کاربرد استریفتیکاسیون در ساخت رونگ مناسب برای تولید مارگارین

شیخ زمردی، رضا شکریانی، محمد شاهدی و شهرام دخانی

چکیده
فرآیند استریفتیکاسیون با جایگزینی پتیدردهای اسید چرب در مولکول تریگلیسریدهای باعث بهبود خواص فیزیک شیمیایی جدیدی ها می‌گردد. هدف از این تحقیق تهیه رونگ خوراکی مناسب برای مصرف خانگی و صنعتی از طریق تغییر استری مخلوطی از رونگ‌ها می‌باشد. در این مطالعه، مخلوط 60 درصد وزنی رونگ سویا و 40 درصد وزنی په گاو خوراکی، با استفاده از نیتیلات و اتانول سدیم به عنوان کاتالیزور تغییر استری داده شد.

نتایج نشان دهنده کیفیت بهتر چربی جامد و تهیه ذوب نیاز داشته که نتایج استریفتیکاسیون با 90 درصد مدل مخلوط داشته باشد. با استفاده از مدل‌های ساده، مخلوطی که مسیر خییرهای مناسب است، تهیه می‌گردد. نتایج نشان می‌دهد که مخلوط رونگ‌های په گاو و رونگ‌های سویا، تغییر استری بهتر است. بهترین نتایج از جمله لازمات نیتیلات مخلوط رونگ‌های سویا و په گاو در تولید مارگارین و تغییر برای مصرف خانگی، با توجه به محدودیت‌های سایر موانع مناسب است.

واژه‌های کلیدی: استریفتیکاسیون، رونگ سویا، په گاو، تغییر استری

مقدمه
رونگ‌ها در تغذیه انسان نقش اساسی دارند. آنها علاوه بر تولید انرژی، منبع اصلی اسیدهای چرب ضروری بوده و حامل سایر ترکیبات همراه چربی‌ها از جمله پیگمانهای

1. پژوهشگر صنایع غذایی، بخش فنی مهندسی مرکز تحقیقات کشاورزی آذربایجان غربی
2. استادیار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
3. دانشیار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

129
کاروتئینیاتی و استروئیدها می‌باشند. هم‌چنین، مصرف
روغن‌ها در بهبود انواع مواد غذایی، ضمن افزایش ارزش
تغذیه‌ای، باعث بهبود طعم آن‌ها می‌گردد. به همین دلیل، در انواع
مواد غذایی در حد وسیع مصرف ریگن‌های (۱۷، ۲۶) و (۲۵، ۲۷).
روغن‌های موجود در بازارهای جهانی، اغلب دارای کیفیت
مناسب برای تغییرات و مصارف مختلف خوراکی می‌باشند.
لذا جهت تأمین کیفیت مناسب و بالا بردن قابلیت تغییرات،
از این استفاده‌ها در آن‌ها داده شود. برای نیل به این اهداف، و
با توجه به موارد مصرف آن‌ها از فواید فیزیولوژیک،
استریفیکاسیون و ترکیب می‌توان آن‌ها استفاده می‌گردد (۱۱،
۱۲، ۱۹ و ۲۶). در فرانسه و هیدروژناسیون، علائم افزایش بایت روغن‌ها
بخشی از این‌ها جریان ضروری اول یا دوم نیست. معمولاً
اثر اسیدهای پروتئین تغییر نمی‌کند. همچنین
به‌طور کلی، مصرف روغن‌ها مصرف آن‌ها مشابه است.
۱۲ و ۲۳). با این که اثرات سه‌سیاهی به جز کاهش عضلانی
برای سلامتی به طور کامل و قطعی مشخص نشدند، ولی
نکات‌هایی در این مورد وجود دارد. در این‌جا سیاهی استفاده
در میان‌بندی با اسیدهای قلیایی برای عرضه می‌کنند. همچنین، پیشرفت ایپیدمیولوژیک در بعضی از کشورها،
مصرف این نوع محصولات با پیشرفت‌های قلبی و عروقی حمایت
بوده و یکی از اثرات آن‌ها کاهش کلسترول (۲۳) و کاهش
کلسترول LDL (۱۳).
۱. Prostaglandin 2. Partial hydrogenation 3. Low Density Lipoprotein (LDL)
7. Tallow 8. Fluka

1279
استخراج روحی از پی گوار

برای استخراج روحی از پی گوار، پایتخت های جهانی باید به صورت قطع کردن به پی گوار خود در مبنای مدل سه بعدی آنها تغییر بدهند ولی با استفاده از تکنیک های مستقیم، با استفاده از بخار مضیف، تغییر صورت می گیرد. روحی، هنالین ناشی از فیلتر پاتریک که در داده شده با قبایل گشت و پرورش یافته نمی شود، از روحی به نوین، جدید آمیخته مایع مایع فکری از یک آمیخته در مصرف سنجش در درجه سانسیتی گردش کرده، رونا ها حاصله شده می باشد.

موضع تغییر استری

نتیجه مبنایی که یافته می شود از مخلوط روحی یا مورد آزمایش تهیه شده است. مقدار 150 گرم از مخلوط به یک بانی تهیه گردیده. 550 میلی لیتر بخار خشک و نازان نشسته است. با استفاده از دستگاه اپارتاور گردشی تعادل خالا در حرارت 90 درجه سانتی گراد به مدت 45 دقیقه حرارت داده شده است. روحی فوری شده سپس به تازگی استری می گردد و تغییر مستقل در حرارت 80 درجه سانتی گراد 5 درصد وزنی از مدل با ایجاد ساده های ایجاد می گردد و تغییر در حرارت 85 درجه سانتی گراد 6 درصد وزنی افزایش می گردد و تغییر در حرارت 80 درجه سانتی گراد 5 درصد وزنی ایجاد می شود (محلول 20 درصد در مراحل بدون آب) به عنوان کانالیزور اضافه گردید و تغییر در حرارت 85 درجه سانتی گراد خالا و گاز نیتروژن با به هم منیده در حرارت 85 درجه سانتی گراد به مدت 30 دقیقه، کانالیزور شده می گردد و تغییر شده، با استفاده از مدل 60 درجه سانتی گراد سرد شده و در حالت که به سرعت 100 در دقیقه هم تازه می شود، مقدار 100 میلی لیتر آب مخلوط داغ که دارای 10 میلی لیتر اسید یونیک پنج ناحیه بوده، به آن افزوده می شود و مدت 10 دقیقه می گردد. سپس با استفاده از تیز دکانتری، نمونه آب از روغن جدید گردید. روغن راو استری شده 5 میلی بر اب آب.

1. Wijs 2. Fals Nuclear Magnetic Resonance Spectroscopy
جدول 1. خواص فیزیکی و شیمیایی روش‌های مورد آزمایش

<table>
<thead>
<tr>
<th>نوع روش</th>
<th>تقطیع ذوب</th>
<th>عدد اسید</th>
<th>عدد اسیده‌ی (بر حسب اسید اولیک)</th>
<th>(mgKOH/g)</th>
<th>(g/100 g)</th>
<th>(meq/kg)</th>
<th>(mgKOH/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روغن سویا</td>
<td>0/57</td>
<td>1/13</td>
<td>0/5</td>
<td>191/3</td>
<td>13/2</td>
<td>2/7</td>
<td>0/8</td>
</tr>
<tr>
<td>چربی په گاز</td>
<td>0/02</td>
<td>0/57</td>
<td>0/5</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
</tr>
</tbody>
</table>

استفاده از استاندارد ثابت، که سیمان چربی جامد آن دقتی‌شمار بوده و مشخص بود که این مقدار کاهش یابد.

استفاده از چربی جامد آزاد آزاد روش‌های مصرفی به کمک از

1. Flame Ionization Detector (FID)
2. Solid Content
جدول 2: خواص فیزیکی مخلوط ۶۰ درصد رغوة و ۴۰ درصد روانه یا گاو. قبل و بعد از فرآیند تغییر استری.

<table>
<thead>
<tr>
<th>درصد چربی جامد</th>
<th>درجه سایتیگر</th>
<th>نقطه چکیدن</th>
<th>نقطه ذوب</th>
<th>نوع روانه</th>
<th>نقطه ظرفیت (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1/1</td>
<td>37</td>
<td>9/6</td>
<td>۲۰</td>
<td>شاهد ۳۳</td>
</tr>
<tr>
<td>25</td>
<td>2/5</td>
<td>35</td>
<td>8/2</td>
<td>۳۰</td>
<td>شاهد ۲۶</td>
</tr>
<tr>
<td>20</td>
<td>2/9</td>
<td>32</td>
<td>7/9</td>
<td>۳۰</td>
<td>شاهد ۲۳</td>
</tr>
<tr>
<td>15</td>
<td>3/1</td>
<td>37</td>
<td>8/5</td>
<td>۳۰</td>
<td>شاهد ۲۴</td>
</tr>
<tr>
<td>10</td>
<td>3/1</td>
<td>37</td>
<td>8/5</td>
<td>۳۰</td>
<td>شاهد ۲۳</td>
</tr>
<tr>
<td>5</td>
<td>3/1</td>
<td>37</td>
<td>8/5</td>
<td>۳۰</td>
<td>شاهد ۲۳</td>
</tr>
</tbody>
</table>

1. درصد چربی جامد نمونه‌ها با استفاده از روش دیافراگمی تعیین شده است.
2. درصد چربی جامد نمونه‌ها با استفاده از روش دیافراگمی تعیین شده است.
3. درصد سایتیگر نمونه‌ها با استفاده از روش دیافراگمی تعیین شده است.
4. درصد سایتیگر نمونه‌ها با استفاده از روش دیافراگمی تعیین شده است.
5. درصد سایتیگر نمونه‌ها با استفاده از روش دیافراگمی تعیین شده است.

فرایند تغییر استری که کاهش می‌یابد سرینیواسان (۲۵) نیز تغییرات مشابهی را در فرایند استریفیکاسیون سایر روانه‌ها و چربی‌های گازدارش نمود.

مقایسه نتایج نمونه‌های استری سه در زمان‌های مختلف نشان داده که زمان استری که در مقدار کافی چربی جامد، نقطه ذوب و نقطه چکیدن تغییرات اساسی ایجاد نکرده است. فرایند تغییر استری، با ۱/۰ درصد کال記事ور در حرارت ۹۰ درجه سانتی‌گراد در مدت ۶۰ دقیقه کامل می‌شود و نیاز به زمان بیشتری ندارد.

برای بررسی تأثیر نوع کال記事ور، نمونه دیگری با ۲/۵ درصد ابلات سدیم به مدت ۶۰ دقیقه، و نمونه شاهد نیز بدون کال記事ور به مدت ۶۰ دقیقه تغییر استری گردید. خصوصیات فیزیکی و شیمیایی نمونه‌ها قبل و بعد از فرایند تغییر استری در سه تکرار اندازه‌گیری شد.

برای بررسی اثر زمان بر فرایند تغییر استری، در نمونه ۱۵۰ گرمی از مخلوط فوق برنده شد. کیکی از نمونه‌ها با مقدار ۱/۵ درصد سایتیگر در حرارت ۸۵ درجه سانتی‌گراد، در مدت ۶۰ دقیقه تغییر استری گردید.

برای بررسی تأثیر نوع کال記事ور، نمونه دیگری با ۲/۵ درصد ابلات سدیم به مدت ۶۰ دقیقه، و نمونه شاهد نیز بدون کال記事ور به مدت ۶۰ دقیقه تغییر استری گردید. خصوصیات فیزیکی و شیمیایی نمونه‌ها قبل و بعد از فرایند تغییر استری در سه تکرار اندازه‌گیری شد.

خواص فیزیکی

خواص فیزیکی مخلوط روانه‌ها، قبل و بعد از فرایند استریفیکاسیون در جدول ۲ آمده است. مقدار طویلی که مشاهده می‌شود، نقطه ذوب، نقطه چکیدن و مقدار چربی جامد مخلوط روانه‌ها در نتیجه تغییر استری کاهش پذیره است.

این کاهش در اثر اثر دفعی و خاص تغییرات شکننده در نقطه ذوب بالایی در نتیجه فرآیند استریفیکاسیون می‌باشد (۵) و (۶).

لاو و هاندل (۲۰) گزارش کردند که نمونه‌ها که نقطه ذوب و مقدار چربی جامد در اثر
جدول 3. مقایسه درصد چربی جامد مخلوط ۶۰ درصد رژن سویا و ۴۰ درصد رژن پی گال، قبل و بعد از فرآیند استری

<table>
<thead>
<tr>
<th></th>
<th>پ-NMR</th>
<th>روش دیالومتری</th>
<th>درجه حرارت (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بعد</td>
<td>قبل</td>
<td></td>
</tr>
<tr>
<td>8/9</td>
<td>12/08</td>
<td>13/02</td>
<td>20</td>
</tr>
<tr>
<td>9/8</td>
<td>11/89</td>
<td>9/68</td>
<td>25</td>
</tr>
<tr>
<td>5/6</td>
<td>7/86</td>
<td>7/88</td>
<td>30</td>
</tr>
<tr>
<td>5/7</td>
<td>5/78</td>
<td>5/88</td>
<td>35</td>
</tr>
<tr>
<td>2/9</td>
<td>0/75</td>
<td>0/58</td>
<td>40</td>
</tr>
</tbody>
</table>

درصد چربی جامد قبل و بعد از استری درصد چربی جامد درصد چربی جامد قبل و بعد از استری.

نمره کن، در حالی که یک چوب چوبی بنام یاده‌ای اسیدهای جرب در مسترلیت گلیسرید، باعث بهبود خصوصیات فیزیکی چربی‌ها می‌گردد. این چوب چوبی یک چوب غلیظ‌ترین در ساختارین تری گلیسرید‌ها شده، این تغییرات روی نقطه ذوب مقدار چربی جامد و شکل بلورها تأثیر می‌گذارد (1، 9، 14، 16، 18، 20، 25، 26 و 27).

چرخون و چونان (5) با استفاده از کروماتوگرافی صفحه‌دار، نشان دادند که گلیسرید‌های با اسیدهای جرب چرب دو تا چهار پوند دوگانه، در اثر فرآیند تغییر استری، به طور قابل ملاحظه‌ای انزاییت می‌پاینده. این تغییرات ساختاری باعث کاهش نقطه ذوب می‌گردد.

ساختار اسیدهای جرب

درصد مقدار چربی جامد روزگاری با اسیدهای جرب پذیرفتند. مطالعات دارد. خواص کاربردی مارکرین، در حد وسیعی با تغییرات قابل توجه گسترده و مقاومت آن در حفرات اتاق، به چیزی مانند از رگ، و نیز خواص ذوبی آن هم در دهان و هم در غشاء‌ها. به مقدار زیادی به درصد چربی جامد روزگاری مارکرین به‌سگی دارد. مارکرین‌های پاک به‌خاطر در دهان ذوب شده و دارای حالت روغنی نباشند (17 و 19).

ساختار اسیدهای جرب

شکل ۲ درصد اسیدهای جرب مخلوط اتیل شده را نشان می‌دهد. بررسی‌های پژوهشی انجام شده، فراوانی اسیدهای جرب تغییراتی ایجاد
جدول ۲: ویژگی‌های شیمیایی مخلوط ۶۰ درصد روغن سویا و ۴۰ درصد روغن پی‌گاو قبل و بعد از تغییر استری

<table>
<thead>
<tr>
<th>نوع روغن</th>
<th>عدد صابونی (mgKOH/g)</th>
<th>عدد پروپیل‌هیدروفرات (meq/kg)</th>
<th>عدد اسیدهای (بر حسب اسید‌الولیک) (KOH/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روغن پی‌گاو قبل از تغییر استری</td>
<td>۱۸۷/۶</td>
<td>۹۵/۲</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>روغن پی‌گاو بعد از تغییر استری</td>
<td>۱۸۷/۶</td>
<td>۹۵/۲</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>روغن سویا قبل از تغییر استری</td>
<td>۱۸۷/۵</td>
<td>۹۵/۱</td>
<td>۰/۶۰</td>
</tr>
<tr>
<td>روغن سویا بعد از تغییر استری</td>
<td>۱۸۷/۴</td>
<td>۹۵/۱</td>
<td>۰/۶۰</td>
</tr>
</tbody>
</table>

شکل ۱: مقایسه درصد چربی جامد مخلوط استری ۶۰ درصد روغن سویا و ۴۰ درصد روغن پی‌گاو با دو نوع مارگارین

روغن استری چربی پی‌گاو از آن زمان ساخت روغن مشتق شده‌اند، اسیدهای نیترات در چربی پی‌گاو در اثر پروپیل‌هیدروفراتیون میکرو‌با در روزه حیوان حاصل می‌گردد (۱۲۴ و ۲۲۷) در آمریکای جنوبی، مقدار ایزوستر‌های رترین در روغن‌های مصرف برای ساخت مارگارینهای سخت حدود ۷۵/۳ تا ۷۳/۳ درصد، و در مارگارینهای نرم حدود ۷۲/۵ تا ۷۲/۵ درصد می‌باشد. ایزوستر‌های رترین موجود در چرب روغن‌های به علت مصرف روغن سویا یا هیدروژن‌سازی در فرمول این موارد می‌باشد.
شکل 2. نمودار کروماتوگرام (GC) میل استر اسیدهای چرب روان استری. استرها ی چرب به ترتیب: میرستیک (C14:0)، پالمیتیک (C16:0)، استارتاریک (C17:0)، اتانولیک (C18:0)، اتانول‌لیک (C18:1)، و اتانول‌ها (C18:2) با زمان مانگاری به ترتیب 38، 40، 42، 54، 57، 64، 65 و 67 دقیقه. (برای شیاریت کروماتوگرافی به متن رجوع شود)

امیدهای چرب آزاد در اثر استرایکاسیون، به مقادیر بسیار جفت افزایش می‌یابد. هم چنین، آنها با تعیین عدد بندی مشخص نمونه‌ی که بر اثر درجه اشباع روانها تغییر ایجاد می‌شود. در نتیجه، فراوانی استرایکاسیون در شیمیایی روانه‌ها تغییر دوره‌ای ایجاد می‌کند (11، 40، 67 و 26).

خصوصیات شیمیایی نمونه‌ها قبل و بعد از فراوانی تغییر استری در جدول 4 آمده است. همانطور که مشخص است، اسیدهای چرب آزاد و پراکسید روان در اثر فراوانی استری به مقدار جزئی افزایش یافته است. دلیل افزایش اسیدهای چرب آزاد و عدد پراکسید، می‌تواند تشکیل صباین و میل ایست نیست در طی فراوانی تغییر استری باشد (20). با استفاده از فراوانی تغییر شیمیایی نمونه‌ها قبل و بعد از آتارکسی از آتارکسی و وزن مولکولی مخلوط روان‌های استری شده تغییراتی ایجاد نشده است. این موضوع با تعیین عدد و عدد صابونی قبل و بعد از فراوانی نشان داده شده است.

126


