اثر شوری آب آبیاری بر عملکرد و کارآیی مصرف آب سه رقم پنجه

(Gossypium hirsutum L.)

مجید جعفر آقایی و امیرهوشنگ جلالی

(تاریخ دریافت: 1390/09/19؛ تاریخ پذیرش: 1391/01/25)

چکیده

به منظور بررسی تأثیر مسلسل متفاوت شوری بر عملکرد سه رقم پنجه آزمایشی به مدت دو سال (1387-88) به صورت کردهای یکبازار خرد شدند در قالب طرح پلوکهای کامل تصادفی با چهار تکرار در ایستگاه تحقیقات کشاورزی رودشت اصفهان اجرا شد. برای بهبود شرایط سطحی شوری مورد نظر، از مخلوط آب-پاک آب رودخانه زایندهرود و آب زنگ استفاده گردید. کردهای اصلی شامل سطح شوری ناب ایرانی (B557)، تالاب‌رود و دلتایان 16 عنوان شاهد بودند. نتایج نشان داد که با افزایش سطح شوری، عملکرد سه رقم پنجه کاهش پیدا کرد. بیشترین مقدار عملکرد 4600 کیلوگرم و شیر در هکتار در دلتایان 16 بود که در شهری 2 تا 3 هزار زیست گر بر متر به دست آمد. با افزایش سطح شوری از 0/5 به 0/7 و 13 تا 15 هزار زیست گر بر متر درصد کاهش شاخص بهره‌وری آب آبیاری ارقام تالاب‌رود، دلتایان 16 و B557 به ترتیب ورود بود (0/47، 0/68، 0/89) و (154/0، 132/1، 125/4 کیلوگرم بر متر) که بهترین عملکرد بود. به‌طور کلی، نتایج این پژوهش نشان داد که در مورد دلتایان 16 به دلیل عملکرد بیشتر، قابل توجه ایست. اما در شهری 16، دلیل بهترین عملکرد، افزایش رقم نماهمتی به شوری، رقم 0/12/3 کانالیت را می‌توانست با ارقام تالاب‌رود و دلتایان 16 در نفست.

واژه‌های کلیدی: تنش شوری، پنجه، رودشته
مقدمه

شوری یکی از تنش‌های مهم غیرنظامی است که توانایی عملکرد محرمانه کشاورزی را کاهش دهد. به دلیل کاهش کیفیت آب، مشکل شوری خاک در سال‌های اخیر به‌ویژه در خاورمیانه، ایران و ترکیه به‌طور گسترده‌ای مشاهده شده است. در این مطالعه سنجش و بررسی تأثیر شوری بر عملکرد محرمانه کشاورزی در هشت کشور خاورمیانه به‌وسیله استفاده از آماری‌های شرایط شوری و توانایی عملکرد انجام گرفت.

نظرات و نتایج

نتایج آماری نشان داد که تأثیر شوری بر عملکرد محرمانه کشاورزی در سال‌های اخیر به‌طور گسترده‌ای مشاهده شده است. بنابراین، توانایی عملکرد محرمانه کشاورزی در شرایط خوب شرایط شوری بوده و در شرایط شوری تأثیر کاهشی دارد.

توصیه‌های عملکرد

با توجه به نتایج و نظرات این مطالعه، توصیه می‌شود که در شرایط شوری با استفاده از تکنیک‌های مناسب برای کاهش شوری استفاده شود. این تکنیک‌ها ممکن است شامل بهبود خاک و استفاده از کودهای مناسب برای کاهش شوری باشد.
مواد و روش‌ها

این پژوهش در ابسته‌های تحقیقات کشاورزی رودشده (طول جغرافیایی ۳۰°۰۰ شرقی، عرض جغرافیایی ۳۲°۳۰ شمالی و ارتفاع متوسط ۱۵۱۰ متر از سطح دریا) در استان اصفهان به مدت دو سال در آزمایش‌های بسته‌بندی کرده‌ای خرد شده در قابلی طرح بلول‌های کامل تولید کننده با چهار تکرار اجرای گردید. برخی ویژگی‌های خاص محل مورد مطالعه، در سه عمق مختلف (در جدول ۱ و میانگین ۱۷ ساله دما و بارندگی براساس آمار اداره کل هواشناسی اصفهان (۱۵) در شکل ۱ نشان داده شده است. کرت‌های اصلی را مطابق با شرایط مختل شود (۷،۶ و ۲ دسی‌متر بر ساعت) و کرت‌های فرعی عده دوم هر منطقه به سه عمق در محله رشتی است. برای آماری از مخلوط آب رودخانه زاینده‌رود (شرقه) قسمت حوضه زاینده‌رود (آب چاه و آب زکش اسافاعدة شد. برای جمع‌آوری از اختلافات در حداصل ۳ و ۲ دکتر گردیده است. برای جدول‌گیری از راه یافتن آب به کرت‌های مجاور، فواصل کرت‌های فرعی ۲ متر در گرفتند. براساس آنالیز نمونه‌های آزمایش‌گاهی، ترکب عنصر در آب مربوط به هر سه منبع در دو آزمایش تفاوت معنی‌داری نداشت. برای به‌دست آوردن شوری‌های مورد نظر، ضمن حضور و دیگرین آب ساخته شد. براساس شوری مورد نظر، از طریق لوله آب از منابع مختلف (چاه، رودخانه و یا ذخیره‌گاه) وارد ان گردیده‌ها کرده‌اند. با تغییر مقدار آب ورودی از هر منبع و با استفاده از یک شوری سنج دستی (Model 933100 Hanna Instruments, USA) حضور و مقدار مورد نظر تنظیم شد.

ارقام پنجم کرت‌هایی به ابعاد ۸×۶۵ در مرکز و مرکب در سال اصلی برای مقایسه میانگین با استفاده شد.
جدول ۱. پرخی و بزگ‌های خاک محل آزمایش

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>لش بی‌رخ (٪)</th>
<th>لش رطوبت (٪)</th>
<th>لش رطوبت ذخیره‌دار (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/28</td>
<td>14</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>1/46</td>
<td>13</td>
<td>27</td>
<td>37</td>
</tr>
<tr>
<td>1/47</td>
<td>13</td>
<td>26</td>
<td>37</td>
</tr>
</tbody>
</table>

جدول ۲. تجزیه شیمیایی آب برای سه منبع رودخانه، چاه و زهکش (میلی‌گی میلی‌گی)

<table>
<thead>
<tr>
<th>منبع شوري (دسی متر)</th>
<th>۲/۵</th>
<th>۱/۲</th>
<th>۷/۳</th>
<th>۱۰/۷</th>
<th>۸/۹</th>
<th>۷/۴</th>
<th>۱۳/۲</th>
<th>۰/۷</th>
<th>۶۲/۳</th>
<th>۲/۸</th>
<th>۱۵۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>چاه</td>
<td>۲/۲</td>
<td>۱۱</td>
<td>۲۲</td>
<td>۱۲۲</td>
<td>۶/۰</td>
<td>۳۶</td>
<td>۳۶۰</td>
<td>۵/۳</td>
<td>۲۶/۳</td>
<td>۴/۵</td>
<td>۱۳۲</td>
</tr>
<tr>
<td>رودخانه</td>
<td>۱۱/۱</td>
<td>۳۸</td>
<td>۷۳</td>
<td>۱۱۰</td>
<td>۶/۵</td>
<td>۳۲/۵</td>
<td>۷۱</td>
<td>۵/۱</td>
<td>۱۶۰/۲</td>
<td>۷/۴</td>
<td>۱۰۵</td>
</tr>
<tr>
<td>زهکش</td>
<td>۱۱/۱</td>
<td>۳۸</td>
<td>۷۳</td>
<td>۱۱۰</td>
<td>۶/۵</td>
<td>۳۲/۵</td>
<td>۷۱</td>
<td>۵/۱</td>
<td>۱۶۰/۲</td>
<td>۷/۴</td>
<td>۱۰۵</td>
</tr>
</tbody>
</table>
نتایج و بحث
الف) عملکرد پنه
نتایج تجزیه و ارایه مرکب داده‌ها در جدول ۲ نشان داده شده است. همان‌طور که در این جدول دیده می‌شود، تأثیر تیمارهای شوری، رقم و هم‌چنین به‌هم‌کنندگی شوری و رقم و عملکرد در سطح اختلال ۱/۰ از نظر آماری معنی‌دار بود. از نظر عملکرد، در سطوح شوری ۴ و ۷ دسی‌زینمین بر متر تقریباً روند یکسانی بارای ارقام آزمایشی مشاهده شد (جدول ۵). بیشترین مقدار عملکرد مرطب به رقم تابیلادیل۱۶ و مقدار ۴۳۳ کیلوگرم در هکتار بود. در این رقم، با افزایش شوری به سطح ۷ و ۱۰ و ۱۳ دسی‌زینمین بر متر، عملکرد و شوری مقدار ۱۶۷ و ۹۹ و ۸۲ درصد کاهش یافت (جدول ۶). روند مشابهی برای دو رقم بیشتری مقدار و درون ارقام گیاهی در سطوح مختلف شوری بین شده است. (۱) استفاده از آب شوری برای تولید محصول پنیر، به‌ویژه پس از جوانه‌زی و استقرار، به‌پژوه‌های مختلف بررسی شده است. آب‌زای و همکاران (۵) در یک پژوهش سه ساله و با استفاده از آب‌زایی نتایج از آبی شوری ۰، ۵ و ۷ دسی‌زینمین بر متر و نسبت جدید سدید (SAR) برای برای ۹ برای تولید پنیر (یک‌پنجه‌بندی) سدید از استقرار اولیه آن با استفاده از آبی شوری کم) استفاده کردند. در این شرایط، عملکرد مشابه با عملکرد استفاده از آب با کیفیت مطلوب در کل دوره رشد به‌دست آمد. در هر


۱۰۱

شکل ۳: تجزیه شیمایلی آپ پس از اختلاف آپ سه معنی رودخانه، چاه و زره‌کن (ماینگین دو سال)
جدول 2. تجزیه واریانس مركب اثر کیفیت آب آبیاری و رقم بر بیماری و یوگیه‌های ارقرام پپه مورد آزمایش

<table>
<thead>
<tr>
<th>درصد بذر های سبز شده</th>
<th>تعداد غوله در بوته</th>
<th>وزن ده غوله (گرم)</th>
<th>عامل کرد وش</th>
<th>درجه آزادی</th>
<th>عبارت تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>123/7</td>
<td>279/14</td>
<td>3/01</td>
<td>1</td>
<td>سال (9)</td>
<td></td>
</tr>
<tr>
<td>123/6</td>
<td>212</td>
<td>2/88</td>
<td>2</td>
<td>سال 70+</td>
<td></td>
</tr>
<tr>
<td>133/8</td>
<td>98/17</td>
<td>4/60</td>
<td>3</td>
<td>شوری آب</td>
<td></td>
</tr>
<tr>
<td>13/5</td>
<td>2/58</td>
<td>1/87</td>
<td>4</td>
<td>آب (9)</td>
<td></td>
</tr>
<tr>
<td>21/5</td>
<td>5/2</td>
<td>3/2</td>
<td>5</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4/32</td>
<td>2/1</td>
<td>12/42</td>
<td>6</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. تأثیر بیمارسپر و سطح بیمارش بر عملکرد، اجزای عملکرد و درصد بوته سبز شده

<table>
<thead>
<tr>
<th>شوری آب آبیاری</th>
<th>تعداد غوله در بوته</th>
<th>وزن ده غوله (گرم)</th>
<th>عملکرد وش (کیلوگرم در هکتار)</th>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/2/7</td>
<td>22/1</td>
<td>77/3</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>9/1/7</td>
<td>22/3</td>
<td>77/1</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>8/1/6</td>
<td>22/4</td>
<td>77/1</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>8/1/5</td>
<td>22/5</td>
<td>69/7</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>8/1/4</td>
<td>22/6</td>
<td>69/7</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>7/8/6</td>
<td>27/8</td>
<td>69/7</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>6/8/5</td>
<td>27/9</td>
<td>69/7</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>6/7/6</td>
<td>27/10</td>
<td>69/7</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
<tr>
<td>5/6/6</td>
<td>27/11</td>
<td>69/7</td>
<td>443/3</td>
<td>تایبلاپلا</td>
</tr>
</tbody>
</table>

در هر ستون، حروف مشترک مشابه، از نظر آماری نشان دهنده معنی دارد (انک له 5%).
ب‌) اجزای عملکرد پنجه تأثیر به‌همکنش سطح شوری و رم اجرای عملکرد پنجه در سطح ۱٪ از نظر آماری معنی‌دار بود (جدول ۴)، در هر سه رقم اجرای عملکرد پنجه مثلاً تحت تأثیر سطح شوری قرار گرفت (جدول ۵). در شرایط مزرعه‌ای که واکنش گیاهان به استفاده از آب شوری، کاهش درصد جوانویی است. در این مطالعه نفوذ افزایش شوری به کاهش جوانویی و استقرار اولیه گیاه همراه بود. در سطح شوری ۱ و ۷ دسی‌زمین بر متر، رقم دلتایبان ۱۶ نسبت به دو رقم دیگر کمترین کاهش درصد سیر شدن به دلیل افزایش شوری، را از خود نشان داد. ولی در سطح شوری ۱۰ و ۱۳ دسی‌زمین بر متر بین دو رقم تابلایلا و دلتایبان ۱۶ از نظر نفاذی مشابه شدند. به‌طور مشابه، مشابه و هم‌کاران (۲۰) کاهش جوانویی و استقرار اولیه گیاه‌های پنجه را با استفاده از آب‌شناس زیاد گزارش نمودند. در این پژوهش، ایجاد سلسله سطحی خاک، مقدار سطحی زیاد موجود در آب و تخریب ساختن خاک، دلیل کاهش استقرار اولیه تنش خاک بود. با افزایش شوری، تعداد و وزن غلظت‌ها نیز در هر رقم به طور معنی‌داری کاهش یافتند. در سطح شوری ۴ دسی‌زمین بر متر، تعداد غلظت‌ها و وزن غلظت‌ها در رقم تابلایلا ۱۵ به طور معنی‌داری بیشتر از دو رقم دیگر بود (جدول ۵). به‌طور مشابه، در پژوهش آنانلی (۲) نیز تعداد شاخه زایی و تعداد غلظت‌ها در بونه در سطح شوری ۲ و ۷ دسی‌زمین بر متر تفاوت معنی‌داری نداشت. در شوری ۷
جدول 6 تغییرات مقدار آنیون‌ها و کاتیون‌ها در عمق 0-30 سانتی‌متری خاک تحت تأثیر افزایش شوری (سال 1387)

<table>
<thead>
<tr>
<th>بی‌کربنات کلر سولفات آنیون‌ها کلسیم+منیزیم سدیم کاتیون‌ها</th>
<th>مشخصات خاک (دسی‌میلی‌متر بار متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی‌کیلو وان آن بر لتر</td>
<td>قبل از کشت</td>
</tr>
<tr>
<td>21/3</td>
<td>28/4</td>
</tr>
<tr>
<td>24/3</td>
<td>22/4</td>
</tr>
<tr>
<td>21/3</td>
<td>22/4</td>
</tr>
<tr>
<td>21/3</td>
<td>22/4</td>
</tr>
<tr>
<td>21/3</td>
<td>22/4</td>
</tr>
<tr>
<td>EC با یک آنیون</td>
<td>7</td>
</tr>
<tr>
<td>میلی‌کیلو وان آن بر لتر</td>
<td>پس از آبیاری با یک آنیون</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>58/3</td>
<td>58/3</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>EC با ٨ آنیون</td>
<td>١٨</td>
</tr>
<tr>
<td>میلی‌کیلو وان آن بر لتر</td>
<td>پس از آبیاری با ٨ آنیون</td>
</tr>
<tr>
<td>17/5</td>
<td>17/5</td>
</tr>
</tbody>
</table>

در هر سوئن، حروف مشترک مشابه، از نظر آماری تفاوت معنی‌دار ندارند (دانلک ٥/\).

جدول 7 تغییرات مقدار آنیون‌ها و کاتیون‌ها در عمق 0-30 سانتی‌متری خاک تحت تأثیر افزایش شوری (سال 1388)

<table>
<thead>
<tr>
<th>بی‌کربنات کلر سولفات آنیون‌ها کلسیم+منیزیم سدیم کاتیون‌ها</th>
<th>مشخصات خاک (دسی‌میلی‌متر بار متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی‌کیلو وان آن بر لتر</td>
<td>قبل از کشت</td>
</tr>
<tr>
<td>21/3</td>
<td>28/4</td>
</tr>
<tr>
<td>24/3</td>
<td>22/4</td>
</tr>
<tr>
<td>21/3</td>
<td>22/4</td>
</tr>
<tr>
<td>21/3</td>
<td>22/4</td>
</tr>
<tr>
<td>21/3</td>
<td>22/4</td>
</tr>
<tr>
<td>EC با یک آنیون</td>
<td>7</td>
</tr>
<tr>
<td>میلی‌کیلو وان آن بر لتر</td>
<td>پس از آبیاری با یک آنیون</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>58/3</td>
<td>58/3</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>10/8</td>
<td>58/3</td>
</tr>
<tr>
<td>EC با ٨ آنیون</td>
<td>١٨</td>
</tr>
<tr>
<td>میلی‌کیلو وان آن بر لتر</td>
<td>پس از آبیاری با ٨ آنیون</td>
</tr>
<tr>
<td>17/5</td>
<td>17/5</td>
</tr>
</tbody>
</table>

در هر سوئن، حروف مشترک مشابه، از نظر آماری تفاوت معنی‌دار ندارند (دانلک ٥/\).

کامل با سال اول داشت (جدول 7): اگرچه افزایش کلسیم می‌تواند آثار سریعی باعث افزایش سدیم در تشکیل نماید، اما افزایش نهایی عنصر (وا) همراه با منیزیم) می‌تواند تأثیر منفی بر عملکرد به جای گذارد. در یک فیزیولوژی بیکار و همکاران (٧) افزایش P- همیشه به همراه کلسیم و منیزیم با کاهش عملکرد که می‌توانند کاهش کیفیت انکیوه پنه همراه بود. از سوی دیگر، عدم توانایی انسداد کاهش عملکرد محصول را کاهش دهد. روند افزایش سدیم خاک نسبت به کلسیم و منیزیم بهتر بود (جدول ٦ و ٧). بیشتر گیاهان برای
بهرهوری آب آبیاری در سه رقم نایلون ۱۶ و ۵۵۷ بهترین برابر بود با (۳۸/۷، ۵۵/۷ و ۱۶۵) (۳۸/۷ و ۵۵/۷) . این اعداد بیانگر روند کاهشی کم و بیشینگن برای هر سه رقم بود. میزان حیاتی از ارقام پنجم شرایط نش خشکی، بدیده خوکری به افزایش بونهایی مثل سدیم و کلر را بهتر نشان می‌دهد (۳۹).

نتیجه بیوری

بطری‌کاپ، نتایج این پژوهش نشان داد که استفاده از مخلوط آب‌هایی با کیفیت مفتوح برای تولید پنبه، به عنوان یک محصول مفایح به شوری، قابلیت اجرایی دارد. در پژوهش ۷ حاصلین رقم نایلون ۱۶ در سطح شوری ۴ و ۷ دسی‌زیمنس بر متر بیشترین مقدار عملکرد را تولید نمود. رقم نایلون ۱۶ در سطح شوری ۱۰ دسی‌زیمنس بر متر نه نهاده به‌طور معمول نسبت به دو رقم دیگر عملکرد بیشتری داشت، بلکه دارای بیشترین مقدار شاخص بهرهوری آب آبیاری (به ویژه در محدوده شوری ۷ تا ۷ دسی‌زیمنس بر متر بود. بیشترین و کمترین مقدار عملکرد در این پژوهش به‌ترین عبارت بودند از ۴۰۰ کیلوگرم در هکتار (در


۵) شاخص بهرهوری آب آبیاری

با افزایش سطح شوری، شاخص بهرهوری آب آبیاری نیز در هر سه رقم مورد مطالعه کاهش یافت (شکل ۲). در شرایط آب و هوای مدیرانه، با توجه به شرایط مختلف خاک، راندمان مصرف آب پنجه در دامنه‌ای از ۱۳/۲ کیلوگرم به ازای هر متر مکعب تغییر می‌کند (۱۶ و ۲۰). شوری و خشکی معمولاً اثر مشابهی دارند. اما در شرایط نش خشکی، کاهش فتوست نسبت به شرایط نش خشکی بیشتر است. برخی پژوهشگران دلیل این پدیده را تفاوت در تنظیم اسکرین ایجاد شده در هنالیس ذکر کرده‌بودند (۳۲). در نتیجه مقابل برخی پژوهشگران معتقدند نتیجه‌های داده‌های در شرایط نش خشکی، برخلاف نش خشکی، افزایش چسبیده (۸). ولی به‌طور کلی، با افزایش شرایط شوری و یا در معرق خشکی، قرار گرفتن گیاه، آب بر دسترس کاهش می‌یابد. این شرایط وضعیت آب و تبادل گازها در گیاه را در رفتار و عملکرد را در درازمدت کاهش می‌دهد (۱۷). در همه سطوح شوری، رقم نایلون ۱۶ بیشترین مقدار شاخص بهرهوری آب آبیاری را به خود اختصاص داد. با افزایش سطح شوری از ۲ به ۷ و ۱۳ دسی‌زیمنس بر متر، درصد کاهش شاخص