تعیین ضریب واکنش عملکرد گندم به کم آب‌یاری در مراحل مختلف رشد

نیاژعلی ابراهیمی پاک

(تاریخ دریافت: ۱۳۹۰/۷/۲۸؛ تاریخ پذیرش: ۱۳۹۰/۱۲/۱۴)

چکیده

این پژوهش به منظور تعیین ضریب واکنش عملکرد گندم (K_r) در مراحل مختلف رشد و به‌منظور بررسی تاثیر کم‌آب‌یاری کامل (E_0 = 0) و ۳/۵ و ۰/۵۵/۸۵ درصد آب در شرایط آزمایش، جدایا از هم در مراحل مختلف رشد گیاه شامل جوانه‌زنی، پنج‌دهی، گل‌دهی، شیری و خمیری با شیوه آزمایش‌های انتخابی انجام شد. نتایج نشان داد که عملکرد گیاه به کم‌آب‌یاری بستگی دارد. گیاه در مراحل جوانه‌زنی، پنج‌دهی و گل‌دهی نیاز به آب داشت. در مراحل پنج‌دهی و گل‌دهی نیاز به آب بیشتری داشتند. نتایج نشان داد که عملکرد گیاه به کم‌آب‌یاری بستگی دارد. به همراه کم‌آب‌یاری کامل، آب به‌طور معمولاً در جریان بررسی مورد بررسی قرار گرفت. نتایج نشان داد که عملکرد گیاه به کم‌آب‌یاری بستگی دارد. به همراه کم‌آب‌یاری کامل، آب به‌طور معمولاً در جریان بررسی مورد بررسی قرار گرفت. نتایج نشان داد که عملکرد گیاه به کم‌آب‌یاری بستگی دارد.

واژه‌های کلیدی: تبخیر، تعرق، ضریب، جفتگوی کل، کم‌آب‌یاری، رشد گیاه
تیتر - تعریف واقعی، حداکثر تیتر - تعریف و ضریب K_y

واکنش عمکرده محصول است.

کمیته مرحله مختلف شرکت یک گیاه مورد توجه قرار گیرد

راهله 1 به حوصلات راهله 2 تبدیل می‌شود:

$$K_y = \frac{1}{\prod_{m=1}^{n} \left(1 - \frac{Y_m}{E_Tm} \right)}$$

و نهایتاً مدلی که توسط FAO انتشار یافته (8) است

$$\frac{Y_m}{m} = K_y \left(1 - \frac{E_T}{E_Tm} \right)$$

ضریب و واکنش عمکرده محصول تابعی از کمیت در مرحله‌ای خاص از رشد گیاه (4 و 5) و کل مراحل رونشی گیاه به‌دست می‌آید (12 و 29). حساسیت گذشته نسبت به عمکرده آب در مرحله مختلف شرکت گیاه متفاوت است (27). هنگامی که کمیت در مرحله خاص از رشد گیاه اتفاق بیافتد، واکنش عمکرده محصول به آن مرحله بستگی خواهد داشت (20 و 28). در شرایط نش خشکی، عمکرده محصول، تعداد بارور در هر صفحه. تعداد دانه در سنبله‌گی، عمکرده بیولوژیک گیاه، شاخص برداشت و انرژی به‌طور تأثیر قرار می‌گیرد (4 و 30). هرچند که نش خشکی در مرحله چون می‌شود، لینک اثر عضده نش خشکی یک ضریب محصول کامبیس بستگی دارند. در مرحله گیاه را کاهش داد. لینک نش آب در مرحله پر شدن دانه بارور چربیگذاری دانه (17 و 24). نش خشکی پس از مرحله گیاه را کاهش داد. لینک نش آب در مرحله پر شدن دانه و شاخص برداشت محصول شد (17 و 30). مرحله حساس رشد گیاه کننده، نسبت به کمیت بستگی بالای در مرحله گل‌دهی شیری.

خمیری. جوانریزی و پنج‌دهی است. در (18 و 17). ضریب واکنش عمکرده کننده بایده در مرحله گل‌دهی شیری. شکل دانه و رویی پریش به 0، 0.5 و 0 در کننده بهاره بستگی
تبیین ضریب واکنش عملکرد گندم به کم آبیاری در مراحل مختلف رشد

به‌طور کلی، نتایج این سکویی نشان می‌دهد که با افزایش میزان آب آبیاری (MJ)، عملکرد گندم بهبود یافت. این نتایج با نتایج کاوهی و کاوهی از سال 1384 مطابقت دارد.

تقاضای کاهش در نرخ انرژی بهبود زیادی در عملکرد گندم دارد. این نتایج با نتایج گزارش‌های گروهی دیگر نیز مطابقت دارد.

به‌طور کلی، نتایج این سکویی نشان می‌دهد که با افزایش میزان آب آبیاری (MJ)، عملکرد گندم بهبود یافت. این نتایج با نتایج کاوهی و کاوهی از سال 1384 مطابقت دارد.

یکی از شاخص‌های مهم در تخصیص نرخ انرژی بهبود زیادی در عملکرد گندم دارد. این نتایج با نتایج گزارش‌های گروهی دیگر نیز مطابقت دارد.

بنابراین، نتایج این سکویی نشان می‌دهد که با افزایش میزان آب آبیاری (MJ)، عملکرد گندم بهبود یافت. این نتایج با نتایج کاوهی و کاوهی از سال 1384 مطابقت دارد.

یکی از شاخص‌های مهم در تخصیص نرخ انرژی بهبود زیادی در عملکرد گندم دارد. این نتایج با نتایج گزارش‌های گروهی دیگر نیز مطابقت دارد.

بنابراین، نتایج این سکویی نشان می‌دهد که با افزایش میزان آب آبیاری (MJ)، عملکرد گندم بهبود یافت. این نتایج با نتایج کاوهی و کاوهی از سال 1384 مطابقت دارد.

یکی از شاخص‌های مهم در تخصیص نرخ انرژی بهبود زیادی در عملکرد گندم دارد. این نتایج با نتایج گزارش‌های گروهی دیگر نیز مطابقت دارد.

بنابراین، نتایج این سکویی نشان می‌دهد که با افزایش میزان آب آبیاری (MJ)، عملکرد گندم بهبود یافت. این نتایج با نتایج کاوهی و کاوهی از سال 1384 مطابقت دارد.

یکی از شاخص‌های مهم در تخصیص نرخ انرژی بهبود زیادی در عملکرد گندم دارد. این نتایج با نتایج گزارش‌های گروهی دیگر نیز مطابقت دارد.
جدول 1. مشخصات فیزیکی خاک مزرعه آزمایشی

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>0-5</th>
<th>5-10</th>
<th>10-15</th>
<th>15-20</th>
<th>20-25</th>
<th>25-30</th>
<th>30-35</th>
<th>35-40</th>
<th>40-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>رطوبت ظرفیت زراعی (درصد وزنی)</td>
<td>23/5</td>
<td>18/2</td>
<td>17/2</td>
<td>16/2</td>
<td>16/2</td>
<td>20/6</td>
<td>20/6</td>
<td>20/6</td>
<td>20/6</td>
</tr>
<tr>
<td>رطوبت نقطه پذیرگی (درصد وزنی)</td>
<td>18/9</td>
<td>17/5</td>
<td>16/2</td>
<td>15/1</td>
<td>14/7</td>
<td>14/6</td>
<td>14/6</td>
<td>14/5</td>
<td>14/4</td>
</tr>
<tr>
<td>جرم مخصوص ظاهری (گرم بر سانتی‌متر مکعب)</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>رس سبئی</td>
<td>لوم سبئی</td>
</tr>
</tbody>
</table>

جدول 2. نتایج تجزیه شیمیایی خاک مزرعه آزمایشی

<table>
<thead>
<tr>
<th>هدایت اشباع</th>
<th>درصد الکتریکی</th>
<th>نمونه نمونه‌برداری اشباع</th>
<th>عمق اشباع (dS/m)</th>
<th>عمق اشباع (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تجزیه و ارائه نشان داد که اثر مقادیر آب بر عملکرد دانه کنده در سطح احتمالی 1/0 معننی است. (جدول 3) مقایسه SPSS و 0/0 استفاده شده. نتایج "تولد-تخیر و تعقیب" تحت مکانیسم عمومی یا خاص و یا به صورت تجربی تجزیه و تحلیل می‌شود (24). توانایی تجربی از نوع هستند. یک نوع از این توانایی، رابطه بین عملکرد محصول و تبخیر-تعقیب دوره رشد را مشخص می‌سازد. در این بررسی، با استفاده از 20 مشخصه می‌کنند و 129. توانایی تجربی، واکنش نسبی عملکرد گیاه را نسبت به تبخیر-تعقیب نسبت برای مرحله خاص از گیاه تعیین می‌کنند (8). در این تحقیق، با رابطه 2 اضافه شده و به دلیل اینکه آماری در مراحل مختلف رشد گیاه در فصل پرورش و اکتشافی و مقایسه دارد، ابزاری این ابزار مراحل کاهش گونه‌های ساده‌سازی شده‌اش را گونه‌پرور در این پژوهش، برای ارزیابی رابطه 7 از اطلاعات مربوط به میزان تبخیر-تعقیب واقعی، تبخیر-تعقیب واقعی، تعقیب تکنیکی، عملکرد واقعی و حداکثر عملکرد استفاده شد.

در این پژوهش، برای ارزیابی رابطه 7 از اطلاعات مربوط به میزان تبخیر-تعقیب واقعی، تبخیر-تعقیب واقعی، تعقیب تکنیکی، عملکرد واقعی و حداکثر عملکرد استفاده شد.

\[
\text{ET}_y = \frac{\text{ET}_m}{K_y} \left(1 - \frac{Y}{Y_m}\right)
\]

در شرایطی که هیچ گونه کم آماری اعمال نگردید، معنی‌دار است.
جدول 3 ترتیب جدیدی از مراحل کسب علائم در داده‌های ادعای نتایج (تاکنون ۱۵)

| کشور | دسته | ساختمان | درجه آزادی | منبع تغییرات | تنگه به سمت | تعداد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>کشور A</td>
<td>۸</td>
<td>۲</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور B</td>
<td>۹</td>
<td>۴</td>
<td>۹</td>
<td>۹</td>
<td>۹</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور C</td>
<td>۷</td>
<td>۲</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور D</td>
<td>۶</td>
<td>۴</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور E</td>
<td>۵</td>
<td>۴</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور F</td>
<td>۴</td>
<td>۲</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور G</td>
<td>۳</td>
<td>۴</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور H</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۱۷</td>
</tr>
<tr>
<td>کشور I</td>
<td>۱</td>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱۷</td>
</tr>
</tbody>
</table>
جدول 4 مقایسه میانگین برخی از صفات مربوط به عملکرد گندم در سطوح آبیاری در مراحل رشد (آزمون دانکن)

<table>
<thead>
<tr>
<th>دوره رشد</th>
<th>تیمار آبی</th>
<th>عملکرد دانگم (کیلوگرم در هکتار)</th>
<th>عملکرد کل (کیلوگرم در هکتار)</th>
<th>وزن هزار دانه</th>
<th>شاخص پرتنین دانه</th>
<th>برداشت عمکرد (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0/23</td>
<td>39.5 a</td>
<td>12300 b</td>
<td>13/5</td>
<td>13940 a</td>
<td>E_6T_1</td>
</tr>
<tr>
<td>9/9</td>
<td>0/24</td>
<td>42.4 a</td>
<td>13800 a</td>
<td>12/4</td>
<td>13540 a</td>
<td>E_6T_1</td>
</tr>
<tr>
<td>13/2</td>
<td>0/24</td>
<td>40/8 a</td>
<td>13400 a</td>
<td>13/4</td>
<td>13240 a</td>
<td>E_6T_1</td>
</tr>
<tr>
<td>15/2</td>
<td>0/24</td>
<td>40/5 a</td>
<td>12400 a</td>
<td>12/9</td>
<td>12940 a</td>
<td>E_6T_2</td>
</tr>
<tr>
<td>18/5</td>
<td>0/24</td>
<td>41/2 a</td>
<td>12800 b</td>
<td>13/2</td>
<td>12440 a</td>
<td>E_6T_2</td>
</tr>
<tr>
<td>-</td>
<td>0/24</td>
<td>41/2 a</td>
<td>12800 b</td>
<td>13/2</td>
<td>12440 a</td>
<td>E_6T_2</td>
</tr>
<tr>
<td>11/5</td>
<td>0/20</td>
<td>41/3 a</td>
<td>12400 a</td>
<td>13/2</td>
<td>12040 a</td>
<td>E_6T_2</td>
</tr>
<tr>
<td>16/9</td>
<td>0/22</td>
<td>42/3 a</td>
<td>12000 a</td>
<td>12/4</td>
<td>11640 a</td>
<td>E_6T_2</td>
</tr>
<tr>
<td>41</td>
<td>0/21</td>
<td>40/3 a</td>
<td>11800 b</td>
<td>13/4</td>
<td>11440 a</td>
<td>E_6T_3</td>
</tr>
<tr>
<td>59/5</td>
<td>0/27</td>
<td>41/9 a</td>
<td>11800 b</td>
<td>13/9</td>
<td>11440 a</td>
<td>E_6T_3</td>
</tr>
<tr>
<td>-</td>
<td>0/20</td>
<td>40/1 a</td>
<td>11400 a</td>
<td>12/9</td>
<td>11040 a</td>
<td>E_6T_3</td>
</tr>
<tr>
<td>16/4</td>
<td>0/21</td>
<td>40/3 a</td>
<td>11600 b</td>
<td>12/5</td>
<td>11240 a</td>
<td>E_6T_4</td>
</tr>
<tr>
<td>25/5</td>
<td>0/28</td>
<td>41/6 a</td>
<td>11600 b</td>
<td>12/4</td>
<td>11240 a</td>
<td>E_6T_4</td>
</tr>
<tr>
<td>36</td>
<td>0/22</td>
<td>41/1 a</td>
<td>11400 a</td>
<td>12/4</td>
<td>11240 a</td>
<td>E_6T_5</td>
</tr>
<tr>
<td>54/3</td>
<td>0/27</td>
<td>41/9 a</td>
<td>11200 a</td>
<td>12/4</td>
<td>11240 a</td>
<td>E_6T_5</td>
</tr>
<tr>
<td>-</td>
<td>0/22</td>
<td>41/1 a</td>
<td>11200 a</td>
<td>12/4</td>
<td>11240 a</td>
<td>E_6T_5</td>
</tr>
<tr>
<td>16/4</td>
<td>0/21</td>
<td>41/1 a</td>
<td>11400 a</td>
<td>12/4</td>
<td>11240 a</td>
<td>E_6T_5</td>
</tr>
<tr>
<td>22/4</td>
<td>0/22</td>
<td>41/5 a</td>
<td>12200 a</td>
<td>12/8</td>
<td>12040 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>22</td>
<td>0/20</td>
<td>40/3 a</td>
<td>11800 b</td>
<td>12/4</td>
<td>11440 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>0/28</td>
<td>0/28</td>
<td>41/9 a</td>
<td>11800 b</td>
<td>12/4</td>
<td>11440 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>-</td>
<td>0/29</td>
<td>41/9 a</td>
<td>11800 b</td>
<td>12/4</td>
<td>11440 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>14/1</td>
<td>0/20</td>
<td>42/1 a</td>
<td>13/1 a</td>
<td>13/1</td>
<td>13300 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>19/5</td>
<td>0/21</td>
<td>41/1 a</td>
<td>12800 b</td>
<td>12/8</td>
<td>12440 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>24</td>
<td>0/22</td>
<td>48/6 a</td>
<td>12000 b</td>
<td>13/2</td>
<td>11240 a</td>
<td>E_6T_6</td>
</tr>
<tr>
<td>28/7</td>
<td>0/22</td>
<td>48/1 a</td>
<td>11200 a</td>
<td>13/2</td>
<td>11240 a</td>
<td>E_6T_6</td>
</tr>
</tbody>
</table>
جدول ۵ مقادیر K_t در تیمارهای کم آبیاری در مراحل مختلف رشد گیاه گندم

<table>
<thead>
<tr>
<th>مرحله خصوصی</th>
<th>مرحله شیره</th>
<th>مرحله گلوه</th>
<th>مرحله ساقه‌هی</th>
<th>مرحله پنجه‌هی</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدن</td>
<td>0/32</td>
<td>0/57</td>
<td>0/70</td>
<td>0/55</td>
<td>E₁</td>
</tr>
<tr>
<td>0/55</td>
<td>0/77</td>
<td>0/74</td>
<td>0/74</td>
<td>0/83</td>
<td>E₂</td>
</tr>
<tr>
<td>0/77</td>
<td>0/74</td>
<td>0/74</td>
<td>0/69</td>
<td>0/70</td>
<td>E₃</td>
</tr>
<tr>
<td>0/46</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>0/78</td>
<td>E₄</td>
</tr>
<tr>
<td>پاکستان</td>
<td>FAO</td>
<td>FAO</td>
<td>FAO</td>
<td>FAO</td>
<td>(Chile) IAEA</td>
</tr>
</tbody>
</table>

$Y_r = a\left(\frac{E_T}{d}\right)^n + b\left(\frac{E_T}{d}\right) + c$ \hspace{1cm} [9]

Y_r به مقدار ضریب راه طبیعی E_T در مراحل مختلف رشد گیاه گندم می‌باشد. این ضریب به هر مراحل مختلف ضریب C و T افزوده می‌شود.

ET_d به مقدار ضریب راه طبیعی در مراحل مختلف ضریب C و T افزوده می‌شود.

یک رابطه ریاضی استفاده شده چون حساسیت گیاه نسبت به کم آبیاری در مراحل مختلف رشد متفاوت است، لذا برای نشان دادن حساسیت گیاه به کم آبیاری در مراحل مختلف صرفه‌جویی ضریب B افزوده می‌شود.

$Y = Y_m \times A\left(\frac{ET}{ET_m}\right)^n + B\left(\frac{ET}{ET_m}\right) + c$ \hspace{1cm} [8]

Y به مقدار ضریب C و T افزوده می‌شود. Y_m بیشترین دامنه Y و A مناسبی از 90 محاسبه می‌گردد.

B, A, و Y_m عمدتاً ضریب C و T می‌باشد.
جدول 6 مقدار ضرایب عملکرد واقعی گندم از رابطه 8

<table>
<thead>
<tr>
<th>ضرایب</th>
<th>ظرفیت</th>
<th>ضرایب عملکرد</th>
<th>ظرفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0/89</td>
<td>0/86</td>
<td>0/63</td>
<td>0/84</td>
<td>0/75</td>
<td>0/83</td>
<td>0/63</td>
<td>0/84</td>
<td>0/75</td>
<td>0/83</td>
<td>0/63</td>
<td>0/84</td>
<td>0/75</td>
</tr>
<tr>
<td>B</td>
<td>1/44</td>
<td>0/59</td>
<td>1/50</td>
<td>0/52</td>
<td>0/43</td>
<td>0/54</td>
<td>0/43</td>
<td>0/54</td>
<td>0/43</td>
<td>0/54</td>
<td>0/43</td>
<td>0/54</td>
<td>0/43</td>
</tr>
<tr>
<td>C</td>
<td>1/99</td>
<td>0/98</td>
<td>0/99</td>
<td>0/98</td>
<td>0/99</td>
<td>0/98</td>
<td>0/99</td>
<td>0/98</td>
<td>0/99</td>
<td>0/98</td>
<td>0/99</td>
<td>0/98</td>
<td>0/99</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

نتایج نشان داد که مرحله کلدهی، ساقه‌دهی، شیری، دندان، پنجه‌دهی، جوانژنی و خمیری شدن با مقادیر برابر یا بالاتر از مقدارهای ارائه شده در تیمارهای مختلف به کاهش عملکرد واقعی کاهش می‌یابد. مقدار E1 نسبت به کم‌ترین حساسیت که از آن بهره‌برداری می‌شود، به طوری که مرحله کلدهی، بیشترین نسبت به کاهش عملکرد واقعی دارد.

منابع مورد استفاده

3. Baghbanzadeh Dezfuli, B. 1996. Crop coefficient estimates of the barley (Star) and the production function. MSc Thesis, Tarbiat Modares University, Tehran, Iran. (In Farsi).
5. Dewit, C. T. 1958. Transpiration and crop yields. Institute vor biologisch en scheikundig en erzoek van land bau we wassen, Versel, land bouskd, on derz, 64.6 Wageningen, The Netherlands.
6. Dirk, R. 2002. Yield Response to Water. Kuleeuun Faculty of Agricultural and Applied Biological Sciences, Department of land management, Laboratory of Soil and Water Management, drak.raes@agr.kuleeuun.ac.bc