تعیین ضریب واکنش عملکرد گندم به کم آب‌دار در مراحل مختلف رشد

نیازعلی ابراهیمی پاک

(تاریخ دریافت: 1390/7/18؛ تاریخ پذیرش: 1390/12/14)

چکیده

این پژوهش به منظور تعیین ضریب واکنش عملکرد گندم (Kbп) رقم اولند نسبت به کم آب‌دار در مراحل مختلف رشد از فاصله طرح یافته در کلکه‌های کامل تصادفی با پنج تیمار آب‌دار کامل (E1) تیخير - تعرق تناسبی گیاه گندم و بدون کاربرد آب (E2) در شرایط آزمایش گیاهی در مراحل رشد گیاه شامل جوانه‌زنی، پنج‌دهی، ساقده‌ه، گل‌دهی، شیر و خمیری دانه در سه‌ال‌زراعی در شهرکرد انجام شد. تیخير - تعرق تناسبی گیاه از یک لیست‌متر زک‌کننده در شرایط مشابه مزرعه از نظر بیان، ساختار خاک و کشت گیاه به‌دست آمد. پس از برداشت محصول، عملکرد دانه به‌دست آمد که عملکرد گیاه به‌دست آمده به‌طور میانگین تحت تأثیر کم آب‌دار در مراحل جوانه‌زنی، پنج‌دهی، ساقده‌ه، گل‌دهی و شیری دانه قرار گرفت، پیشترین و کمترین عملکرد گندم در تیمارهاي آب‌دار کامل و بدون کاربرد آب به‌ترتیب پایین با 243/65 و 240/3 کیلوگرم در هکتار حاصل شد. تیخير - تعرق تناسبی گیاه به‌دست آمده در مراحل جوانه‌زنی پیشینه / یک درجه عارضه به‌دست آمد. ضریب Kbп با توجه به تیمارهای کم آب‌دار برای مراحل جوانه‌زنی پیشینه تا 0/25، پنج‌دهی‌ه بین 0/16 تا 0/70، ساقده‌ه بین 0/7 تا 0/80، گل‌دهی بین 0/43 تا 1/21، شیری شدن بین 0/85 تا 0/90 و خمیری دانه بین 0/50 تا 0/08 تعیین گردید. به‌طور کلی، در تمام مراحل رشد گیاه، با کاهش نسبی تیخير - تعرق، عملکرد واقعی و عملکرد نسبی گیاه کاهش می‌یابد.

واژه‌های کلیدی: تیخير - تعرق، گندم، رقم اولند، مراحل رشد

1. استادیار پژوهشی مؤسسه تحقيقات خاک و آب، تهران
nebrahimipak@yahoo.com

2. مسئول مکاتبات، پست الکترونیکی: nebrahimipak@yahoo.com

۱۲۱
مقدمه
تأمین آب مورد نیاز گیاه از عوامل ضروری تولید است که با کاهش آن، عملکرد گیاهان زراعی کاهش می‌یابد. هر چند، کشاورزان معمولاً در این نکته که از جدایکار آب برای آبیاری جهت تولید محصول استفاده کنند، لینک این شیوه حتی در شرایط بدنی محدودیت منابع آب هم منطقی به نظر نمی‌رسد. در شرایط کم آب، لازم است که کارآیی مصرف آب در مزرعه با استفاده از توابع تولید و رابطه نسبی بین عملکرد محصول و آب مصرفی، به‌همراه با برخی مدل‌های و نهایتاً مدلی که توسعه آن در FAO انجام شده است، مورد بررسی قرار گیرد. بنابراین، برای مصرف بهینه آب یا پایین نگهداری شرایط مصرفی آب، تولید محصول به دست آمده، بهتر است

$$\begin{align*}
Y &= \frac{K_y \left(\frac{ET_y}{ET_m} - 1 \right)}{1 - \frac{Y_m}{Y_m}} \\
Y_m &= \frac{K_y \left(\frac{ET_y}{ET_m} - 1 \right)}{1 - \frac{Y_m}{Y_m}}
\end{align*}$$

در شرایط بسته، عملکرد محصول، تعداد می‌آید. هر چند، کشاورزان معمولاً در این نکته که از جدایکار آب برای آبیاری جهت تولید محصول استفاده کنند، لینک این شیوه حتی در شرایط بدنی محدودیت منابع آب هم منطقی به نظر نمی‌رسد. در شرایط کم آب، لازم است که کارآیی مصرف آب در مزرعه با استفاده از توابع تولید و رابطه نسبی بین عملکرد محصول و آب مصرفی، به‌همراه با برخی مدل‌های و نهایتاً مدلی که توسعه آن در FAO انجام شده است، مورد بررسی قرار گیرد. بنابراین، برای مصرف بهینه آب یا پایین نگهداری شرایط مصرفی آب، تولید محصول به دست آمده، بهتر است

$$\begin{align*}
Y &= \frac{K_y \left(\frac{ET_y}{ET_m} - 1 \right)}{1 - \frac{Y_m}{Y_m}} \\
Y_m &= \frac{K_y \left(\frac{ET_y}{ET_m} - 1 \right)}{1 - \frac{Y_m}{Y_m}}
\end{align*}$$
تعين ضريبة واکش عملکرد گند ب‌کم آماری در مراحل مختلف ردش

یافته‌ها

۱. موانع و روض‌ها

این پژوهش در مرکز تحقیقات کشاورزی شهرکرد با طول جغرافیایی ۶۵° ۵۰' شرقی و عرض جغرافیایی ۳۱° ۲۸' شمالی و ارتفاع ۲۰۰۰ متر از سطح دریا در یک خاک لوم‌رسی، در قالب طرح بلوک‌های کامل تصادفی به سه تکرار به سمت سال روند اجرا شد. از اعماق مختلف خاک نمونه‌ها به‌روش مختصات مناسب و شیمیایی آن تعین شد که نتایج در جدول ۱ که به‌روش آماری در ونیس سطح شاخص E0 (آب‌ایاری کامل) معادل تأخیر - تعریق پتانسیل که در آن ETc = I + R - D - (Sw - Swv)

که در آن ETc تأخیر - تعریق پتانسیل گیاه (میلی‌متر)، I میزان آب آب‌ایاری مورد نیاز تا رسیدن به رطوبت طرفیت زراعی (میلی‌متر)، R میزان بارندگی (میلی‌متر) و D میزان طرح بلادی که در این‌جا مورد استفاده قرار دیده‌است (میلی‌متر) است. به‌طور در مقایسه با خاک بدون آب‌ایاری ۷۲ و ۵۵ درصد تأخیر - تعریق گیاه کند (محاسبه شده از لایسپیتر) و E4 (بدون آب‌ایاری) بود. نتایج در مثال زیاد، شاخص گیاه ۱: جوان‌ترین (T3)، ۲: بنجده، ۳: ساکفده، ۴: تناز، ۵: شیری دانه و ۶: خمری شدن دانه می‌باشد. این افکار‌ها با ۱ ۲ ۳ ۴ ۵ ۶ درجه سلسیوس بود. در اواخر تیماره، برداشت از وسعت هرکارت ازآمیشی با حذف حاوی در سطح حداقل یک متری‌برای انجام شد. نمونه‌ها جهت اندازه‌گیری وزن هزار دانه و خصوصیات فیزیکی مانند پروتئین دانه به آزمایشگاه ارسال شد. همچنین از هر کرت نمونه‌برداری کامل از ۲۰ بونه برای تعیین صفت‌ها از جمله ارتفاع بونه، طول سنگین، طول مدل کل ذین و تعداد دانه در سنین Minitab ۰۵/۰۵ و ۰۲ محاسبه شده و برای کل رضایت حدس گند پایبندی به دست آمد (۵). مقدار ضريب و واکش عملکرد یک رضایت گند زمستانه بر اساس ۱/۲۹ به دست آمد (۳۰ و ۲۷). این ضريب برای گند رضایت محدود می‌باشد در مراحل پنج‌دهه (۵)

نمونه‌های درآمده در ۲۵۰/۰۸ تا ۱۲۰/۰۸ به دست آمد (۲). مقدار ضريب و واکش برای یک رضایت جو از خانواده قلمه با ۱/۲۵ به دست آمد (۳). هدف از این تحقیق برآورده تابع محصول و تعیین ضرایب واکش عملکرد گند پایبندی، رقم این الگو، نسبت به کم‌آمیزی در شهرکرد بود.
جدول 1. مشخصات فيزيكي خاك مزروع آزمایشی

<table>
<thead>
<tr>
<th>عمق نمونهبرداری (سانتی‌متر)</th>
<th>عمومی</th>
<th>FC</th>
<th>PWP</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>9/12</td>
<td>7/8</td>
<td>8/25</td>
<td>0/75</td>
</tr>
<tr>
<td>10-20</td>
<td>8/22</td>
<td>7/8</td>
<td>7/8</td>
<td>8/5</td>
</tr>
<tr>
<td>20-30</td>
<td>7/8</td>
<td>7/8</td>
<td>7/8</td>
<td>8/5</td>
</tr>
<tr>
<td>30-40</td>
<td>6/22</td>
<td>6/28</td>
<td>7/8</td>
<td>8/5</td>
</tr>
<tr>
<td>40-50</td>
<td>5/22</td>
<td>6/28</td>
<td>7/8</td>
<td>8/5</td>
</tr>
<tr>
<td>50-60</td>
<td>4/22</td>
<td>5/28</td>
<td>7/8</td>
<td>8/5</td>
</tr>
<tr>
<td>60-70</td>
<td>3/22</td>
<td>4/28</td>
<td>7/8</td>
<td>8/5</td>
</tr>
<tr>
<td>70-80</td>
<td>2/22</td>
<td>3/28</td>
<td>7/8</td>
<td>8/5</td>
</tr>
</tbody>
</table>

بافت خاک

جدول 2. نتایج تجزیه شیمیایی خاك مزروع آزمایشی

<table>
<thead>
<tr>
<th>هدایت</th>
<th>واکنش کل</th>
<th>نمونه نمونه‌برداری</th>
<th>عمق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مواد غنی</td>
<td>شونده (۷)</td>
<td>اشعاب</td>
</tr>
<tr>
<td></td>
<td>کریم (٪)</td>
<td>آلی (٪)</td>
<td>اشعاب (dS/m)</td>
</tr>
<tr>
<td>مصرف قابل جذب</td>
<td>(mg/L)</td>
<td>مصرف قابل جذب</td>
<td>(mg/L)</td>
</tr>
<tr>
<td></td>
<td>8/45</td>
<td>6/57</td>
<td>5/48</td>
</tr>
<tr>
<td></td>
<td>0/40</td>
<td>1/52</td>
<td>0/48</td>
</tr>
<tr>
<td></td>
<td>1/52</td>
<td>0/48</td>
<td>0/37</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تجزیه واریانس نشان داد که اثر مقادیر آب بر عملکرد دانه کندم در سطح احتمال 0.01 معنی‌دار شد (جدول 3). مقایسه دو معنی‌داری در این پژوهش، برای ارزیابی رابطه 7 از اطلاعات مربوط به میزان تبخیر، تهیه واقعی، تبخیر-تهرانسیل، عملکرد واقعی و حداکثر عملکرد استفاده شد.

EN CE 04:10

EN CE 04:10

EN CE 04:10

EN CE 04:10
جدول 3: تناوب تجربه وارایان مرکب عملکرد در مراحل رشد گیاه در ادغام نتایج (داختران 5)
جدول ۴ مقایسه میانگین پرخی از صفات مربوط به عملکرد گندم در سطوح آبیاری در مراحل رشد (آزمون دانکن)

<table>
<thead>
<tr>
<th>دوره رشد</th>
<th>تیمار آبی</th>
<th>عملکرد دانگم (کیلوگرم در هکتار)</th>
<th>عملکرد کل (گرم)</th>
<th>وزن هزار دانه</th>
<th>پرتنی دانه</th>
<th>شاخص برداشت (٪)</th>
<th>افت نسبی عملکرد (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>۳۹/۱۸</td>
<td>۱۳۵/۴۱</td>
<td>۱۳۴/۶۹</td>
<td>۱۳۴/۹۴</td>
<td>۵۴/۷۵</td>
<td>۳۵/۹۴</td>
</tr>
<tr>
<td>۹/۹</td>
<td>-</td>
<td>۴۲/۳۹</td>
<td>۱۲/۹۰</td>
<td>۱۲۸/۰۱</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۳/۸</td>
<td>-</td>
<td>۴۰/۸۸</td>
<td>۱۲/۴۰</td>
<td>۱۳۴/۶۹</td>
<td>۱۳۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۵/۲</td>
<td>-</td>
<td>۴۰/۵۰</td>
<td>۱۲/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۳۴/۶۹</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۸/۵</td>
<td>-</td>
<td>۴۰/۲۲</td>
<td>۱۲/۹۰</td>
<td>۱۲۸/۰۱</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۴۰/۲۲</td>
<td>۱۲/۹۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۳۴/۶۹</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۱/۵</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۷/۹</td>
<td>-</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۱</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۶</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>-</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۵/۱</td>
<td>-</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۱/۹</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۴</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۵۹/۵</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>-</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۶/۵</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۲/۶</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۵/۵</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۶</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۶۵/۳</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>-</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۱۶/۴</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۲/۱</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۲</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۶</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
<tr>
<td>۲۸/۱</td>
<td>۴/۳۶</td>
<td>۴۱/۳۳</td>
<td>۱۳/۴۰</td>
<td>۱۲۴/۹۴</td>
<td>۱۲۴/۹۴</td>
<td>۵۱/۲۰</td>
<td>۴۳/۴۱</td>
</tr>
</tbody>
</table>
جدول ۵ مقادیر K_i در تیمارهای کم آبیاری در مراحل مختلف رشد گیاه گندم

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مرحله خمیری</td>
</tr>
<tr>
<td>شدن</td>
<td>۰/۶۸</td>
</tr>
<tr>
<td>۰/۶۷</td>
<td>۰/۷۵</td>
</tr>
<tr>
<td>۰/۶۶</td>
<td>۰/۷۸</td>
</tr>
<tr>
<td>۰/۶۵</td>
<td>۰/۷۰</td>
</tr>
<tr>
<td>۰/۶۴</td>
<td>۰/۶۲</td>
</tr>
<tr>
<td>۰/۶۳</td>
<td>۰/۵۸</td>
</tr>
<tr>
<td>۰/۶۲</td>
<td>۰/۵۴</td>
</tr>
<tr>
<td>۰/۶۱</td>
<td>۰/۵۱</td>
</tr>
<tr>
<td>۰/۶</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۴۸</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۰/۴۶</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۰/۴۴</td>
</tr>
<tr>
<td>۰/۲</td>
<td>۰/۴۲</td>
</tr>
<tr>
<td>۰/۱</td>
<td>۰/۴۰</td>
</tr>
</tbody>
</table>

$Y_r = a(ET_d)^b + b(E)(ET_d) + c$ [۵]

Y_r که در آن ET_d نشان دهنده کاهش نسبی بار آبیاری - تعرق، و a و b حداکثر و ضریب آبیاری ۹ برای عملکرد کاهش نسبی محصول و c که در جدول ۷ ارائه شده‌اند. در این رابطه، Y نشان‌دهنده کاهش نسبی عملکرد یک کشور در مراحل مختلف از روش مصرف مکانی، مصرف آب مخصوص و متغیرهای را ارائه کرده است. با این استفاده از آن، می‌توان عملکرد مطلق و متغیرهای تحقیقی را ارائه کرد و با استفاده از معیار مناسب کاهش بار آبیاری - تعرق نسبی در مراحل مختلف رشد گیاه گندم، حداکثر کاهش محصول را انتخاب داشت.

$Y = Y_m \times A \left(\frac{ET}{ET_m} \right)^{-b} + B \left(\frac{ET}{ET_m} \right)^{-c}$ [۶]

Y_m عملکرد واقعی کندم و A, B, C و D به کمک عملکرد دانشگاهی و D عملکرد پتانسیل کندم و Y_m عملکرد واقعی کندم Y به کمک D در مراتب مختلف رشد گیاه گندم به کمک آبیاری حساسیت بیشتری دارند. با توجه به جدول ۸ هم مشاهده می‌شود که میزان کاهش عملکرد در تیمارهای کم آبیاری نسبت به کم آبیاری حساسیت به کم آبیاری حساسیت بیشتری نشان داد. به عبارت دیگر، با کاهش نسبی بار آبیاری - تعرق گیاه، عملکرد نسبی محصول کاهش یافت. لیکن تیمار E نسبت به کم‌مصرف آب حساسیت کمتری داشت و عملکرد واقعی گیاه نزدیک به عملکرد پتانسیل شد. برای نشان دادن حساسیت گیاه نسبت به کم‌مصرف آب در مراحل مختلف رشد، به منظور پیش‌بینی عملکرد واقعی، از یک رابطه ریاضی استفاده شد و جون حساسیت گیاه نسبت به کم‌مصرف آب در مراحل مختلف متفاوت است. لذا برای نشان دادن حساسیت گیاه به کم‌مصرف آب از مدل رگرسیون پیش‌بینی مقدار واقعی عملکرد گیاه در شرایط نشان دهنده بهره‌برد و با داشتن پتانسیل عملکرد و تعرق تیمار واقعی محصول با تقریب بیش از ۹۰/۵ محاسبه می‌گردد:

$Y = Y_m \times A \left(\frac{ET}{ET_m} \right)^{-b} + B \left(\frac{ET}{ET_m} \right)^{-c}$ [۶]

Y_m عملکرد واقعی کندم و A, B, C و D به کمک عملکرد دانشگاهی و D عملکرد پتانسیل کندم و Y_m عملکرد واقعی کندم Y به کمک D در مراتب مختلف رشد گیاه گندم به کمک آبیاری حساسیت بیشتری دارند. با توجه به جدول ۸ هم مشاهده می‌شود که میزان کاهش عملکرد در تیمارهای کم آبیاری NIST on Wednesday, February 3rd 2021

Downloaded from jpps.iut.ac.ir at 22:48 IRST on Wednesday, February 3rd 2021
جدول ۶ مقادیر ضرایب عملکرد واقعی گندم از رابطه ٨

<table>
<thead>
<tr>
<th>ضرایب</th>
<th>مرحله</th>
<th>مرحله کل دهی</th>
<th>مرحله پنجدههی</th>
<th>جوانزی</th>
<th>متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شن‌دار</td>
<td>خمیری شن‌دار</td>
<td>شن‌دار</td>
<td>شن‌دار</td>
<td>شن‌دار</td>
</tr>
<tr>
<td>A</td>
<td>1/62</td>
<td>0/53</td>
<td>0/69</td>
<td>0/63</td>
<td>0/68</td>
</tr>
<tr>
<td>B</td>
<td>0/24</td>
<td>0/22</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>C</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ٧ ضرایب کاهش نسبی عملکرد (٧) و کاهش نسبی تبخیر - تعرق گیاه (٠) (ET) از رابطه ٩

<table>
<thead>
<tr>
<th>ضرایب</th>
<th>مرحله</th>
<th>مرحله کل دهی</th>
<th>مرحله پنجدههی</th>
<th>جوانزی</th>
<th>مانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شن‌دار</td>
<td>خمیری شن‌دار</td>
<td>شن‌دار</td>
<td>شن‌دار</td>
<td>شن‌دار</td>
</tr>
<tr>
<td>A</td>
<td>1/52</td>
<td>0/32</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>B</td>
<td>0/22</td>
<td>0/22</td>
<td>0/42</td>
<td>0/42</td>
<td>0/42</td>
</tr>
<tr>
<td>C</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌گیری

نتایج نشان داد که مراحل کل دهی، ساف به دلیل خواص مرحله کاهش یابد. کاهش شدید عملکرد را به دنبال خواهد داشت. در تمام مراحل رشد گیاه، تیمار E1 در این مدت کاهش می‌یابد. امکان تعرق عملکرد K، بود و نشان داد که با کاهش نسبی تبخیر - تعرق عملکرد نسبی گیاه و عملکرد واقعی کاهش می‌یابد. تیمار E1 نسبت به E2 کم‌ترین حساسیت نسبت به نشان داد.

منابع مورد استفاده

3. Baghbanzadeh Dezfuli, B. 1996. Crop coefficient estimates of the barley (Star) and the production function. MSc Thesis, Tarbiat Modares University, Tehran, Iran. (In Farsi).
6. Dirk, R. 2002. Yield Response to Water. Kuleuen Faculty of Agricultural and Applied Biological Sciences, Department of land management, Laboratory of Soil and Water Management, drak.raes@agr.kuleuen.ac.bc