کاربرد استریفیکاسیون در ساخت روغن مناسب برای تولید مارگارین

شیهین زمردی، رضا شکرائی، محمد شاهدی و شهرام دخانی

چکیده
فرآیند استریفیکاسیون با جایگزینی پتیده‌های اسید چرب در مولکول تریگلیسریدها، باعث بهبود خواص فیزیکی شیمیایی چربی‌ها می‌گردد. هدف از این تحقیق تهیه روغن خوراکی مناسب برای مصارف خانگی و صنعتی، از طریق تغییر استری مخلوطی از روغن‌ها می‌باشد. در این مطالعه، مخلوطی از روغن‌های نیترینه، روغن نیترینه و روغن نیترینه و روغن کاهو از انتقاد از منیلو، متیلات ریز و ترولید یافته‌ای به عنوان کانالیزور، تغییر استری داده شد.

تکنیک اندازه‌گیری مقدار چربی جامد و قطعه ذوب شناد داده‌های فرآیند استریفیکاسیون با 0/5 درصد میلی‌سیمان در حدود 90 درجه سانتی‌گراد در مدت 30 دقیقه کامل می‌گردد. همچنین، روغن‌های استری شده با استفاده از میلی‌سیمان و تولیدات السیمانی در چربی خواص فیزیکی و شیمیایی مشابه باز غذایی می‌باشد. آزمایش‌های تهیه عدلی و نامانی، صابون‌یابی زیر روغن‌های استری شده تغییری ایجاد نموده و است. نتایج این تحقیق نشان می‌دهد که این مخلوطی از روغن‌های استری شده را به عنوان جاتکشین روغن‌های چربی‌های هیدروژن‌کرده تولید مارگارین و نیز برای مصارف خانگی، با توجه به محدودیت پلاستیسیت مناسب و بر مقدار استریه‌ای چرب در تولید استفاده نمود.

واژه‌های کلیدی: استریفیکاسیون، روغن سیمانه، چربی، تغییر استری

مقدمه
روغن‌ها در تغذیه انسان نقش اساسی دارند. آن‌ها علاوه بر تولید انرژی، می‌توانند اصلی‌ترین کرب یدروژی بوده، مواد غذایی و حامل سایر ترکیبات همراه چربی‌ها از حمله پیگمانه‌ها.

1. پژوهشگر صنایع غذایی، بهترین، فنی، مهندسی مرکز تحقیقات کشاورزی آذری‌پیشان غربی
2. استادیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. دانشیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

149
کاروتئینوئیدی و استرول‌ها می‌باشند. هم‌چنین، مصرف روغنی از نظر انواع مواد غذایی، ضمن افزایش ارژن تهذیب‌های بیمار بهبود طعم آنها می‌گردد. به همین دلیل، در انواع مواد غذایی حد و سیس مصرف می‌شود (۳،۴، ۲۵ و ۲۶).

روغن‌های موجود در بازارهای چهارمی، اغلب دارای کیفیت مناسب باید تغییرات مختلف خوراکی نشون بیان کند. البته این کیفیت می‌تواند مایع یا باقی‌مانده از روغن‌های قوی و غورگرنده باشد. اما هر یک از این دو نوع روغنی دارای خاصیت‌های خاصی است که در هر یک از آنها وجود دارد. به همین دلیل، مصرف روغن‌های مختلف در بازارها می‌تواند مناسب باشد.

در فرآیندهای روغن‌زایی، علاوه بر انواع خاص روغن‌ها، خصوصاً از اسیدهای قربانی تزی در می‌روند. می‌توان از این رو، این بخش از اسیدهای قربانی تزی در می‌روند. M١. Prostaglandin ٢. Partial hydrogenation ٣. Low Density Lipoprotein (LDL) ٤. High Density Lipoprotein (HDL) ٥. Random interesterification ٦. Direct Interesterification ٧. Tallow ٨. Fuuka

130
استخراج روغن از یوه گار

برای استخلاص روغن از یوه گار، باید هر چه بیشتر فضاع کچک پریده شد و به وسیله دستگاه جرگ کچک خور گردد. عملیات ذوب در تانک استیل کچک، با استفاده از بخار مستقیم صورت گرفت. روغن حاصل از فیلتر پایین‌رگیک برای نمایش داده شد. با تهیه گشت و پرتونی‌ها مقدار روغن چند بار نوین جدید ضروری بود. در نهایت، فاز روغن و روغن دانش‌آموزان از نظر آبی جدید، با استفاده از دستگاه اپارتوپاتر گردید، تحت خلاء در حرارت 85 درجه سانتی‌گراد خشک گردید. روغن حاصله تا موقع مصرف در سرده‌های 2 درجه سانتی‌گراد نگهداری شد.

روش تغییر استری

نسبت‌های معین (وزنی) از مخلوط روغن‌های مورد آزمایش به هنگام آماده‌سازی مقدار 150 گرم از مخلوط وبک بالان تهگرد 500 میلی‌لیتر فشرده و توزیع متنقل گردید. با استفاده از دستگاه اپارتوپاتر گردن تحت خلاء در حرارت 90 درجه سانتی‌گراد، به مدت 5 دقیقه حاره‌دار شد. مدت روغن کامل‌گیری شده روغن خشک شده به این اندازه خیلی 500 میلی‌لیتر خشک و تضمین منتفی در حرارت 90 درجه سانتی‌گراد 5/10 درصد وزنی از میله‌ها ایجاد سدیم (محلول 20 درصد در مایونین بدون آب) به عنوان کاتالیزور اضافه گردید و توسط اجاق برخی دارای هزین مغناطیسی تحت خلاء و گاز تیترزون ایجاد شد. حرارت 90 درجه سانتی‌گراد به مدت 15 دقیقه (به طور مداوم) درجه سانتی‌گراد مثبت 60 درجه سانتی‌گراد گردید. سپس برای خیز نمودن کاتالیزور، مخلوط استری شده‌ها دمای 65 درجه سانتی‌گراد سرد شده و در حالت که به سرعت 40 در دنیا به هم زده می‌شد، مقدار 100 میلی‌لیتر آب صورت داشت. که دارای 10 میلی‌لیتر فسفر فیکل به دست روده بود، به آن افزوده و مدت 3 دقیقه به دست روده شد. سپس با استفاده از تیف دکان، لاها آبی از روغن جداگردی شد. در نهایت، روغن استری 5 متری به آب

1. Wijs 2. Fals Nuclear Magnetic Resonance Spectroscopy
جدول 1. خواص فیزیکی و شیمیایی روغن‌های مورد آزمایش

<table>
<thead>
<tr>
<th>نوع روغن</th>
<th>تقطیر ذوب عدد اسید</th>
<th>عدد پاکسید</th>
<th>عدد صابونی</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>رونگن سوری</td>
<td>100</td>
</tr>
<tr>
<td>چربی پی گاز</td>
<td>100</td>
</tr>
</tbody>
</table>

استفاده از استاندارد شتاب که سیمان چربی جامد آن دقتی‌تر
مشخص بود کالیبره‌گردد (24). استفاده چربی پی گاز به استفاده از مولفه‌های چربی استفاده
غازه متحرک دستگاه گاز هیلوپم با فشار 70
پاسکال، سیستمیک و مورد استفاده از جنس و مدل
با طول 100 متراً، داخلی 25 میلی‌متر، تب وی‌تی 05
میکروتیپ با دمای 190 درجه سانتی‌گراد، و دکتریان آن از نوع
شعله‌ای 0.2 میلی‌متر مستانل و 0.5 میلی‌متر اسید
سولفوریک غلت (به عنوان کالیبراتور) به مورد پرگان وصل
گردید. و مدت یک ساعت حرارت داده شد تا استبدار چرب
به مثل استر مربوط به تبیک شود. سپس 5 تا 6 میلی‌لیتر
اندریترول و پنج میلی‌لیتر آب پرقدرت به آن اضافه
و بعد از
ساختمان تری‌پلیسیدها متصل به توصیه‌های انجمن
پزشکان آمریکا باشد.

چربی پی گاز و چربی پی گاز، با روغن خوک و چربی پی گاز تا به
عنوان بخش جامد، با روغن کاری و سه شانه، دانه‌ای چربی خوک، با دیل‌های کاری به کار
می‌گیرد. روغن پی گاز مناسب است با به خواب
پی‌گازی مطلوب با بیشتر روغن خوک به کار
برده شود. پی‌پروریشگران از روغن هیدروژن کامل به عون
بخش جامد در فرآیند تبیک استفاده می‌شود (17، 18،
19، 20 و 21). با توجه به موارد مذکور، مخلوط 6 درصد
وزنی روغن خوک و 40 درصد وزنی چربی پی گاز از تبیک
استری انتخاب گردید.

نتایج و بحث

نتایج آزمایش‌های موجود به خواص فیزیکی و شیمیایی روغن‌ها در جدول 1 آمده است. عواملی که مشاهده می‌شود,
مدادرس اسیدهای چربی کانولوژی مصرفی (انیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
بالاتر در میانه باشد. با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
با عوامه‌ای کانولوژی مصرفی (اینیلین، روغن‌های
میلی‌سات 3) با استفاده از اینهای فیزیکی، چربی پی گاز,
جدول 2. خواص فیزیکی مخلوط ۶۰ درصد روفن سویا و ۴۰ درصد روفن یه گاو قبل و بعد از فرآیندهای تغییر استری

<table>
<thead>
<tr>
<th>نوع روفن</th>
<th>درصد چری جامد</th>
<th>نقطه چکیدن (°C)</th>
<th>نقطه ذوب (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰</td>
<td>۸/۳</td>
<td>۱۲/۷</td>
<td>۹/۶</td>
</tr>
<tr>
<td>۳۷</td>
<td>۶/۵</td>
<td>۷/۸</td>
<td>۵/۷</td>
</tr>
<tr>
<td>۳۵</td>
<td>۷/۸</td>
<td>۶/۵</td>
<td>۴/۷</td>
</tr>
<tr>
<td>۳۴</td>
<td>۹/۷</td>
<td>۶/۳</td>
<td>۳/۲</td>
</tr>
<tr>
<td>۳۳</td>
<td>۷/۹</td>
<td>۴/۸</td>
<td>۴/۷</td>
</tr>
<tr>
<td>۳۲</td>
<td>۳/۵</td>
<td>۴/۸</td>
<td>۳/۷</td>
</tr>
<tr>
<td>۳۱</td>
<td>۷/۵</td>
<td>۳/۱</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۲۹</td>
<td>۵/۴</td>
<td>۲/۵</td>
<td>۱/۷</td>
</tr>
<tr>
<td>۲۸</td>
<td>۴/۸</td>
<td>۱/۵</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۲۷</td>
<td>۲/۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۶</td>
<td>۱/۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمونه قبل از فرآیند
نمونه استری شده
نمونه قبل از زمان
نمونه استری شده
نمونه قبل از زمان
نمونه استری شده

۱. درصد چری جامد نمونه‌ها با استفاده از روش دیالامتري تمیز شده است.
۲. استری شده با ۵۰ درصد میلیلومتر سدیم به مدت ۶ دقیقه.
۳. استری شده با ۱۰۰ درصد میلیلومتر سدیم به مدت ۶ دقیقه.
۴. استری شده بدون کالسیزور به مدت ۶ دقیقه.

برای پرسی از زمان بر فرآیند تمیز شده، دو نمونه ۱۵۰ گرم از مخلوط فوق پرداخته شد. یکی از نمونه‌ها با مقدار ۵/۰ درصد میلیلومتر سدیم به مدت ۶ دقیقه و نمونه دیگری با همان مقدار کالسیزور به مدت ۶ دقیقه استری گردید.

برای پرسی تأثیر نوع کالسیزور، نمونه دیگری با ۵/۰ درصد اتیلات سدیم به مدت ۶ دقیقه و نمونه شاهد نیز بدون کالسیزور به مدت ۶ دقیقه تغییر استری گردید. خصوصیات فیزیکی و شیمیایی نمونه‌ها قبل و بعد از فرآیند تغییر استری در سه تکرار اندازه‌گیری شد.

خواص فیزیکی

بررسی نتایج نشان داد که نوع کالسیزور در خواص فیزیکی روفن‌های تغییر استری شده با متیلات و اتیلات سدیم دارای نقطه ذوب و مقدار چری جامد مشابه هستند.

۱۳۳
جدول ۳ مقایسه درصد قرابی جامد مخلوط ۶۰ درصد رغه سویا و ۴۰ درصد رغه پی گاز، قبل و بعد از فرایند استری

<table>
<thead>
<tr>
<th>p-NMR</th>
<th>روش دیاتومتروی</th>
<th>درجه حرارت (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>قبل</td>
<td>بعد</td>
</tr>
<tr>
<td>۸/۹</td>
<td>۱۲/۰۴</td>
<td>۱۲/۰۳</td>
</tr>
<tr>
<td>۹/۵</td>
<td>۱۰/۰۸</td>
<td>۹/۶</td>
</tr>
<tr>
<td>۵/۵</td>
<td>۷/۴۰</td>
<td>۷/۸</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۵/۰۴</td>
<td>۵/۱</td>
</tr>
<tr>
<td></td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
</tbody>
</table>

نمره واحد در حالت که یک جایی بین‌های اسیدهای چرب در سیستم‌های گلیسربند بیاید به بیشتری تغییراتی جریان‌های سیستم‌های گلیسربند می‌گردد. این جایی جایی باعث تغییرات در ساختار گلیسربند شده زدایی تغییرات روی نفتخال ذوب مقدار قرابی جامد و شکل بلورها تأثیر می‌گذارد (۱، ۲، ۳۷). چهارمین و چهاردهم (۵) با استفاده از گیاه‌فناوری دفع نازک تشکل داده که گلیسربندی با اسیدهای چرب دو تا سه یوند دغدغه، در اثر فرآیند تغییر استری، به طور قابل ملاحظه‌ای افزایش یافته‌اند. این تغییرات ساختاری باعث کاهش نفتخال ذوب می‌گردد.

از نظر اندیقای، با مقدار ۲/۳ درصد در محصول استری، بالا بوده که از نظر تغییرات ارزش پیوپروژیک محصولات غذایی بیشترین نظریه مادرگانی انتخاب می‌کند. براساس پیشنهاد پژوهشکاران، این مقدار اسیدهای چرب با درجه اشباع مداکن ۲۵ درصد و نسبت اسیدهای چرب با درجه غیراشبع بالای باه نسبت اسیدهای چرب اشباع حداکثر ۱/۲ درصد، با توجه به این که در فرآیند تغییر در حدود ۱۱/۰ درصد است، یک توجه به این که در فرآیند تغییر در استری، اسیدهای چرب ترانس شکل نمی‌شود (۱، ۱۷، ۱۹، ۳۴ ،۲۵ و ۲۷)، نبات‌ای باید اسیدهای چرب ترانس موجود در فرآیند استری پژوهش‌های انجام شده، فراوانی استریفیکاسیون در مقدار اسیدهای چرب تغییراتی انجام

ساختار اسیدهای چرب

شکل ۲ درصد اسیدهای چرب مخلوط استری شده راشان می‌دهد. براساس پژوهش‌های انجام شده، فراوانی استریفیکاسیون در مقدار اسیدهای چرب تغییراتی انجام
جدول ۴: وزن‌گی مایه شیمیایی مخلوط ۶۰ درصد رنگ میوه و ۴۰ درصد رنگ پیه گاو، قبل و بعد از فرآیند تغییر استری

<table>
<thead>
<tr>
<th>نوع رنگ</th>
<th>عدد پراکسید (meq/kg)</th>
<th>عدد اسیده (بر حسب اسیدولوگی)</th>
<th>درصد اسیده (g)</th>
<th>درصد مخلوط (mgKOH/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۵۱</td>
<td>۲/۹۰</td>
<td>۱/۵۵</td>
<td>۸/۵۱</td>
<td>۲/۹۰</td>
</tr>
<tr>
<td>۸/۵۲</td>
<td>۲/۹۰</td>
<td>۱/۵۵</td>
<td>۸/۵۲</td>
<td>۲/۹۰</td>
</tr>
<tr>
<td>۸/۵۳</td>
<td>۲/۹۰</td>
<td>۱/۵۵</td>
<td>۸/۵۳</td>
<td>۲/۹۰</td>
</tr>
<tr>
<td>۸/۵۴</td>
<td>۲/۹۰</td>
<td>۱/۵۵</td>
<td>۸/۵۴</td>
<td>۲/۹۰</td>
</tr>
<tr>
<td>۸/۵۵</td>
<td>۲/۹۰</td>
<td>۱/۵۵</td>
<td>۸/۵۵</td>
<td>۲/۹۰</td>
</tr>
</tbody>
</table>

نموده تغییر استری شده

شکل ۱: مقایسه درصد چربی جامد مخلوط استری ۶۰ درصد رنگ میوه و ۴۰ درصد رنگ چربی گاو با دو نوع مارگارین

روغن استری از چربی پیه گاو مورد استفاده در فرمول مشتچ شده‌اند. اسیدهای حرب ترانس در چربی پیه گاو در اثر بیوهیدروژن‌سازی میکرو‌بی در رود حیوان حاصل می‌گردد (۲۴، ۲۵ و ۲۶).

در آمریکای جنوبی، مقدار ایزو‌مرهای ترانس در رنگ‌های معیار بساین استرای مارگارین‌های سخت حدود ۴/۳ تا ۴/۳ درصد، و در مارگارین‌های نرم حدود ۴/۲ تا ۴/۳ درصد می‌باشد. ایزو‌مرهای ترانس موجود در این رنگ‌ها به علت مصرف رنگ میوه‌ای هیدروژن‌نیست در فرمول این

۱۳۵
شکل ۲. نمودار کرماتوگرام (GC) مثل اسیدهایی چرب روغن استری. اسیدهای چرب به ترتیب: میرستیک (C₁₄:₀)، پالمیتیک (C₁₆:₀، C₁₈:₀)، استراتاریک (C₁₇:₀)، لیسولیک (C₁₈:₀)، اولیک (C₁₈:₂)، لیسولیک (C₁₈:₁) و زمان ماندارگری به ترتیب ۲۸/۰، ۳۰/۰، ۳۰/۰، ۴۰/۰، ۵۰/۰، ۷۰/۰، ۱۰/۰ و ۲۵/۰ دقیقه. برای سرایت کرماتوگرام به متن رجوع شود.

امیدهای چرب آزاد در اثر استرفیکاسیون، به مقادیر بسیار جزئی انرژی می‌یابند. هم‌چنین، آنها با تعیین عدد بندی مشخص نمونه که این فرآیند در دوره اشباع روغن‌ها تغییری ایجاد نمی‌کند. در نتیجه، فراوانی استرفیکاسیون در خواص شیمیایی روغن‌ها تغییری ایجاد نمی‌کند (۱۱، ۱۴، ۲۰ و ۲۶).

خصوصیات شیمیایی نمونه‌ها قبل و بعد از فرایند تغییر استری در جدول ۴ آمده است. همانطور که مشخص است، اسیدهای چرب آزاد و پراکسید روغن در اثر فرآیند استری به مقادیر جزئی افزایش یافته است. دلیل افزایش اسیدهای چرب آزاد و عدد پراکسید، می‌تواند تشکیل صابون و میل استر در طی فرآیند تغییر استری باشد (۲۰). با استفاده از فرآیندهای تصفیه و پی بکردن، می‌توان مقادیر آنها را کاهش داد. در درجه تغییراتی ایجاد شده است، این موضوع با تعیین عدد بندی و عدد صابوئی قبل و بعد از فرآیند نشان داده شده است.

خواص شیمیایی

سپاسگزاری

پیدایش و ریزش یک آتی مهندس فیزیولوژی مدتروور به خاطر مشاورت و نظرات آزمایشگاه صنعت غذایی دانشگاه صنعتی اصفهان، که در طول اجرا آن محاسبات و همکاری را می‌دانستند و از همکاری آقایان مهندس مهندس سادات مدری تولید کارخانه

لیز نشان دادند که عده‌ای مقدار
روغن نباتی تازی اصفهان و مهندس جوهریان کارشناسی ارشد (تهران، مهندسی شیکس) و نتایج آزمایشگاهی تحقیقات و کنترل کیفیت کارشناسی روان نباتی پارس

منابع مورد استفاده

1. مهران، م. (مترجم). ۱۳۵۲. روان خوراکی. انتشارات دانشگاه تهران

