بررسی دفعات کودآپاری کود تیتروزنه در به‌هود کمی و کیفی میوه پرتقال

ناموسن ناول

هرمز عبادی و بیژن مرادی

(تاریخ دریافت: 1398/5/19، تاریخ پذیرش: 1398/7/27)

چکیده

به منظور مقایسه تأثیر دفعات کودآپاری کود تیتروزنه بر عملکرد کمی و کیفی میوه پرتقال، رقم ناموسن ناول، بهره‌وری مزراعه‌ای در قالب طرح بلوک‌های کامل تصادفی در پنج تیمار و چهار تکرار به مدت سه سال اجرا گردید. تیمارها عبارت بودند از یک تیمار چالاکود (آبیاری با سیستم قطره‌ای) و چهار تیمار کودآپاری کود تیتروزنه (2، 4، 6 و 8 دفعه در فصل رشد). مقدار کاربرد کود در همه تیمارها براساس چرخه خاک و برگ تیمار و عملکرد کود در تیمار چالاکود، کود اروه در دو نیمه، در تیمار تیمارها کود اروه از طریق تک تک کود استفاده شاند و بقیه کودها یک بار در سال (تیمه دوم اسفند) به درختان داده شد. مقدار و زمان آبیاری برای همه تیمارها تعیین شد. صفات اندام‌گیری شده در هر واحد آزمایشات شامل وزن کل میوه‌ها و وزن تک میوه، ضخامت پوست، قطر و طول پوست، اسیدیت و مواد جامد محلول میوه بود. مقایسه بین‌گین‌ها نشان داد که عملکرد درختان در تیمارها 4 و 8 بار کودآپاری به بیش از 50/1 درصد بیشتر از تیمارها دیگر بود. ولی فقط اختلاف 8 و 2 بار کود آپاری معنی‌دار بود. تیمارها از نظر وزن و ضخامت پوست میوه تفاوتی نداشتند. قطر میوه در 6 بار کودآپاری بیش از سایر تیمارها بود و تنها معنی‌دار با 2 بار کودآپاری داشت. کیفیت تک میوه در مقایسه شرکت کودآپاری و کود تیتروزنه ناگفته می‌ماند. نتایج نشان داد، در تیمارها کودآپاری، با پرداخت رقم ناموسن ناول در شرایط مشابه محل این پژوهش توصیه کرد.

واژه‌های کلیدی: مركبات، آپاری قطره‌ای، عملکرد میوه، مواد معدنی، تیتروزن

1. اعضای هیئت علمی مؤسسه تحقیقات مركبات کشور، رامسر
2. مسئول مکاتبات: پست الکترونیکی: hormozebadi@yahoo.com

61
مقدمة

مکان‌های دریافتگری گروه پررسی از میوه‌ها است و انواع پرتقال، نان‌گنگ، گربه‌فرش و پویا را شامل می‌شود. گسترش و سبب جرخانه‌پری و میزان بالای تولید مركبات موجب شده که این محفوظ از اهمیت اقتصادی زیادی در جهان بی‌خرود باشد. کودآپاری (بعض کود با آب آبایی) روی کرای کاربرد کودها از طرفی یک سیستم آبیاری است. بارت و همکاران (8) مزایای کودآپاری را چنین بررسی کردند: کاهش فشرده‌سازی، خاصیت رنگی که نیاز به آب و باریکی کار کار کرد و کاربرد عناصر غذایی به میزان مناسب در سنندج خاک با حداقل توزیع بیشتر برای تأمین نیازهای غذایی گیاه در زمان که نیاز دارد. با کودآپاری، تلفات توزیع نتوانست در سیستم کود-یکی در اثر اخیر، نبود.

آموزش و تربیت که می‌باشد (17) کودآپاری که محسوس را افزایش می‌دهد و از این رو ارزش محصول زیاد شده و بسیار افزایش درآمده است. شده (17). استفاده از آب‌بری می‌کاهد. که منظور بهره‌برداری بهینه از منابع آب و خاک در نیازهای مركبات قریب تا انتخابی است و نکاتی از توزیع گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کود در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم گردد (77). کاهش میزان توانای کود به منابع آب زیرزمینی در کودآپاری با سیستم‌های آب‌بری می‌کره باالاست (6).

کودآپاری می‌تواند باعث کاهش تلفات کود، عناصر غذایی و میزان کل مصرف کود در مقایسه با دیگر روشهای مرسوم
بررسی دفعات کوئدآیپرایز کود نیروگاه در بهبود کمی و کیفی میوه

معنی دار پیوسته همچنین در این تیمارها اسبیدینه میوه کمتر و TSS/TA نسبت بیشتر از تیمار پخش کود خشک، بود. در گزارش او و همکاران (4 و 5) او و پارامپاسواو (1) نیز عملکرد درختان پربرق مالیه روي تکنولوژی مانندین در سه روش دسی و کوئدآیپرایز اختلاف معنی داری نداشت.

همچنین تأثیر مدفر کود، روش کوددهی و اثر منافع آنها روی وزن، قطر، و نسبت TSS/TA میوه معنی دار نبود. در TSS و تحقیق او و همکاران (2) و 3 عملکرد درختان 44 ساله پربرق و والنسیا پیوند شده روي تکنولوژی کودآیپرایز (11) و TSS 14.6 بیشتر از روش دسی بود. داسیگر و همکاران (9) در یک تحقیق پنج ساله روی 17 ساله پربرق شاموئی روي پیوسته بسیار زنادن که عملکرد روش کودآیپرایز نتیجه 16 روز نیمیشین کود بود. نتایج تحقیق بیوئ (7) در فلوریدا نشان داد که پیوسته سوم کودها به صورت دستی و دوست دو مانند در 18 مراحله به روش کودآیپرایز ابزار مواد جامد محلول و عملکرد میوه گروپ روی به ترتیب به میوه 8 و 9 ردی دی مجانی با سبک و پیوسته هر 14 ساله کود خشک شد. اعتراض مریا و قابلیت‌هایی که برای کودآیپرایز با سبکهای آبیاری قطعی در بالا برورده شد و وصف کردن ستون مالی نسبتا بازی برای اجزای اسیدینه در باغ‌های میوه، مداخلات مشاهده می‌شود که امکانات بالقوه این سبکهای میوه (کودآیپرایز) در باغ‌های میوه مناطق مورد نظر بهره برده می‌شود. به‌شور فاقدان یافته تحقیقات در این زمینه که با شرایط باغ‌های مزرعه سازگاری بسیار دلیل اصلی توسعه ناکافی کودآیپرایز در این باغ‌ها است و هدف از این تحقیق، بررسی تأثیر دفعات مختلف کودآیپرایز در بهبود کمی و کیفی پربرق تاماسیون ناول که یکی از جنبه‌های مهم و کاربردی در این زمینه به حساب می‌آید، می‌باشد.

مواد و روش‌ها

این پژوهش در مؤسسه تحقیقات مکارکس ناحیه واقع در رامسر
جدول 1. پارامترها و پیچیدگی از تخت کلاس A استگاه هواشناسی رامسر

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>میانگین 11 ساله</th>
<th>میانگین 20 ساله</th>
<th>میانگین 30 ساله</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیشتر (mm)</td>
<td>1387</td>
<td>1386</td>
<td>1385</td>
</tr>
<tr>
<td>میانگین</td>
<td>974/3</td>
<td>1013/5</td>
<td>1013/5</td>
</tr>
<tr>
<td>نرمال</td>
<td>932/8</td>
<td>1007/3</td>
<td>1010/1</td>
</tr>
</tbody>
</table>

جدول 2. پرخی وپیچیدگی مای هاک محل اجرای آزمایش

<table>
<thead>
<tr>
<th>فسفر</th>
<th>پنامی</th>
<th>N البنزئن</th>
<th>CEC</th>
<th>pH</th>
<th>عمق H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg soil)</td>
<td>(mg/kg dw)</td>
<td>(cmol/kg)</td>
<td>(dS/m)</td>
<td>(%)</td>
<td>(cm)</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>روی رس سیلی 10</td>
<td>25</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 20</td>
<td>24</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 30</td>
<td>23</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 40</td>
<td>22</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 50</td>
<td>21</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ادامه جدول 2. نتایج تجزیه برگ

<table>
<thead>
<tr>
<th>فسفر</th>
<th>پنامی</th>
<th>N البنزئن</th>
<th>CEC</th>
<th>pH</th>
<th>عمق H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg soil)</td>
<td>(mg/kg dw)</td>
<td>(cmol/kg)</td>
<td>(dS/m)</td>
<td>(%)</td>
<td>(cm)</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>روی رس سیلی 10</td>
<td>25</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 20</td>
<td>24</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 30</td>
<td>23</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 40</td>
<td>22</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>روی رس سیلی 50</td>
<td>21</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

اسیدهای و مواد جامد محلول اندازه‌گیری شد. اندازه‌گیری ورود میوه‌های درخت (عَلم‌کرده) با استفاده از یک ترزاوی دیجتال (با دقت 1 گرم) انجام شد. وزن تا میوه از تقسیم عمومی تعداد میوه درخت به‌دست آمد. اسیدهایی به روش تیتراسیون (با NaOH) تیتراسیون (با Water) (مدل ATC-2018, Atago, Japan) انجام شد. تجزیه واریانس و مقایسه میانگین‌ها (آزمون چند دامنه‌ای MSTATC) با استفاده از نرم‌افزار در Excel به‌دست آمد.

نتایج و بحث

در جدول 3 تجزیه واریانس مربوط به تیمارها مختلف بر سوخته اندازه‌گیری شده در سه سال اجرای پرورش (۲۰۱۸-۲۰۱۹) ارائه شده است. تیمارها فقط از نظر مواد جامد محلول اختلاف معنی‌دار نداشتند و از نظر عمکرد نیز اختلاف تیمارها نزدیک بوده‌اند. در سال ۲۰۱۹، درجه دوم میوه‌ها به رنگ سبز بوده و شکر شده است. تیمارها میوه‌های مختلف رنگ مشخصی نداشتند. در آزمایشات الکتریکی به تاسیسات بارداری و همچنین عملیات مراقبتی نیز می‌بایست آب و علف‌های هرز بر پذیراس نظر کارشناسان مربوط به تیمارهای مناسب حاضر شود. در همین همایش میوه‌ها به رنگ سبز و شکر شده است. تیمارها شامل شمارش و توزین شده و سپس از بین آن‌ها ۲۵ عدد میوه به‌صورت تصادفی انتخاب و صفات ضخامت بسته، قطر و طول میوه.
جدول ۳ تجزیه واریانس مركب صفات اندازه‌گیری شده (۷۸-۸۷) (۱۳۸۵)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>طول میوه (mm)</th>
<th>وزن میوه (g)</th>
<th>عملکرد (kg/tree)</th>
<th>مواد جامد محلول (mm)</th>
<th>اسیدهای کل (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>۲</td>
<td>۱۳۹/۱۵۲۴</td>
<td>۲۹/۰۱۰ ۰/۱۰۰</td>
<td>۲۷/۹۴۷</td>
<td>۷۶/۲۲۳</td>
<td>۱/۰۵۰۰</td>
<td>۲۴/۰۱۰۰</td>
</tr>
<tr>
<td>خطا</td>
<td>۹</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
</tr>
<tr>
<td>تیمار</td>
<td>۴</td>
<td>۲/۸۱۰۰۰۰</td>
<td>۲/۸۱۰۰۰۰</td>
<td>۲/۸۱۰۰۰۰</td>
<td>۲/۸۱۰۰۰۰</td>
<td>۲/۸۱۰۰۰۰</td>
<td>۲/۸۱۰۰۰۰</td>
</tr>
<tr>
<td>تیمار در سال</td>
<td>۸</td>
<td>۷/۸۲۱۰۰۰</td>
<td>۷/۸۲۱۰۰۰</td>
<td>۷/۸۲۱۰۰۰</td>
<td>۷/۸۲۱۰۰۰</td>
<td>۷/۸۲۱۰۰۰</td>
<td>۷/۸۲۱۰۰۰</td>
</tr>
<tr>
<td>خطا</td>
<td>۳۶</td>
<td>۰/۸۲۱۰۰۰۰</td>
<td>۰/۸۲۱۰۰۰۰</td>
<td>۰/۸۲۱۰۰۰۰</td>
<td>۰/۸۲۱۰۰۰۰</td>
<td>۰/۸۲۱۰۰۰۰</td>
<td>۰/۸۲۱۰۰۰۰</td>
</tr>
<tr>
<td>CV</td>
<td>٪۴/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
<td>۳/۸۱۰۰۰۰</td>
</tr>
</tbody>
</table>

** به معنی دارند در سطح ۵٪ بود اثر سال روی عملکرد در سطح ۵٪ و روی بقیه صفات در سطح احتمال ۱٪ معنی دار بود.
در جدول ۴ مقایسه میانگین مركب سال عملکرد و خصوصیات کمی و کیفی میوه برتقال عاملی نشان داد. تیمارها در مورد مطالعه ارائه شده است. نتایج به شرح زیر بیان شده است.

الف) اندازه، وزن و ضخامت پوست میوه

به معنی دارند در سطح ۵٪ بود اثر سال روی عملکرد در سطح ۵٪ و روی بقیه صفات در سطح احتمال ۱٪ معنی دار بود.

ج) عملکرد

برای مقایسه میانگین ها و میزان اختلاف بین تیمارها از نظر عملکرد در جدول ۵ نشان می‌دهد که تیمار ۸ بار کودآبیاری با پیشترین طول مشاهده شد که اختلاف معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته و بیشترین فشرदه (۷/۸۱) بین تیمار ۴ و ۸ بار کودآبیاری مشاهده شد که اختلاف معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته.

در تیمار ۴ بار کودآبیاری مشاهده شد که اختلاف معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته. سایر تیمارها از این نظر اختلاف معنی‌دار نداشتند. از نظر وزن و ضخامت پوست میوه، اختلاف معنی‌داری بین تیمارها مشاهده نشد. بیشترین وزن میوه با پیشترین وزن کودآبیاری مشاهده شد (۰/۸۲۱۰۰۰۰) بود.

پ) اثر میزان میوه بر نتیجه‌گیری همان‌طور که در جدول ۶ مشاهده می‌شود، تیمارها ۴ و ۶ بار کودآبیاری با پیشترین طول (۷/۸۱) و (۷/۸۱) میلی‌متر) معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته.

به معنی دارند در سطح ۵٪ بود اثر سال روی عملکرد در سطح ۵٪ و روی بقیه صفات در سطح احتمال ۱٪ معنی دار بود.

در جدول ۶ مقایسه میانگین مركب سال عملکرد و خصوصیات کمی و کیفی میوه برتقال عاملی نشان داد. تیمارها در مورد مطالعه ارائه شده است. نتایج به شرح زیر بیان شده است.

الف) اندازه، وزن و ضخامت پوست میوه

به معنی دارند در سطح ۵٪ بود اثر سال روی عملکرد در سطح ۵٪ و روی بقیه صفات در سطح احتمال ۱٪ معنی دار بود.

ج) عملکرد

برای مقایسه میانگین ها و میزان اختلاف بین تیمارها از نظر عملکرد در جدول ۵ نشان می‌دهد که تیمار ۸ بار کودآبیاری با پیشترین طول مشاهده شد که اختلاف معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته و بیشترین فشردک (۷/۸۱) بین تیمار ۴ و ۸ بار کودآبیاری مشاهده شد که اختلاف معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته.

در تیمار ۴ بار کودآبیاری مشاهده شد که اختلاف معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته. سایر تیمارها از این نظر اختلاف معنی‌داری نداشتند. از نظر وزن و ضخامت پوست میوه، اختلاف معنی‌داری بین تیمارها مشاهده نشد. بیشترین وزن میوه با پیشترین وزن کودآبیاری مشاهده شد (۰/۸۲۱۰۰۰۰) بود.

پ) اثر میزان میوه بر نتیجه‌گیری همان‌طور که در جدول ۶ مشاهده می‌شود، تیمارها ۴ و ۶ بار کودآبیاری با پیشترین طول (۷/۸۱) و (۷/۸۱) میلی‌متر) معنی‌داری در سطح ۵٪ باید ۱ بار کودآبیاری (۰/۷۸) داشته.
جدول 4. مقارن مئات مين الساله في صفات موزع موزع وآب موزع موزع تامون ناول

<table>
<thead>
<tr>
<th></th>
<th>حش با كودابياري</th>
<th>دو كودابياري</th>
<th>جهار با كودابياري</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول موزع (mm)</td>
<td>34/53 b</td>
<td>33/29 b</td>
<td>37/82 b</td>
<td>24/87 b</td>
</tr>
<tr>
<td>قطر موزع (mm)</td>
<td>20/76 b</td>
<td>19/50 b</td>
<td>20/83 b</td>
<td>17/26 b</td>
</tr>
<tr>
<td>وزن موزع (كُرم)</td>
<td>40/33 b</td>
<td>38/75 b</td>
<td>39/87 b</td>
<td>32/82 b</td>
</tr>
<tr>
<td>ضخامة موزع (م)</td>
<td>7/48 b</td>
<td>6/27 b</td>
<td>3/77 b</td>
<td>2/71 b</td>
</tr>
<tr>
<td>مواقد موزع (م)</td>
<td>16/22 b</td>
<td>14/72 b</td>
<td>14/87 b</td>
<td>11/26 b</td>
</tr>
<tr>
<td>اسپیدیته سیک (م)</td>
<td>4/97 b</td>
<td>5/27 b</td>
<td>3/82 b</td>
<td>2/71 b</td>
</tr>
</tbody>
</table>

ذب في هر راد، اعداد بأمداد مشترک، من نظر آزمون دانکن در سطح 5% داراً اختلاف معنی دار نیستند.

جدول 5. میزان متوسط درختان تامون ناول در دفاتر مختلف کودابیاری و جمال کود

<table>
<thead>
<tr>
<th></th>
<th>چال کود</th>
<th>دو کودابیاری</th>
<th>جهار کودابیاری</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول</td>
<td>21/67 b</td>
<td>19/29 b</td>
<td>19/82 b</td>
<td>19/87 b</td>
</tr>
<tr>
<td>قطر</td>
<td>17/67 b</td>
<td>15/29 b</td>
<td>15/82 b</td>
<td>15/87 b</td>
</tr>
<tr>
<td>وزن</td>
<td>30/75 b</td>
<td>28/72 b</td>
<td>28/87 b</td>
<td>28/82 b</td>
</tr>
<tr>
<td>ضخامة</td>
<td>4/71 b</td>
<td>4/27 b</td>
<td>4/82 b</td>
<td>4/87 b</td>
</tr>
<tr>
<td>مواقد</td>
<td>11/22 b</td>
<td>11/72 b</td>
<td>11/87 b</td>
<td>11/82 b</td>
</tr>
<tr>
<td>اسپیدیته سیک</td>
<td>2/71 b</td>
<td>2/27 b</td>
<td>2/82 b</td>
<td>2/87 b</td>
</tr>
</tbody>
</table>

اعداد با حروف مشترک، من نظر آزمون دانکن در سطح 5% داراً اختلاف معنی دار نیستند.

بحث

میزان متوسط موزع مشابه است. در تحقیق شومان و همکاران (15) وزن موزع در تیمار کودابیاری کمتر از تیمارهای پخش دستی بود. در این آزمایش، وزن موزع در تیمارهای کودابیاری بستگی به میزان اختلاف معنی دار نبود. ضخامت ویسکوزد و حیفون (16) نیز اختلاف بین دوره‌ها مختلف کودابیاری از نظر وزن موزع معنی دار نبود.

میزان متوسط محیط نشان داد که مواد جامد محلول موزع در تیمارهای چال کود و 8 بار کودابیاری بیشتر از تیمار 4 بار کودابیاری بود. ولی اختلاف معنی دار بین تیمارها از نظر اسپیدیته کل دیده نشد (جدول 4). نظر وزن موزع، ضخامت ویسکوزد و حیفون نشان داد که مواد جامد محلول موزع در تیمارهای 12 بار کودابیاری باعث کاهش TSS/TA و افزایش TA کودابیاری بود. تحقیق بین تیمارها نشان داد که مواد کودابیاری کاربرد را کود خشک شد. در تحقیق شومان و همکاران (15).

