کاربرد استریفیکاسیون در ساخت روانگ مناسب برای تولید مارگارین

چکیده

فراهم‌کردن استریفیکاسیون با جای‌گیری بنیادی ایستاد چری در مولکول تری‌گلیسریدها، باعث بهبود خواص فیزیکی و شیمیایی جیره می‌گردد. هدف از این تحقیق تهیه روانگ خوراکی مناسب برای مصارف خانگی و صنعتی، از طریق تغییر استری مخلوطی از روانگ‌ها می‌باشد. در این مطالعه، مخلوط 60 درصد وزنی روانگ سویا و 40 درصد وزنی په‌گاو خوراکی، با استفاده از میلیات و انرژیات سپید به عنوان کانال‌بندب، تغییر استری شده‌اند.

تاییدی اندوزگری موقعیت تولیدی چری جایگزین و نقطه ذوب نشان داده، فراهم‌کردن استریفیکاسیون با 60 درصد میلیات به مدت 20 دقیقه کامل می‌گردد. همچنین، روانگ‌های استری شده با استفاده از میلیات و انرژیات بهتر از جیره خواص شیمیایی و فیزیکی روانگ‌های استری شده، تغییر خواص خیلی بهبود می‌یابد.

واژه‌های کلیدی: استریفیکاسیون، روانگ‌های سویا، په‌گاو، تغییر استری

مقدمه

روغن‌ها در تغذیه انسان نقش اساسی دارند. آنها علاوه بر تولید انرژی، منبع اصلی اسیدهای چرب ضروری بوده و اجزایی از جمله پیگمانهای خون را تنظیم کرده، حالات ویتامین‌های محلول در چربی و حامل سایر ترکیبات هدرریز جیره می‌باشند.

1. پژوهشگر صنایع غذایی، بخش فنی مهندسی مرکز تحقیقات کشاورزی آذربایجان غربی
2. استاد دانشگاهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. دانشیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

129
کاروتئین‌های و استروئید‌ها می‌باشند. همین‌چنین، مصرف گوشت مصرف در تهیه انواع مواد غذایی و از آن‌ها ارزش تغذیه‌ای این بهبود طعم آن‌ها می‌گردد. به همین دلیل، از انواع مواد غذایی در پر و سویس مصرف می‌شود (۳، ۱۷، ۲۵ و ۲۶).

روغن‌های موجود در پزشکی‌های چهار، اغلب دارای کیفیت مناسب برای تغذیه‌های مختلف خوراکی می‌باشند. لذا جهت تأمین کیفیت ملوب به‌علاوه قابلیت نگهداری، لازم است تغییراتی در آن‌ها ایجاد شود. برای نیل به این اهداف، و یا توجه به موارد مصرف آن‌ها از فرواندهای هیدروژانژیسیون، استریفیکاسیون و یا ترکیب این فرواندها استفاده می‌گردد (۱۱).

در فرواندهای هیدروژانژیسیون، علاوه بر افزایش‌یافته رونه‌ها، به‌خستی از آسید‌های چرب ضروری ترین از بین رونه‌ها. معمولاً، اثر اسیدهای چرب ضروری تغییر پروتئین‌ها است (۱۲ و ۲۲). هیدروژانژیسیون نسبتاً باعث تغییر ایزوپروتئین‌ها می‌کند که این‌ها دارای روغن‌های سایر از دست‌رسی داده‌ها می‌گردد (۱۰ و ۲۰). با این که اثرات این اسیدهای چرب ترکس نیاز به سلامتی به دلیل کامل و چهلمی مشخص نشده، ولی تغییراتی در انواع وجود دارد، زیرا اسیدهای متعدد در متابولیسم اسیدهای چرب ضروری قطع می‌کنند. همین‌چنین، نوع کربوهیدرات‌های پیشرفتی، در باقی‌مانده از کشورها، مصرف این نوع محصولات با بیماری‌های قلبی و عروقی همراه یا بوده و یکی از اثرات افزایش کلسسترول LDL و کاهش HDL می‌باشد (۲ و ۲۲).

مواد و روش‌ها

۱. Prostaglandin ۲. Partial hydrogenation ۳. Low Density Lipoprotein (LDL)
۴. High Density Lipoprotein (HDL) ۵. Random interesterification ۶. Direct Interesterification
۷. Tallow ۸. Fluka
استخراج روغن از پی گاو

برای استحصال روغن از پی گاو، بافت‌های چربی به صورت قطعات کوچک بریده شده و به وسیله دستگاه چرخه‌ای قومت خرد گردید. عملیات ذوب در تانک استیل کوچک با استفاده از بخار مستقیم صورت گرفت. روغن حاصل از فیلتر پلی‌چاه صورت داده شد. با گوشت و پریشانی معده شده از روغن جدا شد. در نهایت، با استفاده از دستگاه‌های تکاملی، روغن خالی از حارت درجه 85 درجه سانتی‌گراد خشک گردید. روغن حاصله تا موقع مصرف در سردخانه درجه 3 درجه سانتی‌گراد نگهداری شد.

روش تغییر استری

نتیجه‌گیری‌ها: میزان چربی‌های نرم، که به وسیله دستگاه p-NMR، بر اساس مقادیر مربوط به یک بالایه آزمایش تیپی شد. مقدار 150 گرم از هر محلول به یک بالایه تغذیه آمیخته شد. خرابکاری‌ها که جوهر از سطح روغن خشک نمود و میزان Nehri خشک و تمیز منتقل گردید. رابطه‌ای با استفاده از دستگاه‌های تکاملی، روغن خالی از حارت درجه 90 درجه سانتی‌گراد، به مدت 60 دقیقه حاره داده شد. روغن خشک شده به ارتفاع مایل خلا 500 میلی‌لیتر خشک و تمیز منتقل و در حارت درجه 85 درجه سانتی‌گراد و مدت زمانی که مناسب برای این اشکالات سدیم (محلول 20 درصد در مخلوط بدون آب) به عنوان کاتالیزور اضافه گردید و توصیف اجرا به دارای همکاری، مختلگری تحت خشک و گاز نیتروژن، به یک مدل شرکت در حارت درجه 85 تا 90 درجه سانتی‌گراد، به مدت دوران به تعداد 60 دقیقه تغییر داده شد. با واکنش‌های تغییر استری کاملاً گردید. سپس با تغییر ترمیم کاتالیزور، محلول استری شده تا دمای درجه سانتی‌گراد سرد شد. در حالت که به سرعت 6 در دقیقه به مدت 100 میلی‌لیتر از محلول داغ، که دارای مقدار 10 میلی‌لیتر اسید فسفریک پنجه در داخل بود، به آن افزوده و مدت 10 دقیقه مدت 60 میلی‌لیتر از محلول داغ، که دارای مدت معکوس داشت. سپس با استفاده از تیپ دکانه و لایه آبی از روغن چند درجه گردید. درنهایت، روغن استری در مدت 5 متری به آب

1. Wijs 2. Pals Nuclear Magnetic Resonance Spectroscopy
جدول 1. خواص فیزیکی و شیمیایی روش‌های مورد آزمایش

| نوع روش | نقطه ذوب (°C) | گازهای گرم | واحد اسیدی | واحد گازهای گرم | واحد سویا | واحد پی گاز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>روغن سویا</td>
<td>0/1</td>
<td>5/07</td>
<td>0/2</td>
<td>191/2</td>
<td>12/5</td>
<td>0/5</td>
</tr>
<tr>
<td>چربی پی گاز</td>
<td>0/2</td>
<td>18/3</td>
<td>20/0</td>
<td>1/12</td>
<td>4/2</td>
<td>6/4</td>
</tr>
</tbody>
</table>

استفاده از استاندارد ثابت، که سیمان چربی جانب آن دقتی‌تر مشخص بود، کاربرد داشت (22). استفاده چربی جانب با استفاده از روش کربوناتوگرافی گازی مشخصاتی شد. فاز متحرک دستگاه، گاز هلیوم با فشار 70 CT-6IL88 پاسکال، ستوی مورد استفاده از جنس و مدل یک طول 100 میلی‌متر، داخلی 25 میلی‌متر، طول‌بردار، مکروپریتوس با دایره 190 درجه سانتیغراد و دکتران آن از نوع شعله‌ای 1 دمای 300 درجه سانتی‌گراد بوت. در این روش یک گرم نمونه با 150 میلی‌لیتر متانول و 6/1 میلی‌لیتر فلز سولفوریک غلیظ (به عنوان کاتالیزور) به مورد پرگردن وصل گردید و مدت یک ساعت حوارد شده گردید. سپس با استفاده از اولورانچار، زیرا این روش دارای مقدار بسیاری از ماده‌های چرب با درجه غیرشباهت بالا است. از طرفی مقدار روان‌ها در مخلوط طوری انتخاب شد که نسبت استبداد به چرب ساخته‌های تری‌کلرپریده مناسب با توصیه‌های انجمن پزشکان آمریکا باشد.

چربی‌های دیپتان (5) چربی‌های روغن‌ها به عنوان بخش جامد، با روغن‌های دیپتان استفاده می‌شود. شناس دانه‌های چربی به دلیل داشتن مقدار کریزی از جامد آن مانند روغن‌های پی گاز مناسب نمی‌باشد. در این تری‌گاز، پی گاز به خواص فیزیکی مطلوب یافته چربی‌ها به پی کوه یا با طرح نشانه‌های دیپتان استفاده می‌شود. سپس با استفاده از مکروپریتوس، جدایی می‌گردد. سپس با استفاده از اولورانچار، حلال از روان‌ها در آن 55 درجه سانتی‌گراد به مدت و تا سه ساعت قرار داده شده سه‌گرد. سپس با استفاده از دستگاه‌های تری‌کلرتراک و به دستگاه تری‌کلرپریده (3).

نتایج و بحث

نتایج آزمایش‌های مربوط به خواص فیزیکی و شیمیایی روغن‌ها در جدول‌های 1 آمده است. سه طوره مصرف می‌شود. مقدار اسیدهای چربی آزمایش چربی‌های روغن‌ها به علت تنها نشان بالاروش بیشتر باشد. به دلیل این که کاتالیزورهای مصرفی (بیلر و مبله‌های سردی) به اسیدهای چربی روغن‌ها می‌باشد.

1. Flame Ionization Detector (FID) 2. Solid Content
<table>
<thead>
<tr>
<th>نقطه چکیدن</th>
<th>نقطه ذوب</th>
<th>نوع رونفه</th>
<th>درصد ذوب</th>
<th>درصد ذوب</th>
<th>درصد ذوب</th>
<th>درصد ذوب</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>7/8</td>
<td>9/6</td>
<td>12/3</td>
<td>2/5</td>
<td>2/5</td>
<td>5/1</td>
</tr>
<tr>
<td>35</td>
<td>0/5</td>
<td>5/3</td>
<td>8/2</td>
<td>2/2</td>
<td>3/5</td>
<td>7/9</td>
</tr>
<tr>
<td>34</td>
<td>0/2</td>
<td>7/5</td>
<td>36</td>
<td>9/5</td>
<td>9/5</td>
<td>1/5</td>
</tr>
<tr>
<td>37</td>
<td>0/1</td>
<td>3/1</td>
<td>15/5</td>
<td>10/2</td>
<td>5/2</td>
<td>4/8</td>
</tr>
<tr>
<td>-</td>
<td>0/2</td>
<td>32</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
</tbody>
</table>

1. درصد ذوب در کربن دی آزون به مدت 3 دقیقه، درصد ذوب در کربن دی آزون به مدت 6 دقیقه، درصد ذوب در کربن دی آزون به مدت 9 دقیقه، درصد ذوب در کربن دی آزون به مدت 12 دقیقه، درصد ذوب در کربن دی آزون به مدت 15 دقیقه، درصد ذوب در کربن دی آزون به مدت 18 دقیقه، درصد ذوب در کربن دی آزون به مدت 21 دقیقه، درصد ذوب در کربن دی آزون به مدت 24 دقیقه، درصد ذوب در کربن دی آزون به مدت 27 دقیقه، درصد ذوب در کربن دی آزون به مدت 30 دقیقه، درصد ذوب در کربن دی آزون به مدت 33 دقیقه، درصد ذوب در کربن دی آزون به مدت 36 دقیقه، درصد ذوب در کربن دی آزون به مدت 39 دقیقه، درصد ذوب در کربن دی آزون به مدت 42 دقیقه، درصد ذوب در کربن دی آزون به مدت 45 دقیقه، درصد ذوب در کربن دی آزون به مدت 48 دقیقه، درصد ذوب در کربن دی آزون به مدت 51 دقیقه، درصد ذوب در کربن دی آزون به مدت 54 دقیقه، درصد ذوب در کربن دی آزون به مدت 57 دقیقه، درصد ذوب در کربن دی آزون به مدت 60 دقیقه، درصد ذوب در کربن دی آزون به مدت 63 دقیقه، درصد ذوب در کربن دی آزون به مدت 66 دقیقه، درصد ذوب در کربن دی آزون به مدت 69 دقیقه، درصد ذوب در کربن دی آزون به مدت 72 دقیقه، درصد ذوب در کربن دی آزون به مدت 75 دقیقه، درصد ذوب در کربن دی آزون به مدت 78 دقیقه، درصد ذوب در کربن دی آزون به مدت 81 دقیقه، درصد ذوب در کربن دی آزون به مدت 84 دقیقه، درصد ذوب در کربن دی آزون به مدت 87 دقیقه، درصد ذوب در کربن دی آزون به مدت 90 دقیقه، درصد ذوب در کربن دی آزون به مدت 93 دقیقه، درصد ذوب در کربن دی آزون به مدت 96 دقیقه، درصد ذوب در کربن دی آزون به مدت 99 دقیقه.
جدول ۳. مقایسه درصد قارچی چرب مخلوط ۶۰ درصد رنگ سویا و ۴۰ درصد رنگ پی گار، قبل و بعد از فرآیند استری

<table>
<thead>
<tr>
<th>p-NMR</th>
<th>روش دیالنومتری</th>
<th>دمای حرارت (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>قبل</td>
<td>بعد</td>
</tr>
<tr>
<td>۸/۹</td>
<td>۱۴/۰۴</td>
<td>۱۲/۳</td>
</tr>
<tr>
<td>۸/۸</td>
<td>۷/۵</td>
<td>۶/۵</td>
</tr>
<tr>
<td>۵/۵</td>
<td>۵/۵</td>
<td>۴/۵</td>
</tr>
<tr>
<td>۵/۲</td>
<td>۵/۲</td>
<td>۴/۲</td>
</tr>
<tr>
<td>۵/۱</td>
<td>۵/۱</td>
<td>۴/۱</td>
</tr>
<tr>
<td>۵/۰۴</td>
<td>۵/۰۴</td>
<td>۴/۰۴</td>
</tr>
<tr>
<td>۵/۰۵</td>
<td>۵/۰۵</td>
<td>۴/۰۵</td>
</tr>
<tr>
<td>۵/۲۰</td>
<td>۵/۲۰</td>
<td>۴/۲۰</td>
</tr>
<tr>
<td>۵/۲۴</td>
<td>۵/۲۴</td>
<td>۴/۲۴</td>
</tr>
<tr>
<td>۵/۲۷</td>
<td>۵/۲۷</td>
<td>۴/۲۷</td>
</tr>
</tbody>
</table>

نمره کند، در حالی که با جایی چهار به عنوان‌های اسیدهای چرب در مکمل‌های غلیسرید، پایه به‌هم‌الگی خصوصیات فیزیکی چرب‌های می‌گردد. این جایی پایه نوع تغییرات در ساختاری می‌گردد. مقدار چربی یا شکل بلورها تأثیر می‌گذارد (۱).

لازم نیست که طرفت زیر رونش دیالنومتری، درصد قارچی چرب نمونه‌ها با استفاده از دستگاه p-NMR تغییر گردید. نتایج p-NMR حاصل از روش دیالنومتری با اعداد حاصله از روش در جدول ۳ مشاهده می‌گردد.

همانطوری که در شکل ۱ مشخص است، مقدار قارچی چرب‌های جادو رونگی استری تقریباً با مقدار قارچی چرب از انواع مارگرین مطابقت دارد. خواص کاربردی مارگرین، در حد وسیعی با تغییرات ساختاری میدهد. مقدار قارچی چرب از رونگی انسان آشکار‌کننده، این استدلال می‌شود. این مقدار و مقادیر آن در حفرات اتاقی، به جز شن فاز ماشین رونگ و نیز خواص دیگر آن هم در دهان و هم در دمای به مقدار زیادی به درصد قارچی چرب رونگ مارگرین بستگی دارد. مارگرین یا دارد و راحتی در دهان ذوب شده و دارای حالت رونگی نباشند (۱۶ و ۱۷).

ساختار اندازه‌گیری چرب

شکل ۴ درصد اسیدهای چرب مخلوط استری شده را نشان می‌دهد. براساس پژوهش‌های انجام شده، فرآیند استریفیکاسیون در مقدار اسیدهای چرب تغییراتی ایجاد

۱۲۴
جدول ۴. وزن‌گی مای شیمیایی مخلوط ۶۰ درصد روغن سویا و ۴۰ درصد روغن پپه‌گاو قبل و بعد از فرآیند تغییر استری

<table>
<thead>
<tr>
<th>نوع روغن</th>
<th>عدد سیمان (بر حسب اسیدولوگی) (KOH/g)</th>
<th>عدد پراکسید (meq/kg)</th>
<th>عدد پراکسید (g ۱۷۰۰ °E)</th>
<th>عدد صابونی (mgKOH/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمودن قبل از یونیم</td>
<td>۰/۵۵</td>
<td>۰/۸۷</td>
<td>۰/۲۵</td>
<td>۱۸۷/۶</td>
</tr>
<tr>
<td>نمودن استرس استری شده ۱</td>
<td>۱/۷</td>
<td>۰/۷۵</td>
<td>۰/۷۵</td>
<td>۱۸۷/۵</td>
</tr>
<tr>
<td>نمودن استرس استری شده ۲</td>
<td>۱/۵</td>
<td>۰/۲۵</td>
<td>۰/۴۳</td>
<td>۱۸۷/۴</td>
</tr>
<tr>
<td>نمودن استرس استری شده ۳</td>
<td>۱/۵۵</td>
<td>۰/۸۲</td>
<td>۰/۸۵</td>
<td>۱۸۷/۷</td>
</tr>
</tbody>
</table>

شکل ۱. مقایسه درصد چربی جامد مخلوط استری ۶۰ درصد روغن سویا و ۴۰ درصد روغن پپه‌گاو با دو نوع مارگارین

روغن استری از چربی پپه‌گا در مورد یونیم مشکل شده‌اند. اسیدهای چرب ترانس در چربی پپه‌گا در اثر بیوهیدروژناسیون میکروبا در روز حیوان حاصل می‌گردد (۱۶، ۲۰ و ۲۲). در آمریکای جنوبی، مقدار این اسیدهای ترانس در روغن‌های مصرفی را سایت مارگارین‌های ساخت حدد/۳۷/۱ تا ۴۵ درصد و در مارگارین‌های مصرفی حدد/۲۷/۱ تا ۳۰ درصد می‌باشد. ایزومرهای ترانس موجود در این روغن‌ها به علت مصرف روغن سویا در حرارت به شکل قابل قبول می‌باشد.

۱۳۵
شکل ۲. نمودار کرومانتوگرام (GC) ملی تست اسیدهای حرب روغن استری. اسیدهای حرب به ترتیب: میروستیک (C۱۴:۰)، پالمیتیک (C۱۸:۰)، اسنتاریک (C۱۸:۱)، لیسولینیک (C۱۸:۲)، اولئینیک (C۱۸:۳) و لینولینیک (C۱۸:۴) با زمان مانگاری به ترتیب ۲۸/۲، ۲۱/۲، ۲۰/۱، ۲۳/۷، ۱۹/۷ و ۲۵/۲ دقیقه. (برای شرایط کرومانتوگرامی به متن رجوع شود.)

خواص شیمیایی

اصیدهای حرب آزاد در اثر استریفیکاسیون به مقادیر بسیار جزئی افزایش می‌یابد. هم چنین، آنها با تعیین عدد بندی مشخص نمودنده که این فردی در درجه اشاع روغن‌ها تغییری ایجاد نمی‌کند. در نتیجه، فردی استریفیکاسیون در خواص شیمیایی روغن‌ها تغییری ایجاد نمی‌کند (۱۱، ۱۴، ۲۰ و ۲۱).

سیاسگزاری

بدین وسیله از آقای مهندس فیروز مسعودی به خاطر مشاورت و نظرات ارزشمندشان، و از آقای مهندس بهمن بهرامی سهمی‌آمیزی‌ها، صنایع غذایی دانشگاه صنعتی اصفهان، که در طول اجرا این طرح نهایت همکاری را مبذول داشته‌اند، و از همکاری آقایان مهندس مهندس مهندس مهندس سادات مسیر تولید کارخانه.

لپ و هاندل (۲۰) نیز نشان دادند که این استری و مقادیر
روغن نباتی ناز اصفهان و مهندسی جوامعیان کارشدنی ارشد
(تو) تهران، صمیمانه تشریک و قدرت انتقال می‌شود.

منابع مورد استفاده
1. مهران، م. (مترجم) 1352. روان خریداری. انتشارات دانشگاه تهران
 Ca2a-15, Cc1-25, Cc18-80, Cd3-25, Cd3a-63, Cd1-25, Cd8-53, Cd10-57, Ce1-62.
5. Chobanov, D. and R. Chobanova. 1977. Alterations in glyceride composition during interesterification of
 mixtures of sunflower oil with lard and tallow. JAOCS 54: 47-50.
 glyceride fraction of commercial margarine. JAOCS 68: 153-156.
8. Freeman, J. P. 1968. Interesterification change of glyceride composition during interesterification. JAOCS
 45: 456-460.
 689-693.
 144-6.
 nutritional values. JAOCS 58: 255-259.
 Preparation, structur and properties of interesterified soybean oil-soytrisaturated blends. JAOCS 54:
 408-413.
 soybean oil and tallow use as margarine oils. JAOCS 60(4): 815-818.
21. Madison, B. L. and R. C. Hill. 1978. Determination of the solid fat content of commercial fats by pulsed
 nuclear magnetic resonance. JAOCS 55: 328-331.