ویژگی‌های جذب سطحی روی در برخی از خاک‌های زیرکست برنج استان فارس

چکیده

از آنجا که پژوهی‌های فضاهای خاکی در فناوری فرآیندهای تراشه‌بندی و غیر فرآیندهای تراشه‌بندی نشان می‌دهد، بررسی دقیق فرآیندهای تراشه‌بندی که باعث ایجاد ریز در خاک می‌شود اهمیت ویژگی‌هایی دارد. لذا در یک مطالعه آزمایشگاهی، ویژگی‌های جذب سطحی روی در محدوده‌ای که با قرارگرفتن و پرناوردی در پیش روی در بوده، ارتباط بررسی شد. در این آزمایی به مدل خاک برای ۲۴ ساعت با فشار ۱۰ مایلیاوت محدود یک میلی‌متر کلرید محتوی ۱۰۰ میلی‌گرم روی در لیتر به حالت تجربه سه‌ماده شده. تفاوت میان فاصله‌های اولیه و نهایی روی در محدوده تجربه به عنوان روی جذب شده، مشخص گردید.

جذب سطحی روی با شکل خلیف ماده ترکیبات فرآیندینج قابل توجهی پیدا کرده است. علاوه بر آن، از بررسی نتایج جذب این عنصر با هم دمای خاک استفاده شد.

کلمات کلیدی: عمده‌های فرآیندینج، عمده‌های زیرکست، جذب، پرناوری، ریزکست، تعداد کلیسا، فضای مدولاری

مقدمه

کمبود روی یکی از شاخص‌های عمده‌های انباشت غذایی است. هنگامی که کمبود روی در خاک مستقیماً و کمبود به خاک اضافه می‌شود، باعث افزایش خاک‌های زیرکست شده به حساب می‌آید. محققان آن کم

1. استاد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز
2. دانشجوی سابق کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز
8 (حذافکر جذب) و 9 (ضریب متانسی با انرژی پوپوندی)، بیش از همه‌هاهای جذب فورنلیج، ممکن معادلات‌های 1 و 3 مورد استفاده فرآیندیاند.

برابری هم‌های جذب سطحی روی با معادله‌های فورنلیج و لنگریج به وسیله پروپپورژن‌های غربال شده است (5، 10، 19، 26، 71، 33 و 37). الیس و گرزشکی (11) اظهار می‌کنند که رس‌ها قادر به نگهداری عنصر روی، حتی بیش از ظرفیت تبدیل کاتانیوتی بوده، در پ-دی‌اکسیدین به عنصر روی. این بیش‌ترین دردست از بالا بیشتر، این بیش‌ترین دردست از بالا بیشتر، A (15) و B (16) تبدیل کاتانیوتی بوده، در پ-دی-اکسیدین به عنصر روی.

سحل را در محول خاک (حداکثر 0/1 میلی‌گرم در لیتر) میزان جذب نسبت به رسوب بیشتر است. در بخش دوم، که در آن غلظت روی ۶۰۰ میلی‌گرم در لیتر است، میزان جذب بیشتر از ظرفیت تبدیل کاتانیوتی بوده، که بیانگر تأثیر بیشتر رسوب در مقایسه با جذب سطحی روی است. چنین غلظت‌های روی در محول نسبت به رسوب، در شرایطی که غلظت آن از ۲ ۰/۰ مولار (۵/۶ میلی‌گرم در لیتر) بیشتر باشد، به صورت مولکولی و Zn(OH)۳ تحلیل می‌شود. غلظت، در این دسته‌بندی جذب روی خاک، رابطه معنی‌دار بیشتر از آب اشباع به سبب پر ۹ و در معرض حواشی گردیده است، این مقایسه به همراه خاک شکل و حاوی خاکه که برای ۱۵ روز به صورت غرافی به‌طور دوسته، کمتر از باشند کیان و اکس (۲۱) مشاهده شده که عملکرد بیشتر با حداکثر جذب روی هم‌های، می‌تواند ارتباط معنی‌داری در داشت این است.

در اراضی غرافی (شالیزارها)، این مقدار از رو درصد تجاوز نمی‌کند. این موضوع محول ظرفیت تعیین‌برداری که باعث جذب روی در خاک می‌شود به وضوح مشخص نیست. بعدها است درک صحیح و شناخت بهتر مکانیسم‌ها، باعث می‌شود بتوان قابلیت استفاده این عنصر را در شرایط مختلف، دقیق تر بپردازد. به طور کلی، به نظر می‌رسد جذب سطحی و یا رسوب روی به صورت هیدروکسید و کربنات، و یا محیط‌شناسی آن در شیمی‌های بلورین کاتیو، از عوامل اصلی کمی قابلیت استفاده روی در خاک‌های آهکی (غرافی و غیرگرافی) به حساب می‌آید (۲۶ و ۲۷).

از هم‌های جذب باید به ترتیب دقت‌های مورد استفاده شده است. هم‌های جذب و رابطه میان جذب سطحی روی و غلظت بین آن در محول تعداد نشان می‌دهد. تاکنون معادله‌های مختلف برای توصیف و پیش‌بینی دینامیک استفاده گردیده است. که در معادله فورنلیج (معادله ۱) ولانگ موری (معادله ۲)، بیش از همه مورد استفاده واقع شده است:

\[X = kC^a \]

\[X = -\frac{KbC}{(1 + KC)} \]

در این معادله، X مقدار روی جذب شده (میلی‌گرم در کیلوگرم خاک) C غلظت نهایی روی در محول (میلی‌گرم در لیتر) و n و k و b برش و جذب روی می‌باشند. در عمل، معمولاً از شکل‌های خطی این دو معادله به منظور بررسی داده‌ها استفاده می‌شود.

\[\log X = \log k + \frac{1}{n} \log C \]

\[\frac{C}{X} = \frac{1}{Kb} + \frac{1}{b} C \]

نکته شایانی که این است که هم‌های جذب ولانگ موری (معادله‌های ۲ و ۳) به عنوان همیشه‌های فیزیکی دو ثابت آن یعنی

72
محلول روي از کاغذ صافی و اتمن 44 عمور داده شد. غلظت روي در ان محلول توسعه دستگاه جذب اتمی تعیین گردید. تفاوت بین مقدار روي در محلول اولیه و محلول نهایی برابر با مقدار روي جذب سطحی شده به وسیله خاک در نظر گرفته شد. نتایج به دست آمده، از ماده‌های لانگمور و فرومیدیوس برازش داده شد و ضرایب مربوط به محاسبه گردید. همچنین با استفاده از روش گرگنگیان گام به گام، ارتباط این ضرایب با خصوصیات خاک مورد بررسی قرار گرفت.

نتایج و بحث
مهم‌ترین جذب سطحی روی باری هست خاک، با شبکه خطی معادله فرومیدیوس (معادله 3) مجمولی داشته و در شکل 1 نشان داده شده است. همچنین، ضرایب جذبی مربوط به این معادله در جدول 2 ارائه گردید. است. از آنجا که همه جاذب فرومیدیوس اصولاً یک توصیف تجربی است لذا اندازه‌گیری روی کم‌ترین آن باید با توجه به خصوصیات خاک داشته باشد. با این حال، کمیزیان و کاکس (18) معتقدند که با نظریه C=1, C=1 از جهت تاریکی مدت راست معادله خطی فرومیدیوس حدف شده، در نتیجه فقط در غلظت k = برابر با X سی شود. C, C=1, C=1 مشخص که نباید 2 یا نه با توجه به این تعبیر و تفسیر k وجود در جدول 2 باری برسی تأثیر ویژگی‌های خاک در نگهداری روی مورد استفاده قرار گرفت و رابطه معنی‌داری بین k و ضریب نبادال کاتیون خاک به دست آمد.

k = 213/9/7 + 3/7/15/95/0003۴۷ R^2 = ۰/۰۹۴
در این معادله، نظارت کاتیونی (سلمانی مول ببر کلوئروم خاک) می‌باشد و نشان می‌دهد که با افزایش نظارت تبادل کاتیونی خاک، مقدار روی نگهداریش دش زیاد می‌شود. همان طور که شکل 1 نشان می‌دهد، همه‌ماده‌های جذب فرومیدیوس در این تحقیق به صورت یک سفارشی است که منفعت کندن و وضعیت شایع جذب سطحی نوعی در تماس مقایسه به کار رفته می‌باشند. کرده و دانیر (۱۱) نیز ضمن مطالعه چهار خاک در کالیفرنیا، مشاهده کرده‌اند که همه‌ماده‌های جذب هدف‌های تحقیق حاضر عبارت بود از: ۱) بررسی میزان جذب روی در تعدادی از خاک‌های آمکش زیر کشت برای در استان فارس، ۲) استفاده از همه‌ماده‌های جذب فرومیدیوس و لانگمور و ۳) تعیین ضرایب جذب سطحی روی در این خاک‌ها. از بین رابطه کلی میان این ضرایب و بعضی از ویژگی‌های شیمیایی خاک با استفاده از روش گرگنگیان گام به گام، ارتباط این ضرایب با خصوصیات خاک مورد بررسی قرار گرفت.

مواد و روش‌ها
خاک‌های مورد استفاده در این تحقیق، از عمق صفر تا ۳۰ سانتی‌متری اراضی شلنگ کازی شده استان فارس به روش گردیدند. این خاک‌ها که برای سال‌های طولانی زیر کشت برای برداشته پس از انتقال به آزمایشگاه، بند در هوا خشک و سپس از کدو میلی‌متری غیر داده شدند. بعضاً از خصوصیات شیمیایی و گیاه شناسی، از جمله تجزیه‌کننده روش دمای ۷۰ سی‌پی ۱۹۶ (۶) به این سلسله اشاره توسط الکتروشیمی شده‌اند. نظریه تابدل کاتیونی به وسیله روشن جانشینی کاتیون‌ها با استاتسی سدیم (۸)، کربنات کلسیم معادل به روش خشک کردن با اسید کریپتبیک (۱۲) تعیین شد. ضمانت گراف و روی بالا جذب به برتری به وسیله پی کربنات هیدروکلریک (۱۸) و دی تی پی (۲۲) از خاک عصاره گیری شده و غلظت آنها به برتری با استفاده از دستگاه رنگاسیشی و جذب اتمی تعیین گردید (جدول ۱).

۱۰ مدلی‌ای از محلول‌های روي با هشت غلظت، (۵) ۷۰، ۱۱، ۱۵۰، ۳۳۰ و ۵۵۰ میلی‌گرم در لیتر به صورت چهار سرفصل روي و دو قطره قلی نهولن به منظور جلول‌زی بر روی ریز جانداران، اضافه شد. برای ثابت نگه‌داشتن تعریف قدرت یونی محلول‌های روي در کلسیم کلرید ۴۰۰ میلی‌مگل‌ال‌کلر در رونده به طور مشابه به هم بزن مکانیکی تکان داده شد. و پس از ۲۳ ساعت سکون در دمای ۲۵ درجه سانتی‌گراد مجدداً به مدت ۷۵ دقیقه دیگر به هم زده شد. پس از آن لوله‌ها به مدت ۱۰ دقیقه در حالت ۹۰۰ گرم سانتریفضوز و
<table>
<thead>
<tr>
<th>جمع‌النمر</th>
<th>بیانیه</th>
<th>حساب</th>
<th>تاریخ کسب حساب</th>
<th>تاریخ اجرا</th>
<th>تاریخ پرداخت</th>
<th>آمار</th>
<th>ضریب جمع‌النمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/14</td>
<td>1/24</td>
<td>8/06</td>
<td>8/21</td>
<td>11/6</td>
<td>10</td>
<td>1/14</td>
</tr>
<tr>
<td>2</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>3</td>
<td>2/11</td>
<td>8/4</td>
<td>7/06</td>
<td>8/14</td>
<td>12/14</td>
<td>6</td>
<td>2/11</td>
</tr>
<tr>
<td>4</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>5</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>6</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>7</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>8</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>9</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
<tr>
<td>10</td>
<td>8/06</td>
<td>1/8</td>
<td>7/8</td>
<td>8/11</td>
<td>12/11</td>
<td>5</td>
<td>8/06</td>
</tr>
</tbody>
</table>
فلوئت نهاشی روی در محلول شمادل (میلی‌گرم در لیتر)

شکل 1. پراز شده‌ها با دمای جذب سطحی نرمالیچ در خاک‌های 8 تا 1 تا

75
جدول ۲. ضرایب مربوط به پراش داده‌های جذب روي
با هدف‌های فردی

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>k</th>
<th>$1/n$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.98</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>0.035</td>
</tr>
</tbody>
</table>

و ... به ترتیب معنی‌دار در سطح ۰.۰۵ و ۰.۱ نیز قرار داده‌اند.

سطحی با معادله فردی، معمایه‌ای، داشته و به صورت یک قسمتی هستند. تاینگ مشابهی توسط پژوهشگران دیگر (۳۷ و ۲۷) نیز گزارش شده است. ولی درجه (۱) با پراش داده‌های جذب سطحی روز در هفت نمونه خاک آمکه غرفه‌ای با معادله فردی، هم‌دمه‌های دو و سه قسمتی را گزارش نمود. شوکلدا و میتال (۳۲) نیز جذب سطحی روز را در چند نمونه از خاکهای هندرسیان، با افزایش مختلف مورد آزمایش قرار داده و نتایج مشابه‌است بافتند.

هر چند پراش داده‌های جذب سطحی روی با هم‌دمه‌های جذبلنگ و سطحی یکانایند، اما مساحت شدک هم‌دمه‌های در سطحی (معادله چ) بهتر می‌تواند این داده‌ها را توصیف نماید:

$$X = [(K_d,b,C/(1 + K_d,C)] + [(K_d,b,C)/(1 + K_d,C)]$$

در معادله K_d به ترتیب ضریب مناسبی با انرژی پیدا در سطح اول و دوم و b به ترتیب حداکثر جذب برای سطح اول و دوم و C علائم متغیر و K_d غرفه در محل تغییر می‌یابد. برای نمونه کلاسیک گزارش شده است، مطابقت دارد. اینگار و راجا (۱۲) نشان دادند که جذب

۷۶
شکل ۲. برازش داده‌ها با مدل‌های دویکتی جذب لاغر موتور در خاک‌های 1 تا 4

(الف: غلظت محلول تعادل کمتر از پنج میلی‌گرم در لیتر، ب: غلظت محلول تعادل بیش از پنج میلی‌گرم در لیتر)
شکل 3. پرایازش داده‌ها با مدل‌های دوبخشی جذب سطحی لانگ مویر در خاک‌های 5 تا 8
(الف: غلظت محلول تعادل گازی از پنج میلی‌گرم در لیتر، ب: غلظت محلول تعادل بیش از پنج میلی‌گرم در لیتر)
جدول 3 ضرایب مربوط به پرازش داده‌های جذب روي با همدیای لانگ موری در سطحی

<table>
<thead>
<tr>
<th>R_1^+</th>
<th>R_1^-</th>
<th>K_1 / K_2</th>
<th>b_1 / b_2</th>
<th>K_1</th>
<th>K_2</th>
<th>b_1</th>
<th>b_2</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.92 / 0.7</td>
<td>0.74 / 0.5</td>
<td>0.67</td>
<td>0.64</td>
<td>0.51</td>
<td>0.59</td>
<td>1</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>2</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>3</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>4</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>5</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>6</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>7</td>
</tr>
<tr>
<td>0.99**</td>
<td>0.99**</td>
<td>0.99 / 0.7</td>
<td>0.99 / 0.98</td>
<td>0.39</td>
<td>0.39</td>
<td>0.36</td>
<td>0.36</td>
<td>8</td>
</tr>
</tbody>
</table>

R_1^+ و R_1^- حداقل جذب روي (میلی‌گرم در کیلوگرم خاک)، به ترتیب در غلظت‌های‌کم و زیاد روي در محلول تعلید ضریب نتایج نشان‌دهنده به ترتیب در غلظت‌های‌کم و زیاد روي در محلول تعلید ضریب نتایج همانند با به ترتیب در غلظت‌های‌کم و زیاد روي در محلول تعلید R_1^+ و R_1^-

**: معنی دار در سطح کی درصد

در بخش پایین، منحنی همدیای در خاک‌های آبیک و سدیمی، با زیاد شدن پ- هاش خاک استراحت می‌یابد. باوار (4) نیز افزایش نگهداری روي را با زیاد شدن پ- هاش خاک در دلای مختلف گزارش کرده است. اسپرمولو (32) معنی است نبایستی از پرازش داده‌های تجربی همدیای جذب لانگ موری برای تعیین مکانیسم جذب استفاده نمود. زیرا می‌توان از طریق ریاضی ثابت کرده که مجموع دو بخش مادهای لانگ موری و چهار ضریب آن با هم منحنی همدیای به صورت 1 گزارش است. با این وجود، همان طور که قبل اشاره شد، پهلوهانی معتقدی است همدیای جذب لانگ موری به منظور تعیین مکانیسم جذب عنصر غذایی از جمله روی استفاده کرده‌اند.

برای کسب اطلاع بیشتر در مورد مکانیسم نگهداری روي در خاک‌های مورد آزمایش در این تحقیق، و تأیید ویژگی‌های خاک جذب سطحی این عنصر بین ضرایب همدیای لانگ موری (جدول 3) و خصوصیات خاک‌ها (جدول 1) معاله و گزارش

تعیین گردید. شیبانان ذکر است که، حداکثر جذب سطحی روي در

1. L-curve isotherm
با نظریه بخش اول مختصات (b)، با چندی یک یا چندی‌گی ها خاک همیشه مثبت می‌باشند، بنابراین خاک (ب) با نظریه سطحی در همه حالت‌ها مثبت می‌باشند.

✿ همین‌طور در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.

✿ در حالت سطحی، خاک (C) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (P) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

✿ در حالت سطحی، خاک (K) با نظریه سطحی به اندازه‌ای صحیح مثبت می‌باشد.

با ملاحظه آن‌ها، می‌توان گفت که در حال حاضر، نتایج بهتری در حالت سطحی وجود دارد.
ویژگی‌های جذب سطحی رود برخی از خاک‌های زیرکشت برنج استان فارس

سپاسگزاری

1. کاوش پ - هاش ریزوستر (خاک ریشه) با مصرف مواد توصیه می‌شود.

2. استفاده از گونه‌ها و ارتفاع ریز کارا بکار برای روش میدوز و

3. یا مواد کلرول کند به‌عنوان حل‌ساز روش بومی و مصرفی

4. حداکثر تأثیر مالی لازم برای اجرای این تحقیق،

5. صمیمانه سپاسگزاری و قدردانی می‌شود.

بحث مورد استفاده

1. درجه زیرکشت از 3868 تا 3876 بازیابی و ضعیفی رود فعال استفاده گیاه به روی حاکی آزمایشگاهی و غلظانه‌ای در خاک‌های منطقه زیرکشت در استان فارس. یا، پایان‌نامه کارشناسی ارشد، دانشگاه گیلان هر دویان و شیراز، شیراز.

1. Zn efficient

