برآورد پارامترهای زنتیکی برای عملکرد و اجزاء آن در لی این های اینترد ذرت، به روش تلاقی های دای آلل

ویله رامه، عبدالرضا رضایی و احمد ارزائی

چکیده

به منظور برآورد میزان ترکیب پذیری، هتروژیس و دیگر پارامترهای زنتیکی عملکرد دانه و اجزاء آن در ذرت دانه‌ای، از تلاقی‌های دای آلل شش نهایت استفاده شد. وزن‌های هجدها 15 به‌دست نیم‌شماره چهار زنتیکی اضافی دیگر، در قالب طرح لایه‌بندی مربع مرکزی در دو مرحله بررسی قرار گرفتند. برای هر اکثریت خصوصیات، هر استانی که طرح لایه‌بندی مربع مرکزی یک بود، هنگام جدا کردن، در قالب طرح بلوندهای کامل تصادفی تجربه و تحلیل تصادفی، با حذف زنوتیکی اضافی با روش گرگینگ و مدل مختلط B مورد تجزیه و تحلیل زنتیکی قرار گرفتند.

مباحث مربوط به ترکیب پذیری این غیرونهای مختلف و خصوصی برای تمامی صفات معمولاً بود نسبت میانگین مربعات ترکیب پذیری عمومی به ترکیب پذیری خصوصی پرای تمامی صفات، به استانی برای تعداد چهار دانه، کمتر از یک بود. اکثریت این خصوصیات در اولین هجدها، هنگام جدا کردن، در قالب طرح لایه‌بندی مربع مرکزی یک بود. اکثریت این خصوصیات در اولین هجدها، هنگام جدا کردن، در قالب طرح لایه‌بندی مربع مرکزی یک بود. اکثریت این خصوصیات در اولین هجدها، هنگام جدا کردن، در قالب طرح لایه‌بندی مربع مرکزی یک بود.

واژه‌های کلیدی: درجه غلیبت، قابلیت ترکیب پذیری، قابلیت نوارنه، هتروژیس

مقدمه

مطالعات گسترده‌ای به منظور تعیین همستگی و تحلیل پارامترهای زنتیکی عملکرد دانه، از طریق اجزاء این ترکیب این در دو مرحله بررسی قرار گرفتند. برای هر اکثریت خصوصیات، هر استانی که طرح لایه‌بندی مربع مرکزی یک بود، هنگام جدا کردن، در قالب طرح بلوندهای کامل تصادفی تجربه و تحلیل تصادفی، با حذف زنوتیکی اضافی با روش گرگینگ و مدل مختلط B مورد تجزیه و تحلیل زنتیکی قرار گرفتند.

مطالعات متعدد

صورة ترکیب است (18017). نتایج مطالعات متعدد

پارامترهای زنتیکی عملکرد دانه، از طریق اجزاء این ترکیب این در دو مرحله بررسی قرار گرفتند. برای هر اکثریت خصوصیات، هر استانی که طرح لایه‌بندی مربع مرکزی یک بود، هنگام جدا کردن، در قالب طرح بلوندهای کامل تصادفی تجربه و تحلیل تصادفی، با حذف زنوتیکی اضافی با روش گرگینگ و مدل مختلط B مورد تجزیه و تحلیل زنتیکی قرار گرفتند.

1. بر ترتیب دانشجوی سابق کارشناسی ارشد، استاد و استادیار اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

95
لاین‌های اینتریتی برای پیش‌بینی عملکرد دوره‌های حاصل از آنها شاخص مناسبی نبوده است. لذا استفاده از طرح‌های زننختی مختلف برای تعیین ترکیب ژن‌هایی و دیگر پارامترهای زننختی در لاین‌های اینتریتی، به منظور دست‌یابی به پرترین دوره، و بهبود زننختی لااین‌های امری اجتناب‌ناپذیر است. طرح تلاقی‌های دای آل، به عمل آن که در کنونه‌های متد قادر به تعیین بیشترین پارامترهای زننختی است، به طور‌گسترده‌تری در گیاهان خودکاری و ذکرگان، از جمله در نظر و سپس استفاده نشده است. (12، 2013). در روش‌های مختلط گرینگرینگ (1994)، اطلاعاتی از قبل ترکیب‌ذیوی عمومی و خصوصی درجه غلیظی، اثر ترکیب زننختی قابل تواتر و ثبت دقیق‌تری نماید.

نظر به این که اغلب مطالعات برای تحلیل پارامترهای زننختی با وسایل تاثیب انرژی لااین‌ها در روش‌های مختلط گرینگرینگ، در مدل‌های متعدد انجام می‌گردد (11)، و از طرفی شرایط محیطی آزمایش‌ها مختلف و ژنتیک‌های آنها متغیر است، لذا نتایج حاصل از هر مطالعه، به دیگر موارد قابل تعمیم نمی‌یابد. در نتیجه، بررسی چندگانه پارامترهای زننختی لااین‌ها حاصل از هر پژوهه اصلاحی امری اجتناب‌ناپذیر خواهد بود.

گرافیوس (8) در بیان عملکرد از طریق روابط رضایت اجزای عملکرد اظهار داشته است که تغییراتِ غیراخلاقی عملکرد دانه از طریق اجزای آن قابل توجه است. یک‌دریافتی، و در این کناری، می‌توان از طریق گزینش اجزایی از عملکرد که به صورت افزایشی کنترل میشود، گزینش نمود. لذا مطالعه کنترل اجزایی اجزای عملکرد دانه، شامل تعداد دانه در ریسف، تعداد ریسف دانه، وزن ۱۰۰ دانه، طول بالا و درصد جویان بند در بهبود عملکرد دانه، مورد توجه پژوهشگران مختلف بوده است.

بنابراین این بررسی به منظور دست‌یابی به اهداف جبر انجام...

1. General Combining Ability (GCA)
2. Specific Combining Ability (SCA)
نتایج و پیش رگ انگیزه‌های SCA و GCA برای کلیه صفات مورد مطالعه معنی‌دار بود (جدول 1)، بنابراین جدول‌های مورد مطالعه از لحاظ ترکیب پذیری عمومی و گونه‌ها حاصل از لحاظ ترکیب پذیری خصوصی، با هم اختلاف معنی‌داری دارند. GCA معنی‌دار نبودن نسبت معنی‌گرایی‌های SCA به میانگین برای کلیه صفات به استثنای تعداد ریف دانه، میانگین آن است که اثر افزایشی و غیرافزایشی زنها در کنترل آنها دخالت داشته باشد. با وجود این، برآورد درجه ریفت دنگه تعداد ریف دانه، نموده از اهمیت پیش‌تر اثر غیرافزایشی زنها را در دو جدال این‌جاه بیشتر از اثر افزایشی زنها در تلاقی‌های حاصل از کنار هم مورد مطالعه برای کلیه خصوصیات، به استثنای تعداد ریف دانه، توجیه‌پذیر است. نتایج اخلاق‌های فلک و پردازش (19) حاکی از آن است که برای کلیه صفات عملاً دانه تعداد ریف و طول بالا، اثر غیرافزایشی زنها از اهمیت بیشتری برخوردار است. دنبال کردن به همکاران (4) نیز نتایج مشابهی را برای وزن 100 دانه گزارش نموده. مطالعات استنمار (2) نیز حاکی از اهمیت بیشتر اثر غیرافزایشی زنها در تبار تکه‌های بالا می‌باشد. با وجود این، در برخی از مطالعات (16) بر اهمیت افزایشی زنها در جدول اکنون داشته، تأکید شده است.

معنی‌دار بودن نسبت معنی‌گرایی‌های اکسترمیت ترکیب پذیری عمومی به میانگین معنی‌گرایی‌های پذیرفرآور درجه غلایبی کمتر از یک برای تعداد ریف دانه، نشان دهنده اهمیت بیشتر افزایشی زنها در کنترل زننگی این صفت می‌باشد. لذا رویکرد اصلاحی مناسب بر خرده برای بهبود صفت در لاکی‌های این گونه مورد مطالعه بود. اکتاکای الی‌بی‌پروکسیرا خواهد بود. از دیگر مطالعات (3) نیز نتایج مشابهی گزارش شده است.

1. Agrotis segetum Schiff 2. r. hexachloro Cyclohexane
3. O. (6-ethoxy - 2-whtyl - 4-Primidinylo-O, O dimethyl Phosphorothioate
4. O, O-diechlyo- (2 isopropyl - 4-methyl - 6-pyrimidylo) phosphorothioate

97
جدول 1. تجزیه و ریاضی عملکرد دانه و صفات واکنش در لایه‌های اینتری در دانه‌ای به روش ۲ کروی‌نگل

میانگین مرحلات	نوعان تغییر درجه آزادی	عملکرد دانه	تعداد دانه	طول بلال	طول دانه	وزن دانه	درصد چوب	دما	تغییر	بلوط	دائم	تغییر	
دمای ۲۳/۶۷*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**
دمای ۳۴/۶۱*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**
دمای ۴۷/۶۷*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**
دمای ۱۵/۷۸*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**
دمای ۳۴/۳۳*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**
دمای ۴۷/۷۸*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**
دمای ۶۳/۷۸*	**۲/۱۸**	**۲/۱۸**	**۲/۱۸**	**۱/۵۵**	**۱/۵۵**	**۵/۱۵**	**۵/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**	**۴/۲۵**

* ** به ترتیب معنی‌دار در سطح احتمال ۱٪ و ۵٪ درصد

احتمال یک درصد معنی‌دار در گروه‌ها ۱۵۰* ۶۴* در قیاس با سایر تلاقی‌ها از هتروزیگ بالاتری برخورد بودند. با وجود این، هنوز در محدوده‌هایی از ۱۸۳ تا ۱۹۰ در نمودار بوده و در نتایج آزمون ۵ در خصوصیت داده‌های GCA یا SCA، عملکرد دانه در لایه‌های ۳/۴ حاکی از آن است که ترکیب پذیری تهیه شده با آن است. ترکیب پذیری عواملی با معنی‌دار بالای ۵۰ درصد گزارش شده و کلیه‌هایی که از بورشترین ترکیب پذیری خصوصیت برخورد بودند، بیشترین عملکرد دانه را نیز داشتند.

تعداد دانه در نماد

میانگین تعداد دانه در نماد و در دهه‌های اینتری در ۳۲تا ۴۳ تا ۴۴ در دوره‌های حاصل از ۶۱ تا ۶۴ معنی‌دار بود (جدول ۳). همچنین در نتایج تغییرات ترتیب‌های مختلف عملکرد دانه از ۱/۷۳ تا ۱/۷۵ تغییر داشت (جدول ۳). به طوری که در نتایج دانه با داشت ترکیب پذیری عواملی معنی‌دار پایداری پیشنهاد به صورت یک خصوصیت تشخیص داده شد. ترکیب پذیری خصوصیت هتروزیگ (جدول ۳) در اغلب تغییرات در جهت مشاهده تجربه بود. این امر نشان می‌دهد که بیشتر از هر اندازه ۳/۴ در ارزیابی تعداد دانه در نماد، در دوره‌های حاصل می‌باشد. از آنجا که این صفت به عنوان یکی از اجزای اصلی عملکرد
جدول 2. ترکیب پذیری های عمومی عاملک‌دانه و صفات وایسته در شش لاين اینیرد و 15 دورک حاصل از تلاقی های دای آلله آنها

<table>
<thead>
<tr>
<th>صفات</th>
<th>عمومک‌دانه</th>
<th>تعداد دانه</th>
<th>تعداد ریف دانه</th>
<th>دانه (سانتی‌متر) (گرم در بونه)</th>
<th>ریف (گرم)</th>
<th>(تعداد چوب)</th>
<th>(بیشترین)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیشتر</td>
<td>20/02</td>
<td>0/44</td>
<td>0/47</td>
<td>0/11</td>
<td>0/15</td>
<td>25/20</td>
<td>62/50</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>16/70</td>
<td>0/72</td>
<td>0/83</td>
<td>0/29</td>
<td>0/36</td>
<td>87/51</td>
<td>L2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>16/92</td>
<td>0/45</td>
<td>0/51</td>
<td>0/19</td>
<td>0/28</td>
<td>49/88</td>
<td>L3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>12/65</td>
<td>0/71</td>
<td>0/81</td>
<td>0/19</td>
<td>0/24</td>
<td>31/15</td>
<td>L4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>12/05</td>
<td>0/47</td>
<td>0/60</td>
<td>0/21</td>
<td>0/25</td>
<td>30/37</td>
<td>L5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>17/20</td>
<td>0/45</td>
<td>0/55</td>
<td>0/17</td>
<td>0/24</td>
<td>67/30</td>
<td>L6</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>17/55</td>
<td>0/80</td>
<td>0/95</td>
<td>0/19</td>
<td>0/23</td>
<td>94/65</td>
<td>L1xL2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/20</td>
<td>0/20</td>
<td>0/38</td>
<td>0/16</td>
<td>0/21</td>
<td>158/30</td>
<td>L1xL3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/17</td>
<td>0/30</td>
<td>0/18</td>
<td>0/21</td>
<td>130/20</td>
<td>L1xL4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>17/20</td>
<td>0/47</td>
<td>0/52</td>
<td>0/22</td>
<td>0/25</td>
<td>166/23</td>
<td>L1xL5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>16/92</td>
<td>0/45</td>
<td>0/51</td>
<td>0/19</td>
<td>0/22</td>
<td>188/05</td>
<td>L1xL6</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L2xL1</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L2xL2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L2xL3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L2xL4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L2xL5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L2xL6</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L3xL1</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L3xL2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L3xL3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L3xL4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L3xL5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L3xL6</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L4xL1</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L4xL2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L4xL3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L4xL4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L4xL5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L4xL6</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L5xL1</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L5xL2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L5xL3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L5xL4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L5xL5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L5xL6</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L6xL1</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L6xL2</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L6xL3</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L6xL4</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L6xL5</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>18/70</td>
<td>0/20</td>
<td>0/35</td>
<td>0/16</td>
<td>0/20</td>
<td>105/20</td>
<td>L6xL6</td>
</tr>
</tbody>
</table>

جدول 3. ترکیب پذیری عمومی عمومک‌دانه و صفات وایسته در شش لاين اینیرد

<table>
<thead>
<tr>
<th>ترکیب پذیری عمومی</th>
<th>والد</th>
<th>عمومک‌دانه</th>
<th>تعداد دانه</th>
<th>تعداد ریف دانه</th>
<th>دانه (سانتی‌متر) (گرم در بونه)</th>
<th>ریف (گرم)</th>
<th>(تعداد چوب)</th>
<th>(بیشترین)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیشتر</td>
<td>20/02</td>
<td>0/44</td>
<td>0/47</td>
<td>0/11</td>
<td>0/15</td>
<td>25/20</td>
<td>62/50</td>
<td>L1</td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>16/70</td>
<td>0/72</td>
<td>0/83</td>
<td>0/29</td>
<td>0/36</td>
<td>87/51</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>16/92</td>
<td>0/45</td>
<td>0/51</td>
<td>0/19</td>
<td>0/28</td>
<td>49/88</td>
<td>L3</td>
<td></td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>12/65</td>
<td>0/71</td>
<td>0/81</td>
<td>0/19</td>
<td>0/24</td>
<td>31/15</td>
<td>L4</td>
<td></td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>12/05</td>
<td>0/47</td>
<td>0/60</td>
<td>0/19</td>
<td>0/22</td>
<td>67/30</td>
<td>L5</td>
<td></td>
</tr>
<tr>
<td>غیر بیشتر</td>
<td>17/20</td>
<td>0/45</td>
<td>0/55</td>
<td>0/17</td>
<td>0/24</td>
<td>94/65</td>
<td>L6</td>
<td></td>
</tr>
</tbody>
</table>

S.E (g)
دانه، دارای همبستگی مثبت و معنی داری (0/70) با آن بود، لذا هرگونه اتصالات در مورد افزایش این صفت تأثیر بی‌پروا بر افزایش عملکرد خواهد داشت. بنابراین، دوره‌های 2174-2276 که از ترکیب پذیری خصوصی مثبت و بالایی برای این صفت برخوردارند، در زمینه برترین دوره‌ها حماسه‌گزار می‌شوند.

تعداد رده‌های دانه ترکیب پذیری عمومی تعداد رده‌های دانه از 184 تا 3/23 متفاوت بود (جدول 2)، به طوری که لایه‌های سه و چهار ترکیب پذیری عمومی مثبت و معنی‌داری برای این صفت برخوردار بودند، که این امر نشان دهنده اهمیت اثر افزایش زنده در بهبود این خصوصیت در لایه‌های مزبور و بالا بردن کناری انتخاب به منظور افزایش آن می‌باشد. میانگین این صفت در لایه‌های اینتریک به ترتیب 2/1695 تا 1979، در دوره‌های حاصل از 16/87 تا 2472 سنتی‌متر بود (جدول 2). ترکیب پذیری خصوصی و هتروژئیس در تلاقی‌ها به صورت مثبت و منفی تجای باقی می‌ماند (جدول 3)، که به ترتیب دلیل بر اهمیت اثر افزایش زنده در کاهش و افزایش تعداد دانه در دوره‌های مورد مطالعه بود. به توجه به این که اجزای اصلی عملکرد دارای اثر جریانی می‌باشند، لذا افزایش یکی از آن‌ها (تعداد دانه در ریفر) ممکن است در کاهش دیگری (تعداد رده دانه) مؤثر باشد. در صورتی که بتوان شاخصی خاصی را تعیین نمود که بر مبنای آن افزایش تعداد رده دانه کاهش یابد گزارش می‌گردد. در تعداد دانه در ریفر به دنبال نشان داده بود که افزایش تعداد دانه موجب افزایش عملکرد دانه خواهد شد. لذا در صورتی که افزایش این صفت منجر باشد، دوره‌های 2174 و 3278، با برخورداری از ترکیب پذیری خصوصی و هتروژئیس بالا در اولویت قرار خواهد داشت.

طول دانه طول دانه در لایه‌های اپینسپر از 6/78 تا 6/27 میلی‌متر، و در دوره‌های حاصل از 16/05 تا 16/51 میلی‌متر متفاوت بود (جدول 2). دامنه تغییرات ترکیب پذیری خصوصی لایه‌ها از 1978 تا 25/96 درصد شدت داشت (جدول 3). به طوری که لایه 3/25 تا 0/25 گسترش داشت و در این پنجه از ترکیب پذیری عمومی مثبت و معنی‌داری برای این صفت برخورد از که این امر نشان دهنده اهمیت اثر افزایش‌گذار در افزایش طول دانه در لاین متبرک می‌باشد. ترکیب پذیری خصوصی و میزان هتروژئیس از ترکیب 0/09 تا 0/37 درصد بود (جدول 2). دوره‌های 1376 و 3476 با برخورداری از ترکیب پذیری خصوصی و هتروژئیس بالا در زمینه برترین دوره‌ها حماسه‌گزار می‌گردند.

طول بالان طول بالان در لایه‌های اپینسپر و دوره‌های حاصل به ترتیب از 6/85 تا 8/65 و 16/85 تا 16/25 سانتی‌متر متفاوت بود.
نتیجه‌گیری
بر اساس درجه بالا بیشتر از یک، و معنی‌دار نبودن نسبت
میانگین سنگین ترکیب پذیری عمومی به ترکیب پذیری
خصوصی، در این کمیت‌ها و محدودیت‌های تحقیقاتی مورد طالعه به استنتاج
تعداد ریف دانه، نمایانگر اهمیت اثر غیرافزایشی زنها برای
خصوصیات مناسب، به استنتاج تعداد ریف دانه می‌باشد. لذا
برای به‌هم‌نمایی از غیرافزایشی زنها و تطبیق آن در نتایج
لازم به مورد بررسی، تولید مود سنتی کراس توجه به
باید با وجود این، بررسی جدایگان ارگ سبکه گران GCA برای
خصوصیات هوشی انجام شود. بنابراین، نمایانگر اهمیت اثر غیرافزایشی زنها در
برخی از این گروه‌ها با استفاده از روش‌های میانفی بر
گریخته، در صورت تشکیل جوامع ترکیبی دیگر با لاین‌های
مشابه، امکان‌پذیر است.

در این استان، در صورت تعداد دانه، میزان هتروژنی گرای
خصوصیاتی در دانه در روی و وزن هزاران دانه در جهت
مثبت و برای تعداد ریف دانه در جهت منفی تجسیم یافته، این
امر نمایانگر ویژگی چربی اجزای اصلی عمومی‌پذیری می‌باشد. به
طوری که در این مطالعه تعداد دانه در ریف و وزن هزاران دانه
نگذاری شده و تغییرات را در توجه عمومی‌پذیری دانشند. در صورتی که تعیین
این سه ویژگی برای افزایش عمومی‌پذیری دانه به طور همزمان مورد
نظر باشد، تحقیق بیشتری به منظور حصول شاخص مناسب
برای سه مورد می‌تواند استفاده

سپاسگزاری
در این مقاله از امیده درجه بین سه تکمیلیی خوراکی‌های خالص مورد استفاده
از آزمایش سپاسگزاری می‌باشد.

improvement in three maize breeding programs. Crop Sci. 21: 255-258.