ویژگی‌های جذب سطحی روى در برخی از خاک‌های زیرکشت برنج استان فارس

چکیده

از آن جا که زیست‌پذیری روى در خاک‌های معدنی (غرق‌آمیزی و غیر غرق‌آمیزی) تاچیز می‌باشد، بررسی دقیق فرآیندهایی که باعث ایجاد روى در خاک می‌شود اهمیت ویژه‌ای دارد. لذا در یک مطالعه از امپاشگاهی، ویژگی‌های جذب سطحی روى در مشت خاک آمکی زیرکشت برنج، با خصوصیات نیزیکی و شیمیایی متغیر محور بررسی قرار گرفت، و برازش داده‌های جذب توسط هم‌دهانه‌ای فرنولنیج و رانگ‌مری ارزیابی شد. در ایران آزمایش دوگرم خاک رای ۲۲ ساعت با ۸۰ میلی‌لیتر محلول ۱/۰ مول رکسیم کلرید محتوی ۰–۵۰ میلی‌گرم روى در لیتر به‌حال تعادل رسیدند. نتایج آزمایش‌های پیوسته و تکراری روى در محلول تعادل، به عنوان روى جذب شده منظور گردید. جذب سطحی روى با شکل خنثی مخلوط روى فرنولنیج قابل پیش‌بینی بود. علاوه بر آن، از برازش داده‌های جذب این عنصر با هم دهانه‌ای یا درست کردن در سطحی روى، قابل قبولی و قابلیت مشابه به صورت مناسب با انرژیی بیشتر به‌دلیل از بین بردن غلظت‌های زیاد محلول تعادل (مرکز) بود. بنابراین، به ضرورت نظر می‌رسد که به دست آمده، ممکن است به‌وسیله روش مدل‌سازی از امکانات برخوردار باشند. حاصل‌های این مطالعه جذب سطحی روى در محلول دوم حاصل از هم‌دهانه‌ای، رپینور (۰/۰) با نفوذی بررسی کرده که تأثیر ماده‌های فنری نسبت به بیلی‌منگی‌های قابل استفاده محسون شد و با نفوذی نیز با کانونیت هم‌ساخته نشان داد.

واژه‌های کلیدی: هم‌دهانه‌ای، فرنولنیج، هم‌دهانه‌ای لانگ‌موری، جذب کربنات، کربنات کلسیم، تبدیل کانونیت

مقدمه

کم‌روی‌های یکی از شاخص‌های کمبودهای عنصر غذایی کامیک‌کاری نکردند، خاک‌های آمکی و غیر آمکی و میکرو‌باکتری‌های زیرکشت برنج به حساب می‌آید. علل اصلی آن کم

1. استاد حاکم‌شناسی، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی سابق کارشناسی ارشد حاکم‌شناسی، دانشکده کشاورزی، دانشگاه شیراز

71
نکته شایان این است که هم‌اکنون جذب لانگموری (معادله‌ها ۲ و ۴) به علت اهمیت فیزیکی و ثابت آن بوده.

روی هم‌اکنون لانگموری ارتباط مثبت و معنی‌دار داشته است.

در اراضی غربی (شالرای)، این مقدار از درصد تجاوز نمی‌کند. این موضوع معول‌تر نسبتی زیاد خاک‌های آهکی در این‌رود بوده است (۲ و ۴). با این حال، محققان یاد کرده‌اند که باعث جذب روی در خاک می‌شود به وسیله مشخص تپند. بدین‌و‌این‌دست درک صحیح و شناخت بهتر مکانیسم‌ها

به‌عنوان قطعی قابلیت استفاده این انرژی را در شرایط مختلف، دیگری برآورده نمی‌تواند. به‌طور کلی، به‌نظر می‌رسد جذب سطحی و یا روابط زیان به صورت هیدروکسید و کربنات، و یا محبوب‌شنده آن در شیکم‌های بلوی‌کننده‌ها، از

عوامل اصلی کمی قابلیت استفاده روی در خاک‌های آهکی

(غربی و غربی‌تر) به‌حساب می‌آید (۲ و ۴).

از هم‌اکنون جذب، برای مقاوم‌الخودنتی نگهداری روی در خاک استفاده شده است. این هم‌اکنون رابطه میان جذب سطحی روی و غلظت پوستی آن را در محول تعلل‌نشان می‌سازد. تاکنون معادله‌های مختلط برای توصیف و پیان رابطه پیشنهاد

گردد، است. چک در محدوده فورندریج (معادله‌ها ۱ و ۲) انجام می‌شود.

(معادله ۲) بیش از همه مورد استفاده واقع شده است:

\[X = kC^a \]

\[X = \frac{KbC}{(1 + KC)} \]

در این معادله، X مقدار روی جذب شده (میلی‌گرم در کیلوگرم) خاک C غلظت نهایی روی در محول تعلل‌ناپذیر (میلی‌گرم در لیتر) و n و k مقدار برش دوی می‌باشد. در عمل، معنی‌‌الاً از شکل‌های خطی این دو معادله به منظور بررسی داده‌ها استفاده می‌شود:

\[\log X = \log k + \frac{1}{n} \log C \]

\[\frac{C}{X} = \frac{1}{Kb} + \left(\frac{1}{b} \right) C \]

ابهام‌برداری و سپس پرای ۳۰ روز در معرض هوای نگهداریت به‌دست آمده است. در مقایسه با خاک خاک که برای ۱۵ روز به‌صورت غربی نگهداری شده است. کمتر می‌باشد. کیان و اسکی (۳) می‌گویند که قدرت برگنگ با داده‌آمیزی جذب روی هم‌اکنون لانگموری ارتباط مثبت و معنی‌دار داشته است.
مواد و روش‌ها

خاک‌های مورد استفاده در این تحقیق، از عمق صفر تا 30 سانتی‌متری اراضی شلوک کاری شده است. فرسایه‌های بیش از گروهی، این خاک‌ها که برای سال‌های طولانی زیر زمین بوده‌اند، پس از اتمام آنها از وسیله‌های بسیاری در دو میلی‌متری عبور داده شده‌اند. بعضاً از خصوصیات فیزیکی و شیمیایی، از قبیل حجم مکانیکی، روش میدرومتر (۶)، آماده آلی به روش وایک و براک (۲۷)، پ. هاش خمیر اصلاح توسط الکترود شیمیایی، ظرفیت تیتابال کاتیونی به وسیله‌های جوانشینی کاتیونها با استاد سدیم (۸)، کریدات کلسیم معدال به روش خشک کردن با آسید کلرید بک (۲۲) تیتابال، ضمانتاً صفر و روی قابل جذب به وسیله کریدات سدیم (۲۴) و در طی بی یا (۲۳) از آنی اول عصاره گیری شده و غلتگی آنها به ترتیب استفاده از دستگاه رنگاسیجی و جذب آنها تیتابال (جدول ۱.)

تعداد دو گرم خاک در داخل لوله سانتریفیوزی ریخته، به آن ۴۰۰ میلی‌لیتر از محلول‌های رنگ با هشت خلفیت (۶، ۲۰)، ۱۰۰۰، ۳۰۰۰ و ۵۰۰۰ میلی‌گرم در لیتر) به صورت سولفات روی و دو طبقه نلون (به منظور جلوگیری از ریز چنانگاهان) اضافه شده. در این باید نگاه داشت که قدرت جذب می‌تواند به مقدار ۲۰ میلی‌گرم در متر مکانیکی تئوری جذب خاک را در بافت‌ها و در قسمت‌های مختلف می‌تواند بیشتر از بقیه‌ها باشد. در این روش، در فاز اول، محلول‌های رنگ در کلسیم کلرید ۵۰ میلی‌گرم به لوله می‌رسانده و به روی تیتابال خاک می‌ردد، سپس به مدت ۲ ساعت در دمای ۵۵ درجه سانتی‌گراد، مجدداً به مدت ۲۰ دقیقه دیگر به هم زده شده، پس از آن لوله‌ها به مدت ۵ دقیقه در حدود ۹۰۰ گرم سانتریفیوزی و
<table>
<thead>
<tr>
<th>جمعه</th>
<th>1/8</th>
<th>8/30</th>
<th>2/8</th>
<th>6/8</th>
<th>12/1</th>
<th>12/4</th>
<th>20</th>
<th>14/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنجشنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>شنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>جمعه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>پنجشنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>شنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>جمعه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>پنجشنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>شنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>جمعه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>پنجشنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
<tr>
<td>شنبه</td>
<td>1/8</td>
<td>12/1</td>
<td>8/30</td>
<td>1/8</td>
<td>6/8</td>
<td>12/1</td>
<td>12/4</td>
<td>20</td>
</tr>
</tbody>
</table>
فلوئت نهایی روش در محلول شعل دل (میلی گرم در لیتر)

شکل 1. پرایش داده‌ها با می دماي جذب سطحی فروندنیج در خاک‌های 1 تا 8
پارامتر معادله ۶ در جدول ۳ نشان داده شده است. در سطح اول، هیدرومافی جذب، مربوط به جذب روی در غلظت‌های کم (پنج میکرونگ در میلی لیتر)، و سطح دوم مربوط به جذب این عصر در غلظت‌های بیشتر است. وجود دو سطح در هیدرومافی لانگ مویر، محتمل است تا بیانگر دو محل با دو مکانیسم مشخص با میل ترکیب متفاوت برای جذب روی است. ثابت می‌ماند با انرژی یوندی در سطح اول (۶)، به مرحله‌هایی از لایه مناسب با انرژی یوندی در سطح دوم منحنی (۷) می‌باشد (جدول ۳). این بدان معنی است که در غلظت‌های کم روی محلول تعداد این انتقال با انرژی یوندی جذور می‌شود. از طرفی دیگر، داکتر جذب در سطح اول منحنی (۸) به مرحله کمتر از سطح دوم (۹) است (جدول ۳). بنابراین دیگر گچ مرداد روی جذب به سطح اول کمتر از قسمت درست یا تجزیه یوندی نسبت به قسمت دوم است. اما انتتقی یوندی بیشتره نسبت به قسمت دوم نکه‌دار است. برای مثال، داکتر جذب روی در سطح اول در خاک‌های ۱۰ و ۷ به ترتیب، ۶۵/۶ و ۷۴/۵ درصد سطح تعداد دوم دست یافت. اما انتتقی یوندی بسیاری بیشتر بوده که محله‌های بیشتری در بخش اول و دوم هیدرومافی لانگ مویر، به ترتیب از نظر حداکثر انرژی یوندی و ظرفیت جذبی از دادرنگ در این تحقیق مقدار روی جذب به سطح تعداد خاک‌ها به غیر از خاک ۱۰، تقریباً نزدیک به مقادیر ظرفیت تبادل کاتیونی محاسبه شده در خاک ۱۰ است. این حاکم از روی مشخص و سرسبزی رگه اینکه به مقدار بسیاری از پژوهشگران (۹ و ۱۰) تعداد این خاک‌هایی که لایه‌ای نزدیک به سطح چالی‌ای است، قادرند روی را پیش از ظرفیت تبادل کاتیونی نمایند. درجه (۱) در این بررسی جذب سطح‌های روی در تعداد‌بندی از خاک‌های آگهی غیر غرافی زیر سردر و سردر سردرستان فارس، مشاهده می‌شود که هیدرومافی جذب در این خاک‌ها با مقدار این لایه‌ها سطح‌های محکم به شکل‌های ده‌گانه، از آنگار و راجا (۱۲) نشان داده که جذب این است. مطالعات دارد. اینگار و راجا (۱۲) نشان داده که جذب
نگهداری جذب سطحی روی در برخی از خاک‌های زیرکشت برنج استان فارس

شکل 2. برای‌شده‌ها با هم‌دما دویختی جذب لاغر مری در خاک‌های 1 تا 4

(الف: غلظت محلول تعادل کمتر از یک میلی‌گرم در لیتر، ب: غلظت محلول تعادل بیش از یک میلی‌گرم در لیتر)
شکل 3. پرازش داده‌ها با میوهای ذرت خاک‌های چند‌پیکر سطحی لانگ مویر در خاک‌های 8 تا 8.5
(الف: غلظت محلول کمتر از پنج میلی‌گرم در لیتر، ب: غلظت محلول بیش از پنج میلی‌گرم در لیتر)
جدول ۳ ضرایب مربوط به پرازش داده‌های جذب روي با هم‌دامای لانگ موری در سطحی

<table>
<thead>
<tr>
<th>R_1^{-1}</th>
<th>R_2^{-1}</th>
<th>K_1/K_2</th>
<th>b_1/b_2</th>
<th>b_1</th>
<th>b_2</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۳/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۴/۵۰</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۴/۲۵</td>
<td>۰/۹</td>
<td>۰/۹</td>
<td>۴/۲۵</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۲/۱۱</td>
<td>۰/۵۴</td>
<td>۰/۵۴</td>
<td>۲/۱۱</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۵/۲۷</td>
<td>۰/۴۸</td>
<td>۰/۴۸</td>
<td>۵/۲۷</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۱/۱۲</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۱/۱۲</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۲/۱۱</td>
<td>۰/۵۴</td>
<td>۰/۵۴</td>
<td>۲/۱۱</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۱/۱۲</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۱/۱۲</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۱/۱۲</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۱/۱۲</td>
<td>۸</td>
</tr>
</tbody>
</table>

متنی در سطحی بیکرد

دربخش پایینی منحنی هم‌دامای در خاک‌های آهکی و سده‌من، با زیاد شدن پ- هاش خاک افزایش می‌یابد. پیو (۴) نیز افزایش نگهداری روی با زیاد شدن پ- هاش خاک در دما

مختلفی گزارش‌کرده است.

امپوزیتو (۵۴) معنی‌دار است نیایشی از پرازش داده‌های انجیری هم‌دامای جذب لانگمور برای تعیین مکانیسم جذب استفاده نمود، زیرا می‌توان از طریق ریاضی ثابت کرد که مجموع دو بخش معمول لانگ موری و چهار ضریب آن با هم منحنی هم‌دامای صورت ۱ قابل پرازش است. با این وجود، همان طور که قبلاً اشاره شد، پوشهای متمایز از هم‌دامای جذب لانگ موری به منظور تعیین مکانیسم جذب عناصر غذایی، از جمله بخش از کشت ارائه شده‌اند.

برای کسب اطلاع بیشتر در مورد مکانیسم نگهداری روي در خاک‌های مور آلومینیوم با این تحقیق، و تأثیر ویژگی‌های با جذب سطحی در این عنصر، می‌توان در انتخاب لانگ موری (جدول ۳) و اصلیت خاکها (جدول ۱) تعیین کرد. شایان ذکر است که، حداکثر جذب سطحی روی در سطحی روی در تعادل از خاک‌های منطقه کاراکانکا، با هم‌دامای جذب لانگمور هم‌دامگی دارد. شومان (۲۴) عقیده دارد که یک‌طرف بودن ضربه متناسب با انرژی پیوندی در قسمت پایینی منحنی هم‌داما، نشان دهنده این امر است که روی در این بخش به مقدار کمتر اما با پیوستگی قوی تر، جذب خاک می‌گردد.

وی زیاد بودن ضربه انرژی پیوندی در این بخش با جذب روی توسط ماده آلی خاک مربوط می‌داند. براو و همکاران (۵)، بررسی جذب سطحی روی در هشت خاک آلی سول و ورش سول مشاهده کرده‌اند که هم‌دامای جذب در این خاک‌ها، با معادله لانگمور متناظر بوده و به شکل خاص است. همچنین، حداکثر جذب در خاک‌های مختلف متفاوت است. که ناشی از اختلاف پ- هاش این خاک‌ها می‌باشد. کریمیان و معاون‌رانیان (۱۹) نیز در ۲۴ خاک شامل هم‌دامای جذب سطحی روی با معادله لانگمور هم‌دامگی داشته و به صورت خطي است. نتایج مشابهی به ویلیست دان و شوکلا (۱۶) و پراگاس و سارامیت (۱۳) گزارش شده است. اینگار و راجا (۱۳) ملاحظه کرده‌اند حداکثر جذب روی و ضریب متناسب با انرژی پیوندی

1. L-curve isotherm
خاک هم مستقیم مثبت و معنی‌داری به دست آورده است. شبیه همکاران (27) داده‌های جذب روي مربوط به شک‌های خاک آب‌پزشی امریکا را با هم‌بازی‌های فیزیولوژیکی، انگ‌مور و بیرای ظهور دارد و توجه گرفته که حداکثر جذب لگن را نیازی به ظرفیت تتاب پذیر اکتیویشن، ماده آلی، ب- هاش و رس خاک می‌باشد. ابتدا خواص تغییرات کندن در سطح سطوحی مستند و وودگالیکس (29) گزارش کرده‌که از ب- هاش‌های بیش از شکب، جذب سطوحی قوی، و یا حتی با رسوب روز به خاک همراه می‌باشد.

مطابق معمول 9 در حداکثر جذب روي در بخش دوم منحنی و کریدات لکسم مدل همین‌گک معنی‌دار را می‌شناسد. و در نتیجه، خاک‌های زیردریایی در حالت رطوبت‌ها و انتقال منفی بین با کریدات لکسم مدل، محتماً به دلیل بروز بودن آن‌ها نیز کلیه خاک‌ها، که بسب کلیه سطح جذب کنند روز شده است.

از آن جا که در هنگام و ابزار روي در خاک‌های آمک، مورد استفاده در این تحقیق، مقدار قابل استفاده‌گیا، رس، ظروف تتاب پذیرین و کریدات لکسم تقیق مهمی ایفا می‌نمایند، بنابراین برای افزایش فشاری و ظاهراً روز در این خاک‌های آمک است. لازم است نظر هم‌بازی را از بین پرداخته و بررسی کنیم. برای یک بسته محیطی می‌شود در خاک‌های کننده روز را نیازی به ظرفیت تتاب پذیری دارد. نظر رضوان، مدل چاکر کریدات لکسم و ظرفیت فشاری قابل استفاده در آن‌ها نسبتاً زیاد است. از کاربرد کهدای فسپرده‌های خوداری، شد. با این حال، تغییر مقدار رس، ظروف تتاب پذیری و کریدات لکسم در مزرعه معمولاً فیزیولوژیکی است. لذا به منظور افزایش پذیرایی روز مصرفی توسط گیاه،

ببخش علی مصباحی (1) با یک هیچ‌که از ویژگی‌های خاک همین‌گک معنی‌داری نشان داده. حال آنکه ضریب تغییر

منحنی در یادداشت حداکثر جذب روي در قسمت دوم منحنی (h0) با یکی از خصوصیات خاک ملاحظه گردید:

1. B. E. T.
نیست، مصرف مواد آلی و یا مواد به‌سازی غنی شده با روی توصیه می‌شود.

1. کاهش یا تغییر ریزشتر (خاک ریزه) با مصرف مواد اسیدساز

سپاسگزاری

بدین وسیله از کم‌کم‌درمان ارزش‌های نسبی که به‌طور دانشگاهی و پژوهشی دانشگاه سیرز، در تأثیر این عاملی لازم برای اجرای این تحقیق، صمیمانه سپاسگزاری و قدردانی می‌شود.

2. استفاده از گونه‌ها و ارکام روی کارآیی که با تراش‌های میزی و

یا مواد کلاته کننده سبب انباشته الیتیت روی بومی و مصرفی می‌شود.

3. از آن جا که کاربرد Zn EDTA به علت گرانی مقرن به صورت محدود

متابع مورد استفاده

1. درجه، ز. ۱۳۸۸. ارزیابی وضعیت روی قابل استفاده گیاهی روی به روش‌های زیری‌می‌گاهی و گلخانهای در خاک‌های محله زیر سد درودزن

استان فارس. پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه سیرز، سیرز.

1. Zn efficient

