Emission Uniformity
جدول ۴. میانگین دی‌هی دنیم، شده و چارک پایین‌های باشگاه شماره هرج و مربوط به دبی مورد عهده‌داری کارخانه در فشارهای مختلف

<table>
<thead>
<tr>
<th>شماره باشگاه</th>
<th>دبی مورد انتظار کارخانه (لیتر در ساعت)</th>
<th>فشار موجود</th>
<th>دبی مورد انتظار کارخانه (لیتر در ساعت)</th>
<th>فشار موجود</th>
</tr>
</thead>
</table>
| ۲۰۱۵۱۰۴۰۰۱۰۰
در بخش اولی از متن، نشان می‌دهد که بخشی از مصرف گردنگی می‌تواند به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش دوم و سوم، متن نشان می‌دهد که بخشی از مصرف گردنگی به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش اولی از متن، نشان می‌دهد که بخشی از مصرف گردنگی می‌تواند به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش دوم و سوم، متن نشان می‌دهد که بخشی از مصرف گردنگی به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش اولی از متن، نشان می‌دهد که بخشی از مصرف گردنگی می‌تواند به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش دوم و سوم، متن نشان می‌دهد که بخشی از مصرف گردنگی به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش اولی از متن، نشان می‌دهد که بخشی از مصرف گردنگی می‌تواند به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش دوم و سوم، متن نشان می‌دهد که بخشی از مصرف گردنگی به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش اولی از متن، نشان می‌دهد که بخشی از مصرف گردنگی می‌تواند به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.

در بخش دوم و سوم، متن نشان می‌دهد که بخشی از مصرف گردنگی به دلیل شرایط بودن آب این بازه نسبت به غرامت های (۱۷۰۰ هر کیلوگرمی) باید داشته باشد. این در حالت است که در بازه غرامت به کالا باید کمکی از گردنگی به پیامدهای نابودی را دریافت کند.
جدول ۶. بهبود وضعیت مختلف نیاز آبیاری برای یافتن مورد مطالعه

شماره باشگاه	وضعیت براساس شرایط موجود (اندازه که عمل می‌شود)	وضعیت براساس طریقت نگهداری خاک	عدد لیتر آب در روز نسبت به نیاز آبیاری	مصرف می‌گردد	حدود دو لیتر نیاز به رواکردن	در واقع باید	بهترین وضعیت مصرفی	
۲۸۵/۵	۳۳۴	۹/۱۲	۱/۴	۸۵۹	۶/۳	۵/۰۳	۲۲۸	۲۸۵/۵
۲۷۹/۲	۹/۸۹	۶/۸۸	۷/۸	۲۲۸	۶/۳	۵/۰۳	۲۳۳	۲۷۹/۲
۲۷۴/۵	۹/۸۶	۶/۸۸	۷/۸	۲۲۸	۶/۳	۵/۰۳	۲۳۳	۲۷۴/۵
۸۸/۷۵	۹/۱۲	۶/۸۸	۷/۸	۲۲۸	۶/۳	۵/۰۳	۲۳۳	۸۸/۷۵
۲۱۶	۹/۱۲	۶/۸۸	۷/۸	۲۲۸	۶/۳	۵/۰۳	۲۳۳	۲۱۶
۴۴۸	۹/۱۲	۶/۸۸	۷/۸	۲۲۸	۶/۳	۵/۰۳	۲۳۳	۴۴۸

کم قطع‌های‌که‌کی‌ها (سمه عدد برای هر درخت) گرفتگی قطع‌های‌که‌کی‌ها و بافت خاک (لوم شنی) می‌باشد. سطح خیس شده باشگاه شماره ۶ ۲۵٪ اندادگی‌گری شد. در این باح شرایط شد باشگاه لوم‌چه‌ای است، ابتلا به اندام شکر که وجود داشت. تعداد قطع‌های‌که‌کی‌ها در روز ۱۱ عدد بود و در زمان اندادگی‌گری نیز ۲۴ ساعت عمل آبیاری انجام می‌شد. ولی به دلیل گرفتگی شدید قطع‌های‌که‌کی‌ها مقدار درصد سطح خیس شده آن کم بود. در نتیجه بیش از باغ‌های مورد مطالعه در دانه قابل قبول است. دانه تغییر از حد پایین قابل قبول (۳۷٪، باشگاه شماره ۱) در نتیجه مشاهده گردید. میزان اضافه نیاز به سطح خیس‌شدن‌گری برای آبیاری کم است بهترین سطح برای آبیاری زیاد. (۱۵).

به منظور پرسیدن مصرف آب و بازده آبیاری، اقدام به محاسبه نیاز آبیاری با چهار شیوه گردید. سپس نتایج به سمت آن‌ها اندازه‌گیری شد. نتایج نشان داد که از هر ۲۰۰۰ لیتر آبیاری می‌شود، بهترین وضعیت مصرفی برای آبیاری بازده بیش از ۱۸۱٪ است. در روز اضافه آب‌شماری می‌شود (۹۶٪). نیاز به باید روزانه باشگاه شماره ۱۲۸۳۵ لیتر آبیاری شود ۲/۳۵ لیتر آبیاری شود
لیتر بیشتر از نیاز. همین‌بار باید در شرایط مطلوب ۶/۵ لیتر در روز آب نیاز دارد. حداقل آب که بر اساس طریقه‌ی گفته‌ی خاص، می‌توان با این باعث به سبب درصد ۷۲ لیتر سی‌وی‌سی‌بی‌ای است. این باید ۷۸/۱۵ لیتر از آب آبیاری به صورت فورش‌یگرد گرم تا دو دقیقه‌ی نیاز به حساب می‌آید (۴۰%). باید شماره ۲ آب معدودی در وضعیت مشابه است. اما باید شماره و وضعیت متغیری با یافته دارد. در این باعث عمل به‌رغم عدم شرایط‌های ۱۰ سی‌وی‌سی‌بی‌ای یک روز در مدت ۴۴ لیتر در روز پایه به نتایج تأثیر می‌شود. در حالی که با توجه به بازه‌چک، برای این نیاز واقعی ۱۰ لیتر در روز‌های تأتین گردید. این در حالی است که با شرایط مطلوب (باشد که به این باعث ۹۰٪) به سطح سالانه‌ی‌ها بالا یافت (۷٪)، تناها به ۵۱/۳ لیتر در روز آب‌نیاز نیاز است. در این باعث با خلاف باعث دیگر (بزرگ شماره ۲) هیچ نوع تلفات عمیق وجود ندارد. تناها مشکل آن که آب‌های قبلی فعالیت گفته‌ی‌ها از این گفتگو در تشکیل است. در این باعث به شرایط فعالیت پیش‌بینی‌ها می‌شود، سیستم‌های کامل نصب گردید تا دیگر شرایط گفته‌ی‌ها به دیس اس‌ما اسمی بررسی. در غير این شرایط به سمت قطع قطع کن‌ها نیاز دارد ۱۳ به ۵ عدد آب‌پاک‌یا.

در باعث شماره ۲ نیاز به رقم تعداد زیاد قطع‌های و آب‌پاک‌یا با دور به روزه و فشار کن‌ها، برای شرایط فعال ۱/۵ لیتر در روز برای خر دوخت آب تأمین گردید. در حالی که عملاً ۱۷۲ لیتر (بیش از ۷۵٪) مواجه با این شرایط مطلوب ایجاد شد و می‌توان با این ۲۴ لیتر در روز نیاز واقعی را تأمین نمود. به نظر می‌رسد با توجه اساسی در باعث شماره ۶ به وجود آید. تناها مشکل اساسی باعث گفتگو قطع‌های‌هاست. تناها ۱۴ نیاز که درخت باعث گفته‌ی باعث در حد آب‌یابی اسماً خود عامل تا حد ۱۰۰ گرمی می‌توان با این ۱۸ لیتر آب تأمین و خواهد شد که به به ۱۲/۵ لیتر نیاز فعالی است. همچنان این‌ها از ۷۵ لیتر آب تأمین

1. Potential Efficiency of Low Quarter
2. Application Efficiency of Low Quarter
جدول 7. نتایج محاسبات پارامترهای اصلی از بانهای انرژی مورد مطالعه براساس اطلاعات جمع آوری شده

<table>
<thead>
<tr>
<th>شماره باشگاه</th>
<th>میانگین</th>
<th>ا Qué (کیلووات ساعت/تومان)</th>
<th>هر (%)</th>
<th>مقدار کلی</th>
<th>غیر (کیلووات ساعت/تومان)</th>
<th>درخت (%)</th>
<th>اماکن صنعتی: (پیروان)</th>
<th>درخت (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/52</td>
<td>56</td>
<td>79</td>
<td>82/0</td>
<td>6/36</td>
<td>18/36</td>
<td>21/0</td>
<td>3</td>
<td>13/0</td>
</tr>
<tr>
<td>0/51</td>
<td>77</td>
<td>77</td>
<td>0/71</td>
<td>2/73</td>
<td>19/25</td>
<td>5/0</td>
<td>2</td>
<td>11/0</td>
</tr>
<tr>
<td>0/56</td>
<td>1/0</td>
<td>6/1</td>
<td>0/95</td>
<td>3/0/9</td>
<td>3/0/9</td>
<td>4/1</td>
<td>8</td>
<td>1/2/8</td>
</tr>
<tr>
<td>0/70</td>
<td>2/7</td>
<td>9/1</td>
<td>0/9/1</td>
<td>2/6/7</td>
<td>5/1/3</td>
<td>7/0</td>
<td>0</td>
<td>2/4</td>
</tr>
<tr>
<td>1/06</td>
<td>3/3</td>
<td>5/9</td>
<td>0/73</td>
<td>3/0/7</td>
<td>5/0/7</td>
<td>4/3</td>
<td>6</td>
<td>1/2/4</td>
</tr>
<tr>
<td>0/96</td>
<td>3/1</td>
<td>5/7</td>
<td>0/96</td>
<td>2/6/7</td>
<td>2/6/7</td>
<td>7/4</td>
<td>0</td>
<td>2/4</td>
</tr>
<tr>
<td>0/62</td>
<td>5/7</td>
<td>7/2</td>
<td>0/66</td>
<td>2/0/6</td>
<td>2/0/6</td>
<td>7/4</td>
<td>0</td>
<td>2/4</td>
</tr>
</tbody>
</table>

سیاست‌گزاری

بنا بر اطلاعات، این پژوهش توسط معاونت محترم پژوهشی دانشگاه سریلانکا انجام شد که از این پژوهشی نتیجه‌گیری می‌شود: میانگین هر دانشجوی مهندس به‌طور متقن و استاندارد مقایسه‌ای که از نظر جغرافیایی، به‌طور کلی، در دانشگاه‌های مهندسی نشان می‌دهد که این دانشگاه‌ها نسبت به دانشگاه‌های دیگر در زمینهٔ تغییرات ساختار، استاندارد بوده و نیازمند تغییرات است.

سیاست‌سازی سیاست‌گزاری

