ارائه مدل رياضی
برآورد بار بست و بار کل رسوب با روش تصحیح شده اینشتین

محمود شفاعی بهستانی ۱ و منصور استادعسگری ۲

چکیده
کاربرد روش تصحیح شده اینشتین, توسط دفتر استانداردهای صنعت آب ایران و بانک ملی و وزارت نیرو توصیه شده است. این روش در رودخانه‌های کم عمق نرسیده است. یافته‌های کالیفرنیا از طریق فیزیکی، به روش با روی‌نمایی سطح در تضاد با فیزیکی و تسمح محاسباتی یک مدل ریاضی همگردد است. از این منظره، در این مقاله، مدل همگردد را معرفی می‌کنیم و آن را به شکلی مطابق با تجربه‌ها یکمی‌سازی می‌کنیم و بررسی می‌کنیم. این روش را در رودخانه‌های آکرون و کرکر، داده‌های رسوب و هیدرولوژی اینستیتوهای اهواز و حمیدیه به مدت ۷ سال جمع‌آوری و میزان بار رسوب با مدل محاسبه و تایید انتخاب‌گیری شده محققه کردیم.

میزان تأثیر وقایعی از مدل‌ها به میزان دقت ۷۴ درصد بوده است در برآورد بار رسوب مورد مطالعه قرار گرفت. از این جهت، روش تصحیح شده اینشتین، میزان بار بست را نیز حاصل مطالعه مقایسه‌ای که در دقت روش در برآورد میزان بار بست و سطح لغزشی قرار گرفت. در این مقاله، تمام مدل‌ها و داده‌های جمع‌آوری شده تجزیه و تحلیل حسابی روش و دقت روش در برآورد بار بست و بار کلی رسوب آن را به شکلی است.

واژه‌های کلیدی: رسو، بار بست، بار مطلق، کرک، مقامه

مقدمه
به کلیه دست‌سگنگ و معین که در اثر، چگونه یک آب از نقطه‌های یک مسرد رسانه رسوب اطلاعیه می‌شود. می‌تواند در حال حرفی را بار رسوب، و حکم بیانی این موارد در اینجا را اقتباسی رسوی کند، که بر روی نام نامه می‌شود. قانون به دقت و انتقال رسوبات و روشن‌المحاسبه آن، از

۱. استاد آبیاری، دانشکده کشاورزی، دانشگاه شهید چمران اهواز
۲. کارشناس ارشد آبیاری، امور مهندسی ورودخانه، شرکت مهندسی مشاور داراب، اهواز

۲۹
امضوعات مهم ومطرح در علم هیدرولیک است. در دهه‌های
امیر رابطه‌های معنی‌داری در این زمینه ارائه شده است. تعداد
از این روش فقط بسترسی، تعداد فقط بالا مغلوبیت، و تعداد
نیز مجموعه بسترسی و رابطه را، که بار موضوع بسترس نامیده
می‌شود، پیوسته می‌کند. عدم آن روش از بررسی در کار
آزمایشگاهی با گردیده، کاربرد آنها همیشه در عمل مورد
سؤال بوده است.

یکی از روشهای پراوردگی بعد از رسوب، روش تصحیح شده
این‌یکی است که توسط کلیسی و مهربیان (5)، براساس روش
اصلی این‌یکی (17) گرفته و عملکرد آن در روشهای
های در海水 در کشور آمریکا، مورد بررسی قرار گرفته است. در این
روباه برای تبدیل کردن داده‌ها به دست آمده و اندازه‌گیری
شده، ضریب ψ روش این‌یکی به طور مصنوعی به نص کانه
یافته است.

آزمایشگاهی و روش هوش‌یافته صفر علت دقت بررسی نیرو
مورد توصیه قرار گرفته است (3)، و با توجه به وقتهای بی‌روش
به خاطر استفاده از منحنی‌های متعدد، و آن چاک عملکرد این
روش در هیچ یک از روشهای این کشور مورد بررسی قرار
گرفته، این پوشهای اندازه‌گیری را استفاده کرده است.
در این مطالعه، ابتدا برای
سپس داده‌های پای سطح رودخانه‌های کارون و کرخه در
ایستگاه‌های خوزستان و همدانی، و داده‌های پای سطح رودخانه
ایستگاه‌های آمریکا، با روش تصحیح شده این‌یکی
دقت روش پرسسه گردید.

روش تصحیح شده این‌یکی
در روشهای این‌یکی، مقدار دی‌ای از رسوب مطابق در
واحد ضریب روسپ مانند ورودی تریاب‌های شده (Q_m)، از
رابطه‌هایی به دست می‌آید (5 و 6):

\[Q_m = \sum Q_{ai} = C_m \cdot \psi \cdot D_m \]

که در آن Dm از گونه‌های دی‌ای از رسوب، شاید و روسپ از
دزه و شیب خط انزیم گریزی وایش می‌باشد. مقدار با
\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

و

\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

که در آن Dm از گونه‌های دی‌ای از رسوب، شاید و روسپ از
دزه و شیب خط انزیم گریزی وایش می‌باشد. مقدار با
\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

و

\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

که در آن Dm از گونه‌های دی‌ای از رسوب، شاید و روسپ از
دزه و شیب خط انزیم گریزی وایش می‌باشد. مقدار با
\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

و

\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

که در آن Dm از گونه‌های دی‌ای از رسوب، شاید و روسپ از
دزه و شیب خط انزیم گریزی وایش می‌باشد. مقدار با
\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]

و

\[
\psi = \frac{\left(\frac{S_{ai}}{\beta} - 1 \right)}{R} \frac{D_m}{S_{ai}} \]
ارائه مدل رياضي برآوره بر بستر و بارکل رسوب با روش تصحیح شده ی ایستگاه

با حل محدودت جا از گنجانگین منحنی‌های متعدد صرف نظر شده است. خواندنگان می‌توانند به یکی از منابع 1, 2, 3, 4, 5, 6, 7 و 11 مراجعه نمایند.

مواد و روش‌ها

مدل ریاضی

استفاده از 20 ردار و مدل‌های متعدد در روش تصحیح شده نسخه بسیار و متفاوت است و محاسبات در دقت لازم برخوردار نخواهد بود. از این رو، یک مدل ریاضی ارائه شده است که ضمن سه‌گیره در محاسبات، دقت لازم را ارائه داده. این مدل به جای استفاده از نسخه‌های جدید، سه‌گیره مدل D10 و D50 و D90 داشته است. اندماج با D50 و D90 به روش کلی جبری ضرر توزیع نیمه لگاریتمی دانسته تا در روابط چرخان استحکام می‌گردد:

\[D_{10} = \exp \left(D_{10} \left(e^{\frac{B_{10}}{2} - \frac{B_{11}}{2}} \left(\log D_{10} \right) - \log D_{11} \right) \right) \]

\[D_{50} = \exp \left(D_{10} \left(e^{\frac{B_{10}}{2} - \frac{B_{11}}{2}} \left(\log D_{10} \right) - \log D_{11} \right) \right) \]

\[D_{90} = \exp \left(D_{10} \left(e^{\frac{B_{10}}{2} - \frac{B_{11}}{2}} \left(\log D_{10} \right) - \log D_{11} \right) \right) \]

که در آن D10 و B11 و B11 دانسته‌های مورد استفاده در مشخصه‌های آستانه و دبی داشته و D50 و D90 به روش داده می‌شود.

\[E = \frac{Q_{m}}{h} \left(Q_{b} + J_{1} \right) \]

\[Q_{t} = I_{1} \left(\frac{P_{m} J_{1} + J_{1}^{1}}{P_{m} J_{1} + J_{1}^{1} + 1} \right) \]

\[I_{1} = \int_{E}^{1/a} \left(\frac{1}{y} \right) \left(\frac{y}{E} \right) dy \]

\[I_{y} = \int_{E}^{1/a} \left(\frac{1}{y} \right) \left(\frac{y}{E} \right) \log y dy \]

\[J_{1} = \int_{E}^{1/a} \left(\frac{1}{y} \right) \left(\frac{y}{E} \right) dy \]

\[J_{y} = \int_{E}^{1/a} \left(\frac{1}{y} \right) \left(\frac{y}{E} \right) \log y dy \]

\[v = \frac{1}{5} \times 10^{-4} \left(\log T_{0} \right)^{1} + 10^{-4} \log T_{0} \]

\[Q_{b} = I_{1} \left(P_{m} J_{1} + J_{1}^{1} \right) \]

که در آن T0 درجه حرارت آب برحسب سانتی‌گراد و T0 لگاریتمی برحسب متریک در ثانیه می‌باشد. M0 در رابطه با توزیع لگاریتمی اینشتین برحسب سه‌گیره (0) ضرایب زیراوات و برحسب (9) از منحنی ارائه شده توسط اینشتین به دست می‌آید. در مطالعه‌های اینشتین، با توجه به دست‌رسی و معادلات زیر
چایگزین این منحنی شده است:

\[x = \sqrt{\frac{1}{17}\log \left(\frac{1}{\sqrt{v}} \right)} \quad \text{معنی} \quad 0 < v \leq 1 \]

\[x = \frac{1}{\sqrt{v}} \quad \text{معنی} \quad v > 1 \]

راستگر شدت بار بستر \(\phi \) و شدت نش (\(\psi \)) که توسط اینشانی به صورت منحنی ارائه شده \((7)\), نیز به وسیله معادله \(17\) چایگزین شده است:

\[\phi = \exp \left[-\frac{1}{\sqrt{v}} \sqrt{\psi} \right] \quad \text{معنی} \quad 0 \leq \psi \leq v \]

محاسبه \(z' \) در مدل با دو روش، یکی روش آزمون و خط و دیگری روش کلی، اساساً بررسی‌های باشد. در روش آزمون و خط، مقدار \(z' \) طوری است که تغییر شود که تقارن رابطه ۱۲ برقرار گردد. بنابراین ترتیب ابتدا می‌باشتند مقدار \(z' \) و \(z'' \) را تعیین کرد. این مقدار می‌تواند بار صورت انتگرال‌هایی است که به مدل رایانه‌ای با یکی از روش‌های عادی حل گردد. از طرفی در روش‌های عمیق و یا بستر ماسی سایز دیگر کارهای خاصی ندارند و برای حل مسائل به صورت مساحی مقدار انتگرال ضرایب مساحی به نشانه می‌گردد. از جمله این مسایل می‌توان به مسائلی که بالا ارائه ۱۸ ارائه داده شده می‌باشد. به نظر می‌رسد این مشکل، صورت‌های فوق به صورت زیر نوشته می‌شود:

\[I_1 = \int_E \left(\frac{1}{y} \right) \cdot \int_E \left(\frac{1}{y} \right) \cdot dy + \int_E \left(\frac{1}{y} \right) \cdot dy \quad \text{معنی} \quad 0 < v \leq 1 \]
ارائه مدل ریاضی برآورد پیمانه و پردازش روابط با روش تصحیح شده اینشتین

داه‌های استفاده شده

برای بررسی دقت روش تصحیح شده اینشتین، داده‌های سه رودخانه به شرح زیر جمع‌آوری و مورد استفاده قرار گرفت:

الف) استانگاه اهر-رودخانه کارون. تعداد 86 نمونه داده‌های رسواب موجود، که به مدت هفت سال در سال‌های 1367 1372 برداشت شده است. نمونه‌هایی از این رودخانه که همه زمان با دیگر جریان‌ها مشخصین رسواب بستر و معلام، و هم‌چنین سیان سطح آب اندوزگیری شده است.

ب) استانگاه حمیدیه-رودخانه کرخه. تعداد 38 نمونه رسواب موجود با مشخصاتی که اشاره شد، و در سال‌های 1367 1374 برداشت شده است.

ج) داده‌های بار بستر و رودخانه ایست در کرکرد اکثر آنها متوسط است. توضیح داده‌های این پایگاه و پایگاه اکثر آنها متوسط است. سایر موارد آب و برق استان خوزستان برداشت شده در اختیار توسط دانشگاه تهران قرار گرفته است. جریان بیشتر، و کلیه داده‌های موجود استفاده را ۱۱ پایان نامه استاد عضوی (۱) استخراج کرد.

مقدار ρ, J, k, σ, ω را مقداری از روابط ۲۰ و ۲۱ به دست می‌آیند.

در روش کلی، مقدار ρ براساس سرعت سطح محاسبه می‌شود. بدین ترتیب که، ابتدا از روش آزمون و خطاهای ρ برای اندازه‌گیری می‌گیریم. به‌طور کلی، با آن است، تعیین می‌گردد و سپس از رابطه ۲۲:

\[\frac{\rho}{\rho'} = \left(\frac{\alpha_1}{\alpha_2} \right)^{0.75} \]

مقدار ρ برای سایر اندازه‌های دیگر محاسبه می‌شود. در این رابطه، ρ و ρ' سرعت سطح، به ترتیب برای اندازه‌های دیگر و اندازه‌های دیگر می‌باشد. در مدل، مقدار ω یا سرعت سطح از رابطه ای با صورت زیر استفاده می‌شود:

\[\omega = \sqrt{\frac{10.78 \cdot 10^7 + 3.78 \cdot 10^3}{D_1}} \]

که D1 اندازه برنسبس متر، 10.78 سرعت سطح ذره، 3.78 سرعت سطح ذره 10.78 برنسبس متر در ثانیه است. رابطه ۲۳ ρ برای ذرات با چگالی 2/65 و 2/9/18 در دسته‌بندی می‌باشد.

مقدار پارامتر ρ سیستمیک برای یک اندازه‌گیری مشخص در مدل، از یکی از روابط ۶ یا ۷ برحسیب اینکه مقدار پارامتر مسلسل با دیگر است.

برای آن اندازه‌گیری، این گروه با پیچیده‌های نسبتاً محاسبه می‌شود.
مقداری در محدوده دقت خویری هستند (۱۲). شکل‌های داده‌های اندوزه‌گیری شده و محاسبه‌شده بار در مقایسه بی‌جزیان نشان می‌دهد.

بارکل رسوب

مقدار بارکل رسوب در روش تصمیم‌گیری مشهود است. بارکل رسوب با روش تصمیم‌گیری مشهود ایشتنشیون عوامل آب و هوا و نیز محاسبه‌شده اثر بارکل رسوب با روش تصمیم‌گیری مشهود ایشتنشیون حجمی و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون است. این نتایج با داده‌های داده‌های نشان می‌دهند.

نتیجه‌گیری

استقلال و ارتباط بین داده‌های داده‌های داده‌های بارکل رسوب با روش تصمیم‌گیری مشهود ایشتنشیون عوامل آب و هوا و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون حجمی و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون است. این نتایج با داده‌های داده‌های نشان می‌دهند.

بارکل رسوب

به منظور مقایسه نتایج حاصله داده‌های اندوزه‌گیری شده بارکل رسوب، مقدار بارکل رسوب با روش تصمیم‌گیری مشهود ایشتنشیون عوامل آب و هوا و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون حجمی و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون است. این نتایج با داده‌های داده‌های نشان می‌دهند.

نتیجه‌گیری

استقلال و ارتباط بین داده‌های داده‌های داده‌های بارکل رسوب با روش تصمیم‌گیری مشهود ایشتنشیون عوامل آب و هوا و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون حجمی و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون است. این نتایج با داده‌های داده‌های نشان می‌دهند.

نتیجه‌گیری

استقلال و ارتباط بین داده‌های داده‌های داده‌های بارکل رسوب با روش تصمیم‌گیری مشهود ایشتنشیون عوامل آب و هوا و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون حجمی و نیز محاسبه‌گری مشهود با روش تصمیم‌گیری مشهود ایشتنشیون است. این نتایج با داده‌های داده‌های نشان می‌دهند.
جدول 1. داده‌هاي رودخانه‌اي است نورک و محاسبه بار بستر بر روشي اصلاح شده ايشتين

<table>
<thead>
<tr>
<th>شماره</th>
<th>ضریب 1/5</th>
<th>ضریب 2/4</th>
<th>ضریب</th>
<th>نمونه (مترمکعب در دسته)</th>
<th>سرعت</th>
<th>محاسبه شده بار بستر</th>
<th>محاسبه شده بار بستر اصلاح شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/15</td>
<td>0/3</td>
<td>0/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/14</td>
<td>0/4</td>
<td>0/8</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/13</td>
<td>0/5</td>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/12</td>
<td>0/6</td>
<td>1/2</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/11</td>
<td>0/7</td>
<td>1/4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/10</td>
<td>0/8</td>
<td>1/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/9</td>
<td>0/9</td>
<td>1/8</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/8</td>
<td>1/0</td>
<td>2/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/7</td>
<td>1/1</td>
<td>2/2</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/6</td>
<td>1/2</td>
<td>2/4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/5</td>
<td>1/3</td>
<td>2/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>2/8</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/3</td>
<td>1/5</td>
<td>3/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/2</td>
<td>1/6</td>
<td>3/2</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1/1</td>
<td>1/7</td>
<td>3/4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

مادگین
انحراف‌های ممکن
ضریب تغییرات
جدول 2. داده‌های ایستگاه اهواس بر روی رودخانه کارون و محاسبه بار رسوپ آن

<table>
<thead>
<tr>
<th>شماره</th>
<th>محاسبه شده</th>
<th>اندازه‌گیری شده</th>
<th>شماره (منبع‌کبندی دارایی)</th>
<th>محاسبه شده</th>
<th>اندازه‌گیری شده</th>
<th>شماره (منبع‌کبندی دارایی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1333</td>
<td>156922</td>
<td>17</td>
<td>86098</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>184</td>
<td>22</td>
<td>550</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>965</td>
<td>33</td>
<td>901</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>965</td>
<td>33</td>
<td>901</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>965</td>
<td>33</td>
<td>901</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

شماره (منبع‌کبندی دارایی)
جدول 2. داده‌های ایستگاه حمیدیه بر روی رودخانه کرخه و محاسبه پارامتر آن

<table>
<thead>
<tr>
<th>شماره شده</th>
<th>محاسبه شده</th>
<th>اندوزه‌گیری شده (تن در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₁</td>
<td>Q₂</td>
<td>Q₃</td>
<td>Q</td>
<td>Q₁</td>
<td>Q₂</td>
<td>Q₃</td>
<td>Q</td>
<td>Q₁</td>
</tr>
<tr>
<td>7729</td>
<td>52</td>
<td>7008</td>
<td>75</td>
<td>22</td>
<td>131</td>
<td>159</td>
<td>52</td>
<td>7008</td>
</tr>
<tr>
<td>197</td>
<td>5</td>
<td>64</td>
<td>31</td>
<td>25</td>
<td>73</td>
<td>154</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>422</td>
<td>8</td>
<td>544</td>
<td>22</td>
<td>26</td>
<td>87</td>
<td>142</td>
<td>8</td>
<td>544</td>
</tr>
<tr>
<td>394</td>
<td>6</td>
<td>256</td>
<td>28</td>
<td>27</td>
<td>249</td>
<td>130</td>
<td>6</td>
<td>256</td>
</tr>
<tr>
<td>323</td>
<td>1</td>
<td>231</td>
<td>26</td>
<td>36</td>
<td>231</td>
<td>130</td>
<td>1</td>
<td>231</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>90</td>
<td>29</td>
<td>39</td>
<td>231</td>
<td>130</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>199</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>199</td>
<td>0</td>
</tr>
<tr>
<td>5808</td>
<td>118</td>
<td>144</td>
<td>51</td>
<td>37</td>
<td>2379</td>
<td>137</td>
<td>5808</td>
<td>118</td>
</tr>
<tr>
<td>2116</td>
<td>131</td>
<td>162</td>
<td>52</td>
<td>39</td>
<td>2407</td>
<td>132</td>
<td>2116</td>
<td>131</td>
</tr>
<tr>
<td>7114</td>
<td>275</td>
<td>374</td>
<td>37</td>
<td>49</td>
<td>2355</td>
<td>134</td>
<td>7114</td>
<td>275</td>
</tr>
<tr>
<td>1904</td>
<td>359</td>
<td>1705</td>
<td>39</td>
<td>44</td>
<td>2407</td>
<td>131</td>
<td>1904</td>
<td>359</td>
</tr>
<tr>
<td>822</td>
<td>30</td>
<td>87</td>
<td>159</td>
<td>159</td>
<td>2407</td>
<td>131</td>
<td>822</td>
<td>30</td>
</tr>
<tr>
<td>1868</td>
<td>50</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>2407</td>
<td>131</td>
<td>4868</td>
<td>50</td>
</tr>
<tr>
<td>2764</td>
<td>50</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>2407</td>
<td>131</td>
<td>2764</td>
<td>50</td>
</tr>
<tr>
<td>7264</td>
<td>50</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>2407</td>
<td>131</td>
<td>7264</td>
<td>50</td>
</tr>
<tr>
<td>113</td>
<td>0</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>1088</td>
<td>0</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>4902</td>
<td>0</td>
</tr>
<tr>
<td>1155</td>
<td>3</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>1155</td>
<td>3</td>
</tr>
<tr>
<td>598</td>
<td>1</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>598</td>
<td>1</td>
</tr>
<tr>
<td>8544</td>
<td>99</td>
<td>854</td>
<td>854</td>
<td>854</td>
<td>854</td>
<td>854</td>
<td>8544</td>
<td>99</td>
</tr>
<tr>
<td>75496</td>
<td>133</td>
<td>75496</td>
<td>75496</td>
<td>75496</td>
<td>75496</td>
<td>75496</td>
<td>75496</td>
<td>133</td>
</tr>
<tr>
<td>101948</td>
<td>227</td>
<td>101948</td>
<td>101948</td>
<td>101948</td>
<td>101948</td>
<td>101948</td>
<td>101948</td>
<td>227</td>
</tr>
<tr>
<td>21388</td>
<td>456</td>
<td>21388</td>
<td>21388</td>
<td>21388</td>
<td>21388</td>
<td>21388</td>
<td>21388</td>
<td>456</td>
</tr>
<tr>
<td>28357</td>
<td>920</td>
<td>28357</td>
<td>28357</td>
<td>28357</td>
<td>28357</td>
<td>28357</td>
<td>28357</td>
<td>920</td>
</tr>
<tr>
<td>37500</td>
<td>1331</td>
<td>37500</td>
<td>37500</td>
<td>37500</td>
<td>37500</td>
<td>37500</td>
<td>37500</td>
<td>1331</td>
</tr>
<tr>
<td>17638</td>
<td>51</td>
<td>17638</td>
<td>17638</td>
<td>17638</td>
<td>17638</td>
<td>17638</td>
<td>17638</td>
<td>51</td>
</tr>
<tr>
<td>1877</td>
<td>2</td>
<td>1877</td>
<td>1877</td>
<td>1877</td>
<td>1877</td>
<td>1877</td>
<td>1877</td>
<td>2</td>
</tr>
<tr>
<td>3504</td>
<td>3</td>
<td>3504</td>
<td>3504</td>
<td>3504</td>
<td>3504</td>
<td>3504</td>
<td>3504</td>
<td>3</td>
</tr>
<tr>
<td>17598</td>
<td>14</td>
<td>17598</td>
<td>17598</td>
<td>17598</td>
<td>17598</td>
<td>17598</td>
<td>17598</td>
<td>14</td>
</tr>
<tr>
<td>1124</td>
<td>100</td>
<td>1124</td>
<td>1124</td>
<td>1124</td>
<td>1124</td>
<td>1124</td>
<td>1124</td>
<td>100</td>
</tr>
<tr>
<td>24345</td>
<td>21</td>
<td>24345</td>
<td>24345</td>
<td>24345</td>
<td>24345</td>
<td>24345</td>
<td>24345</td>
<td>21</td>
</tr>
<tr>
<td>3423</td>
<td>70</td>
<td>3423</td>
<td>3423</td>
<td>3423</td>
<td>3423</td>
<td>3423</td>
<td>3423</td>
<td>70</td>
</tr>
<tr>
<td>2983</td>
<td>49</td>
<td>2983</td>
<td>2983</td>
<td>2983</td>
<td>2983</td>
<td>2983</td>
<td>2983</td>
<td>49</td>
</tr>
<tr>
<td>4599</td>
<td>90</td>
<td>4599</td>
<td>4599</td>
<td>4599</td>
<td>4599</td>
<td>4599</td>
<td>4599</td>
<td>90</td>
</tr>
<tr>
<td>9297</td>
<td>150</td>
<td>9297</td>
<td>9297</td>
<td>9297</td>
<td>9297</td>
<td>9297</td>
<td>9297</td>
<td>150</td>
</tr>
<tr>
<td>9175</td>
<td>130</td>
<td>9175</td>
<td>9175</td>
<td>9175</td>
<td>9175</td>
<td>9175</td>
<td>9175</td>
<td>130</td>
</tr>
<tr>
<td>5589</td>
<td>45</td>
<td>5589</td>
<td>5589</td>
<td>5589</td>
<td>5589</td>
<td>5589</td>
<td>5589</td>
<td>45</td>
</tr>
<tr>
<td>5112</td>
<td>50</td>
<td>5112</td>
<td>5112</td>
<td>5112</td>
<td>5112</td>
<td>5112</td>
<td>5112</td>
<td>50</td>
</tr>
<tr>
<td>1546</td>
<td>60</td>
<td>1546</td>
<td>1546</td>
<td>1546</td>
<td>1546</td>
<td>1546</td>
<td>1546</td>
<td>60</td>
</tr>
<tr>
<td>7244</td>
<td>40</td>
<td>7244</td>
<td>7244</td>
<td>7244</td>
<td>7244</td>
<td>7244</td>
<td>7244</td>
<td>40</td>
</tr>
<tr>
<td>1575</td>
<td>60</td>
<td>1575</td>
<td>1575</td>
<td>1575</td>
<td>1575</td>
<td>1575</td>
<td>1575</td>
<td>60</td>
</tr>
</tbody>
</table>
جدول ۶. روابط بار رسوبی و دی ایجادی در استگاه‌های امواز و حمیدیه

| بار بستر و دی ایجادی | بار معلق و دی ایجادی | انام استگاههای امواز، بر روی رودخانه کارون
| Q۱ = 0/۰۲۱Q۱۷/۱۸ | Q۲ = 0/۰۱۷۵Q۱۷/۱۸ | Q۰ = 0/۰۹۶Q۱۷/۱۸
| R۱ = 0/۹۹ | R۲ = 0/۸۸ | R۰ = 0/۸۸
(۸۰ نمونه)

حمیدیه، بر روی رودخانه کرخه

| Q۱ = 0/۰۹۹Q۱۷/۱۸ | Q۲ = 0/۰۹۷Q۱۷/۱۸ | Q۰ = 0/۰۷۱Q۱۷/۱۸
| R۱ = 0/۹۹ | R۲ = 0/۹۵ | R۰ = 0/۷۳
(۸۴ نمونه)

۱. بار بستر (اندازه‌گیری شده و محاسبه‌شده) در مقایسه دی ایجادی رودخانه، ایستاده ایست است

۲. ضریب Q۰ که توسط کلی و همیشه برابر ۵/۰ و ثابت در نظر گرفته شده است، در همه رودخانه‌ها ثابت نیست و به دی ایجادی جریان بستگی دارد.

۳. مقدار Q۰ در رودخانه‌های امیرآباد، رودک و رودخانه خزرستان، به خطرات اعتیاد داده‌های ایستاده جریان مورد نیاز، از ورشکستگی ممکن تاثیر می‌گذارد. درآمده برای کاهش می‌بخشی از کمک‌های مالی یا مطالعه تحقیق و قدردانی می‌شود.

۴. کاربرد روش صحیح شده ایجادیت در استگاه‌های امواز و

۳۸
شکل ۲. رابطه دبی مواد رسوبی متعلق با دبی چرخان رودخانه کارون در استفاده از هوای واتر

شکل ۳. رابطه دبی مواد رسوبی متعلق با دبی چرخان رودخانه کارون در استفاده از هوای واتر.
منابع مورد استفاده

1. استاد علی، م. 1376. بررسی عملکرد روش تصحیح شده اینشتین در پرآورد بار کل رسوب رودخانه‌های کارون و کرخه در استگاه‌های اهواز و طرابزون. پایان نامه کارشناسی ارشد، رشته تأسیسات آبیاری، دانشگاه شهید چمران اهواز.

2. حیاتی، م. 1376. پیش‌شتاب‌یک روش عددی مربوط به محاسبه انتگرال‌های اینشتین، سومین سمینار مهندسی رودخانه، دانشگاه شهید چمران اهواز. (Step Method)

3. دفتر فنی امور آب، 1376. محاسبه بارکل رسوب با استفاده از روش تصحیح شده اینشتین، 440 صفحه.

4. شفادی بیضان، م. 1378. هدایا، رسوب، انتشارات دانشگاه شهید چمران اهواز، 290 صفحه.

