ارائه مدل ریاضی
برآورد بار بستر و بار كل رسوب با روش تصحیح شده آنتیشین

محمود شفاخی بجنستان ۱ و منصور استادعسگری ۲

چکیهده
کاربرد روش تصحیح شده آنتیشین، توسط دفتر استانداردهای صمت آب ایران، وابسته به دفتر فنی وزارت نیرو تصمیم شده است. این روش در رودخانه‌های کم عمق الکتریکا (آمریکا) کلیپره شده و ضریب F نیز به طور مصونی به نصف کاهش داده شده است. از طرفی، این روش به صورت ترکیبی و ترکیبی گیپ باشند. به طوری که کاربرد آن را طی مکانی به‌طور کلی و معادلات جبری تبدیل، و انگرازهای بیشتر با روش تحلیلی و تحلیلی حل شده است. همچنین، به منظور دقت کاربرد و استفاده روش در رودخانه‌های کارون و کرخه، داده‌های رسوب و هیدرولوژی این‌گونه‌ها اهمیت و حمایت به مدت ۷ سال جمع‌آوری و میزان بار رسوب با دقت معناسی و با تابع اندازه‌گیری شده مقایسه گردید.

میزان تأثیر تعدیلی از منفی‌گرانه مهم از جمله مقدار F, در برآورد بار رسوب مورد مطالعه ترکرگرفت. از آن جا که روش تصحیح شده آنتیشین، میزان بار بستر را نیز جداگانه محاسبه می‌کند، معنی‌گر دیدن تا با استفاده از داده‌های اندازه‌گیری شده قبلی از رودخانه‌های آمریکا، دقیق‌تر بودن در برآورد میزان بار بستر مورد ارزیابی ترکرگرفت. در این مقاله توجه مدل کردی روش، داده‌های جمع‌آوری شده، تجزیه و تحلیل حساسیت روش و دقیق‌تر بودن در برآورد بار بستر با روش آنتیشین است.

واژه‌های کلیدی: رسوی، بار بستر، بار معنی، کرکه، مقدمه

به کلیه جراحان آب نیز مکالمه، که در اثر جراحان آب از نقطه‌بندی به شدت می‌شود، رسوی اطلاعاتی می‌گیرد. مورد در حال حکمران را بررسی کرده و حرکت این موارد در اندازه‌گیری و انتقال رسوب کرکه. انتقال رسوب ممکن است به دو صورت انجام گیرد.

۱. استاد آیلی، دانشکده کشاورزی، دانشگاه شهید کیارسلا، امیر مهندسی رودخانه‌ها، شرکت مهندسی مشاور، درآم، اهلوز
۲. کارشناس ارشد آیلی، امیر مهندسی رودخانه‌ها، شرکت مهندسی مشاور درآم، اهلوز
اموضوعات مهم و مطروح در علم هیدروлогی است. در همه‌ها اخیر رابطه‌های متعددی در این زمینه ارائه شده است. به تعداد
از این روش‌ها فقط بر سیستم، تعداد فقط بر عملیت، و تعداد
نیز مجموعه برای سیستم و بر عملیت، را که بر مورد برمانده
می‌شود، بر اثر وما را پاساژ کارهای آزمایش‌های با گروه‌گردیده و کاربرد آنها مهمی در عمل مورد
سؤول حوزه است.

یکی از روش‌های برای بررسی روابط، روش تصحیح شده
این‌شیئی است که توسط کلی و همبستگی (5)، پرسایس روش
اصیل این‌شیئی است که در 45 درصد ذرات اکثریتی در این
که در آن باید به سیستم و نتیجه‌گیری از داده‌هایه، به دست آمد و اندازه‌گیری
سرعت این‌شیئی (7) همیا به دست می‌آید. مقدار X برای
میانه شده در ضریب ϕ وزن می‌توان از روابطی 2 به صورت زیر
محاسبه کرد:
\[
\psi = \frac{D_{50}}{R S}
\]

که در آن به درصد ذرات رسوب بیست بر انتزاعات
\[
\psi = \frac{\gamma}{\gamma - 1} \frac{R}{S}
\]

جمع ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات
به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{\gamma}{\gamma - 1} \frac{R}{S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]

که در آن به درصد ذرات رسوب، ثبت نقدی است که برای شکل ψ و شدت بار بیست انتزاعات

\[
\psi = \frac{D_{m}}{R S}
\]
مواد و روش‌ها
مدل ریاضی
استفاده از نمو‌دارها و معمولات متناسب با دقت لازم برخوردار
نحوه پیش‌آمده بود. از این رو، یک مدل ریاضی ارائه شده است که
ضمن تسریع در محاسبات دقت لازم را ارائه می‌دهد. در این مدل، به
توضیح داده شده است که از استفاده از نمودارها و معمولات جبری،
دیگر دستگاهی شده است. نشان دهنده یک مرحله تجزیه
لگاریتمی دانستنی درای روابط، از روابط زیر استخراج
می‌گردد:

\[D_{T_0} = \exp \left[D_1 D_T - \frac{B_{T_1} - \alpha}{a/d} \left(\frac{L_{D_T} - L_{D_1}}{B_{T_1} - B_{T_1}} \right) \right] \]

\[D_{s_0} = \exp \left[D_1 D_T - \frac{B_{s_1} - \alpha}{a/d} \left(\frac{L_{D_T} - L_{D_1}}{B_{s_1} - B_{T_1}} \right) \right] \]

\[D_{r_0} = \text{درصد مواد بسته کننده با برگ‌نیرت یا} D_{r_0} \text{در این مدل، با دقت لازم برخوردار. } D_{s_0} \text{در این مدل، با دقت لازم برخوردار.}

\[I_1 = \int \left[\frac{1 - y}{y} \right]^2 \ln y \, dy \]

\[I_2 = \int \left[\frac{1 - y}{y} \right]^2 \ln y \, dy \]

\[Q^*_T = \frac{P_m J^*_1 + J^*_2}{J^*_2} \]

\[Q^*_b = \frac{1}{J^*_1} \left(P_m J^*_1 + J^*_2 \right) \]

\[Q_T = Y_{b} \cdot Q_{b} \]
که در اینجا e یک کمیت پیروگرتن از این است. عبارت اول

$\int_E \left(\frac{1}{y^2} \right) \, dy = \int_E \left(1 - y \right)^2 \, dy = \frac{1}{3}$

گروه کد: [19]

$\int_E y^{-2} \left[1 - y^2 \left(z_1^2 + \cdots \right) \right] \, dy$

سمت راست رابطه 19 را می‌توان به صورت سری زیر جایگزین کرد:

$\phi = \exp \left(-\frac{1}{\text{V} \times \text{L} \times \text{M}^2} \right)$

[17]

راسته شدت بار بستر ϕ و شدت تنش (ψ) که توسط این شدت به صورت منحنی ارائه شده (γ) توسط باعث مالیاده 17 مقدار γ را دارد.

$\psi = \exp \left(-\frac{1}{\text{V} \times \text{L} \times \text{M}^2} \right)$

[17]

محاسبه γ در مدل با دو روش، یکی روش آزمون و خط و دیگری روش کلی، امکان پذیر می‌باشد. در روش آزمون و خط، مقدار γ توسط پایه تعیین شود که تساری رابطه 12 برقرارگردد. بدین ترتیب اینکه مقدار ψ، γ و γ را تعیین کرد.

به همین ترتیب مقدار γ نیز محاسبه می‌شود، که می‌توان

$\gamma = \int_E y^{-2} \, dy = \frac{1}{3}$

[18]

نشان دهد که رابطه کلی این شدت به صورت زیر نوشته می‌شود (2) و

$\int_E \left(\frac{1}{y^2} \right) \, dy = \int_E \left(1 - y \right)^2 \, dy$
دائم‌السال استفاده شده در بررسی دقیق روش تصحیح شده اینشتین در مودهای سه‌بعدی استفاده می‌شود. از شرح زیر جمع‌آوری و مورد استفاده قرار گرفته و تأیید شده است. این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدمه

یک داده‌های جدید برای بررسی و بررسی این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

نتایج و بحث

از آن جا که برای رسیدن به شرایط مورد استفاده باید ابتدا معادله در دسترس باشند. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.

مقدار

مقدار G_1 برای سایر اندمازه‌های زمین‌شناسی می‌شود. در این بحث، نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است. نمودهای این اکتساب‌ها در سال‌های 1367 تا 1372 برداشت شده است.
مقادیر در محدوده دقت خویری هستند (12). شکل 1 داده‌های اندازه‌گیری شده و محاسبه‌شده را در مقایسه دی‌بی‌جیرین نشان می‌دهد.

پارک رسوی

قندار بارک و رسوی در روش صحیح شده‌ای این‌شیوه و بر مبنای پرسی و پردازش این با استفاده از 28 نمونه یکسان، میانگین بارک رسوی با روش صحیح شده‌ای این‌شیوه محاسبه گردید. از آن‌جا که در این روش میزان بارک رسوی به طور چپگاهی این نسبت بسیار بسیار محاسبه شده به طور معمول محاسبه گردید. این نسبت برابر رودخانه‌کارین بین حداکثر ضریب تا حداکثر 11 درصد و باید رودخانه‌کارین بین حداکثر دو حداکثر هشت درصد به دست آمد. نتایج در جدول 2 و 3 ارائه شده است.

نتایج گیری

استقلال از روش صحیح شده‌ای این‌شیوه که توسط دفتر وزارت نیرو توصیه شده است، نیاز به صرف وقت و زمان زیادی دارد، که در این مطالعه برای سهولت، سرعت و دقت محاسبات یک مدل ریاضی ارائه گردید. برای کاربرد مدل در کلیه رودخانه‌های جمله رودخانه‌های عمق و با بستر رژیدان، مقادیر انگرال‌های این محاسبه شد و تحلیل و عده‌الجلد گردد. است. در این مطالعه داده‌های سه رودخانه مورد استفاده قرار گرفت و نتایج ذیل حاصل شد:

1. روش صحیح شده‌ای این‌شیوه با دقت خویری مقدار بارک رسوی
جدول 1. داده‌های رشد خانه‌ای است فوری و محاسبه‌ی بار بستر با روش اصلاح شده اینشتین

<table>
<thead>
<tr>
<th>شماره دی</th>
<th>مساحت مقطع عمق</th>
<th>ضربیت 2/5</th>
<th>ضربیت 1/5</th>
<th>شده به محاسبه‌ی شده</th>
<th>بار بستر اندام‌گیری شده</th>
<th>نمونه (مترمکعب‌درانتیاه) (مترمعم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/22</td>
<td>6/3</td>
<td>2/6</td>
<td>6/0</td>
<td>2/8</td>
<td>3/2</td>
<td>0/16</td>
</tr>
<tr>
<td>1/39</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>3/32</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
<tr>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>7/18</td>
<td>7/18</td>
<td>7/18</td>
<td>7/18</td>
<td>7/18</td>
<td>7/18</td>
<td>7/18</td>
</tr>
<tr>
<td>8/22</td>
<td>8/22</td>
<td>8/22</td>
<td>8/22</td>
<td>8/22</td>
<td>8/22</td>
<td>8/22</td>
</tr>
<tr>
<td>10/19</td>
<td>10/19</td>
<td>10/19</td>
<td>10/19</td>
<td>10/19</td>
<td>10/19</td>
<td>10/19</td>
</tr>
<tr>
<td>12/16</td>
<td>12/16</td>
<td>12/16</td>
<td>12/16</td>
<td>12/16</td>
<td>12/16</td>
<td>12/16</td>
</tr>
<tr>
<td>13/21</td>
<td>13/21</td>
<td>13/21</td>
<td>13/21</td>
<td>13/21</td>
<td>13/21</td>
<td>13/21</td>
</tr>
<tr>
<td>14/22</td>
<td>14/22</td>
<td>14/22</td>
<td>14/22</td>
<td>14/22</td>
<td>14/22</td>
<td>14/22</td>
</tr>
<tr>
<td>15/25</td>
<td>15/25</td>
<td>15/25</td>
<td>15/25</td>
<td>15/25</td>
<td>15/25</td>
<td>15/25</td>
</tr>
<tr>
<td>16/20</td>
<td>16/20</td>
<td>16/20</td>
<td>16/20</td>
<td>16/20</td>
<td>16/20</td>
<td>16/20</td>
</tr>
<tr>
<td>17/15</td>
<td>17/15</td>
<td>17/15</td>
<td>17/15</td>
<td>17/15</td>
<td>17/15</td>
<td>17/15</td>
</tr>
<tr>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
<td>18/10</td>
</tr>
<tr>
<td>19/5</td>
<td>19/5</td>
<td>19/5</td>
<td>19/5</td>
<td>19/5</td>
<td>19/5</td>
<td>19/5</td>
</tr>
<tr>
<td>20/0</td>
<td>20/0</td>
<td>20/0</td>
<td>20/0</td>
<td>20/0</td>
<td>20/0</td>
<td>20/0</td>
</tr>
<tr>
<td>21/0</td>
<td>21/0</td>
<td>21/0</td>
<td>21/0</td>
<td>21/0</td>
<td>21/0</td>
<td>21/0</td>
</tr>
<tr>
<td>22/9</td>
<td>22/9</td>
<td>22/9</td>
<td>22/9</td>
<td>22/9</td>
<td>22/9</td>
<td>22/9</td>
</tr>
<tr>
<td>23/8</td>
<td>23/8</td>
<td>23/8</td>
<td>23/8</td>
<td>23/8</td>
<td>23/8</td>
<td>23/8</td>
</tr>
<tr>
<td>24/7</td>
<td>24/7</td>
<td>24/7</td>
<td>24/7</td>
<td>24/7</td>
<td>24/7</td>
<td>24/7</td>
</tr>
<tr>
<td>25/6</td>
<td>25/6</td>
<td>25/6</td>
<td>25/6</td>
<td>25/6</td>
<td>25/6</td>
<td>25/6</td>
</tr>
<tr>
<td>26/5</td>
<td>26/5</td>
<td>26/5</td>
<td>26/5</td>
<td>26/5</td>
<td>26/5</td>
<td>26/5</td>
</tr>
<tr>
<td>27/4</td>
<td>27/4</td>
<td>27/4</td>
<td>27/4</td>
<td>27/4</td>
<td>27/4</td>
<td>27/4</td>
</tr>
<tr>
<td>28/3</td>
<td>28/3</td>
<td>28/3</td>
<td>28/3</td>
<td>28/3</td>
<td>28/3</td>
<td>28/3</td>
</tr>
<tr>
<td>29/2</td>
<td>29/2</td>
<td>29/2</td>
<td>29/2</td>
<td>29/2</td>
<td>29/2</td>
<td>29/2</td>
</tr>
<tr>
<td>30/1</td>
<td>30/1</td>
<td>30/1</td>
<td>30/1</td>
<td>30/1</td>
<td>30/1</td>
<td>30/1</td>
</tr>
<tr>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
</tr>
<tr>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
</tr>
<tr>
<td>33/8</td>
<td>33/8</td>
<td>33/8</td>
<td>33/8</td>
<td>33/8</td>
<td>33/8</td>
<td>33/8</td>
</tr>
<tr>
<td>34/7</td>
<td>34/7</td>
<td>34/7</td>
<td>34/7</td>
<td>34/7</td>
<td>34/7</td>
<td>34/7</td>
</tr>
<tr>
<td>35/6</td>
<td>35/6</td>
<td>35/6</td>
<td>35/6</td>
<td>35/6</td>
<td>35/6</td>
<td>35/6</td>
</tr>
</tbody>
</table>

مکان‌ها

اندازه‌‌گیری: انتخاب شده

ضربیت تغییرات
جدول 2. داده‌های استفاده از امکانات رودخانه کارون و محاسبه پارس‌آن

<table>
<thead>
<tr>
<th>شماره</th>
<th>اتصال‌گیری شده</th>
<th>محاسبه شده</th>
<th>نمونه</th>
<th>شماره</th>
<th>اتصال‌گیری شده</th>
<th>محاسبه شده</th>
<th>نمونه</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>Q6</td>
<td></td>
<td></td>
<td></td>
<td>Q5</td>
<td>Q6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>Q8</td>
<td></td>
<td></td>
<td></td>
<td>Q7</td>
<td>Q8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17118</td>
<td>3219</td>
<td>17662</td>
<td>742</td>
<td>3219</td>
<td>17662</td>
<td>742</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>17130</td>
<td>4530</td>
<td>17130</td>
<td>355</td>
<td>4530</td>
<td>17130</td>
<td>135</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>17149</td>
<td>4874</td>
<td>17149</td>
<td>322</td>
<td>4874</td>
<td>17149</td>
<td>92</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>17194</td>
<td>3004</td>
<td>17194</td>
<td>224</td>
<td>3004</td>
<td>17194</td>
<td>224</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>17219</td>
<td>3004</td>
<td>17219</td>
<td>224</td>
<td>3004</td>
<td>17219</td>
<td>224</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>17234</td>
<td>2530</td>
<td>17234</td>
<td>224</td>
<td>2530</td>
<td>17234</td>
<td>224</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>17235</td>
<td>2530</td>
<td>17235</td>
<td>224</td>
<td>2530</td>
<td>17235</td>
<td>224</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>17236</td>
<td>2530</td>
<td>17236</td>
<td>224</td>
<td>2530</td>
<td>17236</td>
<td>224</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>17237</td>
<td>2530</td>
<td>17237</td>
<td>224</td>
<td>2530</td>
<td>17237</td>
<td>224</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>17238</td>
<td>2530</td>
<td>17238</td>
<td>224</td>
<td>2530</td>
<td>17238</td>
<td>224</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>17239</td>
<td>2530</td>
<td>17239</td>
<td>224</td>
<td>2530</td>
<td>17239</td>
<td>224</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>17240</td>
<td>2530</td>
<td>17240</td>
<td>224</td>
<td>2530</td>
<td>17240</td>
<td>224</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>17241</td>
<td>2530</td>
<td>17241</td>
<td>224</td>
<td>2530</td>
<td>17241</td>
<td>224</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>17242</td>
<td>2530</td>
<td>17242</td>
<td>224</td>
<td>2530</td>
<td>17242</td>
<td>224</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>17243</td>
<td>2530</td>
<td>17243</td>
<td>224</td>
<td>2530</td>
<td>17243</td>
<td>224</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17244</td>
<td>2530</td>
<td>17244</td>
<td>224</td>
<td>2530</td>
<td>17244</td>
<td>224</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17245</td>
<td>2530</td>
<td>17245</td>
<td>224</td>
<td>2530</td>
<td>17245</td>
<td>224</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>17246</td>
<td>2530</td>
<td>17246</td>
<td>224</td>
<td>2530</td>
<td>17246</td>
<td>224</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>17247</td>
<td>2530</td>
<td>17247</td>
<td>224</td>
<td>2530</td>
<td>17247</td>
<td>224</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>17248</td>
<td>2530</td>
<td>17248</td>
<td>224</td>
<td>2530</td>
<td>17248</td>
<td>224</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>17249</td>
<td>2530</td>
<td>17249</td>
<td>224</td>
<td>2530</td>
<td>17249</td>
<td>224</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>17250</td>
<td>2530</td>
<td>17250</td>
<td>224</td>
<td>2530</td>
<td>17250</td>
<td>224</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>17251</td>
<td>2530</td>
<td>17251</td>
<td>224</td>
<td>2530</td>
<td>17251</td>
<td>224</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>17252</td>
<td>2530</td>
<td>17252</td>
<td>224</td>
<td>2530</td>
<td>17252</td>
<td>224</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>17253</td>
<td>2530</td>
<td>17253</td>
<td>224</td>
<td>2530</td>
<td>17253</td>
<td>224</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>17254</td>
<td>2530</td>
<td>17254</td>
<td>224</td>
<td>2530</td>
<td>17254</td>
<td>224</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>17255</td>
<td>2530</td>
<td>17255</td>
<td>224</td>
<td>2530</td>
<td>17255</td>
<td>224</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>17256</td>
<td>2530</td>
<td>17256</td>
<td>224</td>
<td>2530</td>
<td>17256</td>
<td>224</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>17257</td>
<td>2530</td>
<td>17257</td>
<td>224</td>
<td>2530</td>
<td>17257</td>
<td>224</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>17258</td>
<td>2530</td>
<td>17258</td>
<td>224</td>
<td>2530</td>
<td>17258</td>
<td>224</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>17259</td>
<td>2530</td>
<td>17259</td>
<td>224</td>
<td>2530</td>
<td>17259</td>
<td>224</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>17260</td>
<td>2530</td>
<td>17260</td>
<td>224</td>
<td>2530</td>
<td>17260</td>
<td>224</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>17261</td>
<td>2530</td>
<td>17261</td>
<td>224</td>
<td>2530</td>
<td>17261</td>
<td>224</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>17262</td>
<td>2530</td>
<td>17262</td>
<td>224</td>
<td>2530</td>
<td>17262</td>
<td>224</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>17263</td>
<td>2530</td>
<td>17263</td>
<td>224</td>
<td>2530</td>
<td>17263</td>
<td>224</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>17264</td>
<td>2530</td>
<td>17264</td>
<td>224</td>
<td>2530</td>
<td>17264</td>
<td>224</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>17265</td>
<td>2530</td>
<td>17265</td>
<td>224</td>
<td>2530</td>
<td>17265</td>
<td>224</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>17266</td>
<td>2530</td>
<td>17266</td>
<td>224</td>
<td>2530</td>
<td>17266</td>
<td>224</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>17267</td>
<td>2530</td>
<td>17267</td>
<td>224</td>
<td>2530</td>
<td>17267</td>
<td>224</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>17268</td>
<td>2530</td>
<td>17268</td>
<td>224</td>
<td>2530</td>
<td>17268</td>
<td>224</td>
<td>40</td>
</tr>
</tbody>
</table>
جدول ۲. داده‌های ایستگاه حریم‌های بر روی رودخانه کرخه و محاسبه‌ی بار رسوپ آن

<table>
<thead>
<tr>
<th>Q_1</th>
<th>Q_b</th>
<th>Q_3</th>
<th>Q</th>
<th>شماره (نمودار)</th>
<th>در ورودی (تن در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>779.9</td>
<td>54</td>
<td>580.8</td>
<td>75</td>
<td>2</td>
<td>375</td>
</tr>
<tr>
<td>917.4</td>
<td>15</td>
<td>521</td>
<td>31</td>
<td>25</td>
<td>174</td>
</tr>
<tr>
<td>894.8</td>
<td>8</td>
<td>508</td>
<td>22</td>
<td>26</td>
<td>167</td>
</tr>
<tr>
<td>977.7</td>
<td>0</td>
<td>288</td>
<td>28</td>
<td>39</td>
<td>164</td>
</tr>
<tr>
<td>731.3</td>
<td>1</td>
<td>336</td>
<td>26</td>
<td>28</td>
<td>156</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>96</td>
<td>22</td>
<td>29</td>
<td>141</td>
</tr>
<tr>
<td>919</td>
<td>0</td>
<td>100</td>
<td>21</td>
<td>50</td>
<td>143</td>
</tr>
<tr>
<td>888.8</td>
<td>118</td>
<td>4912</td>
<td>119</td>
<td>51</td>
<td>107</td>
</tr>
<tr>
<td>871.3</td>
<td>131</td>
<td>18458</td>
<td>138</td>
<td>52</td>
<td>104</td>
</tr>
<tr>
<td>7841.2</td>
<td>775</td>
<td>2444</td>
<td>77</td>
<td>53</td>
<td>81</td>
</tr>
<tr>
<td>190026</td>
<td>309</td>
<td>178051</td>
<td>308</td>
<td>54</td>
<td>99</td>
</tr>
<tr>
<td>988</td>
<td>37</td>
<td>570</td>
<td>87</td>
<td>55</td>
<td>74</td>
</tr>
<tr>
<td>785</td>
<td>50</td>
<td>307</td>
<td>77</td>
<td>56</td>
<td>74</td>
</tr>
<tr>
<td>195069</td>
<td>59</td>
<td>273699</td>
<td>58</td>
<td>57</td>
<td>22</td>
</tr>
<tr>
<td>77777</td>
<td>1418</td>
<td>308777</td>
<td>1418</td>
<td>58</td>
<td>120</td>
</tr>
<tr>
<td>337</td>
<td>17</td>
<td>578</td>
<td>44</td>
<td>59</td>
<td>102</td>
</tr>
<tr>
<td>768</td>
<td>6</td>
<td>234</td>
<td>36</td>
<td>50</td>
<td>103</td>
</tr>
<tr>
<td>950</td>
<td>9</td>
<td>850</td>
<td>59</td>
<td>51</td>
<td>106</td>
</tr>
<tr>
<td>550</td>
<td>9</td>
<td>277</td>
<td>90</td>
<td>52</td>
<td>107</td>
</tr>
<tr>
<td>887</td>
<td>1</td>
<td>27</td>
<td>93</td>
<td>53</td>
<td>108</td>
</tr>
<tr>
<td>113</td>
<td>0</td>
<td>1</td>
<td>93</td>
<td>54</td>
<td>109</td>
</tr>
<tr>
<td>1008</td>
<td>0</td>
<td>1004</td>
<td>31</td>
<td>55</td>
<td>110</td>
</tr>
<tr>
<td>1116</td>
<td>3</td>
<td>1071</td>
<td>32</td>
<td>56</td>
<td>111</td>
</tr>
<tr>
<td>878</td>
<td>1</td>
<td>788</td>
<td>50</td>
<td>57</td>
<td>112</td>
</tr>
<tr>
<td>8299</td>
<td>99</td>
<td>787</td>
<td>58</td>
<td>58</td>
<td>113</td>
</tr>
<tr>
<td>35753</td>
<td>113</td>
<td>37743</td>
<td>112</td>
<td>59</td>
<td>114</td>
</tr>
<tr>
<td>191848</td>
<td>305</td>
<td>187448</td>
<td>111</td>
<td>60</td>
<td>115</td>
</tr>
<tr>
<td>8116</td>
<td>66</td>
<td>879</td>
<td>78</td>
<td>61</td>
<td>116</td>
</tr>
<tr>
<td>87100</td>
<td>70</td>
<td>818</td>
<td>77</td>
<td>62</td>
<td>117</td>
</tr>
<tr>
<td>35753</td>
<td>31</td>
<td>2721</td>
<td>76</td>
<td>63</td>
<td>118</td>
</tr>
<tr>
<td>178727</td>
<td>31</td>
<td>110227</td>
<td>75</td>
<td>64</td>
<td>119</td>
</tr>
<tr>
<td>780</td>
<td>7</td>
<td>394</td>
<td>76</td>
<td>65</td>
<td>120</td>
</tr>
<tr>
<td>1875</td>
<td>9</td>
<td>770</td>
<td>77</td>
<td>66</td>
<td>121</td>
</tr>
<tr>
<td>1015</td>
<td>10</td>
<td>180</td>
<td>78</td>
<td>67</td>
<td>122</td>
</tr>
<tr>
<td>8718</td>
<td>3</td>
<td>181</td>
<td>79</td>
<td>68</td>
<td>123</td>
</tr>
<tr>
<td>1440</td>
<td>0</td>
<td>144</td>
<td>80</td>
<td>69</td>
<td>124</td>
</tr>
<tr>
<td>1601</td>
<td>0</td>
<td>160</td>
<td>81</td>
<td>70</td>
<td>125</td>
</tr>
<tr>
<td>1508</td>
<td>0</td>
<td>150</td>
<td>82</td>
<td>71</td>
<td>126</td>
</tr>
<tr>
<td>35753</td>
<td>32</td>
<td>2808</td>
<td>83</td>
<td>72</td>
<td>127</td>
</tr>
<tr>
<td>178727</td>
<td>32</td>
<td>101227</td>
<td>84</td>
<td>73</td>
<td>128</td>
</tr>
<tr>
<td>780</td>
<td>7</td>
<td>394</td>
<td>85</td>
<td>74</td>
<td>129</td>
</tr>
<tr>
<td>1875</td>
<td>9</td>
<td>770</td>
<td>86</td>
<td>75</td>
<td>130</td>
</tr>
<tr>
<td>1015</td>
<td>10</td>
<td>180</td>
<td>87</td>
<td>76</td>
<td>131</td>
</tr>
<tr>
<td>8718</td>
<td>3</td>
<td>181</td>
<td>88</td>
<td>77</td>
<td>132</td>
</tr>
<tr>
<td>1440</td>
<td>0</td>
<td>144</td>
<td>89</td>
<td>78</td>
<td>133</td>
</tr>
<tr>
<td>1601</td>
<td>0</td>
<td>160</td>
<td>90</td>
<td>79</td>
<td>134</td>
</tr>
</tbody>
</table>
جدول ۴. روابط بار رسوبی و دیب جریان در استگاه‌های اهواز و حمیدیه

<table>
<thead>
<tr>
<th>نام استگاه</th>
<th>بار بستر و دیب جریان</th>
<th>بار مطلق و دیب جریان</th>
<th>حمیدیه</th>
<th>اهواز، بر روی رودخانه کارون</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰۳ Q^0.۲۱ Q^0.۸۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۰ R</td>
<td>۸۰ R</td>
<td>۸۵ R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۴۰۳ Q^0.۷۴ Q^0.۵۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۰ R</td>
<td>۹۰ R</td>
<td>۸۵ R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>حمیدیه، بر روی رودخانه کارون</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۰ Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۵ Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۵ Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۵ Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۵ Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیب جریان (مترمکعب در ثانیه)، Q = بار بستر (تن در روز)، Q = بار مطلق (تن در روز)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱. بار بستر (اندازه‌گیری شده و محاسبه شده) در مقاپل دیب جریان رودخانه ایست فورک

پیشینه منکند.

پیشینه

2. ضریب زاویه توسط کلی و همبستگی برابر ۵/۸ و ثابت در نظر

3. مقدار 'Q' در رودخانه‌های همیقی با پایتخت رودخانه را نمایش داده است، در همه رودخانه‌ها ثابت نیست و به دبی

4. همبستگی ارائه شده است، به دست آورد.

38
شکل ۲. رابطه دبی مواد رسوبی معقل با دبی جریان رودخانه کارون در استگاه اسوخور

شکل ۳. رابطه دبی مواد رسوبی معطل با دبی جریان رودخانه کارون در استگاه حمیدیه
1. استاد عسکری، م. ۱۳۷۶. بررسی عملکرد روش تصحیح شده اینشتیئن در براورد پارکل رسوپ رودخانهای کارون و کرخه در استرس‌های امواز و جمیدی. پایان‌نامه کارشناسی ارشد، رشته تأسیسات آب‌یاری، دانشگاه شهید چمران اهواز.
2. حسینی، م. ۱۳۷۶. پیشنهاد یک روش جدید برای محاسبه انگرال‌های اینشتیئن‌سی. سمینار سیمینار مهندسی رودخانه، دانشگاه شهید چمران اهواز.
3. جعفر فتی امیر آب. ۱۳۷۶. محاسبه پارکل رسوپ با استفاده از روش تصحیح شده اینشتیئن (موسوم به روش Step Method).
4. شفاجی پیستیان، م. ۱۳۷۸. یک روش جدید برای محاسبه شاهد چمران اهواز.