برهمنکش تنش خشکی انتهای فصل و مصرف کودهای آلی بر عملکرد گندم نان

(Triticum aestivum)

معصومه نمروزی ا، قدرت افحنی، عبدالمحسن بخشنداد، محمد حسن قربئی و سیروس جعفری

چکیده

به منظور بررسی تأثیر تنش خشکی در مراحل مختلف رشد و سیستم‌های مختلف تغذیه‌ای بر عملکرد و اجزای عملکرد گندم رقم جنگ. آزمایش در سال زراعی 1388-89 به صورت کرده‌های خرد شده در قالب طرح بلکهای کامل تصادفی با 3 تکرار در مزرعه تحقیقاتی دانشگاه کشاورزی و منابع طبیعی رامین خوزستان انجام شد. در این آزمایش، آبیاری در سه مقطع کربنی: (آبیاری در مرحله سبزه‌دهی کامل تا زمان برداشت - 65 دالکس، آبیاری در مرحله گذشته افشاری تا زمان برداشت - 65 دالکس، آبیاری در مرحله 1) و (آبیاری کامل، شاهد) در کرده‌های اصلی، و سیستم‌های کودی شامل کود شیمیایی (B), کود دامی (M), (NPK) و (B) کود زیستی همراه با کود دامی (MB) در کرده‌های فرعی گزارش می‌شود. نتایج نشان داد که تنش خشکی و سیستم‌های تغذیه‌ای بر عملکرد دانه و عملکرد زیستی (در مقطع 1) و سیستم کرده‌های متنوع برداشت (در مقطع 2) تأثیرگذار بود. بیشتر عملکرد دانه در تیمار I به مقدار 3740 کیلوگرم در هکتار و کمترین عملکرد دانه در تیمار 1 در مرحله 2451 کیلوگرم در هکتار بود. همچنین در عملکرد دانه به میزان 5081 کیلوگرم در هکتار و کمترین آن مربوط به تیمار B به میزان 3142 کیلوگرم در هکتار بود. سیستم‌های تغذیه‌ای MB به تحقیق یک گونه بر می‌گردد. نتایج به دست آمده این پژوهش و برای حصول عملکرد مطلوب، استفاده از کود دامی به همراه کود زیستی حتی در شرایط تنش خشکی

پایان دوره، می‌تواند برای زراعت گندم مفید باشد.

واژه‌های کلیدی: سیستم‌های تغذیه، کود زیستی

1. بهترین دانشجوی سابق کارشناسی ارشد. استادی و دانشیار زراعت و اصلاح نباتات. دانشگاه کشاورزی و منابع طبیعی رامین. اهواز

2. استادی خاکشناسی، دانشگاه کشاورزی و منابع طبیعی رامین. اهواز

namarvar_i2009@yahoo.com

1391/12/23 (تاریخ پذیرش: 1390/10/25، تاریخ دریافت: 1390/11/12)

163
ایجاد نشان در مرحله‌ای از رشته‌گاه، بدون کاهش زیاد عامل‌کردن. از نظر نظر صرفجویی در مصرف آب ابزاری برای منطق خشک و نیمه خشک بوده توجه اغلب پژوهشگران است (21). نشان خشکی از طریق کاهش نرخ از اجرای عامل‌کردن، عامل‌کردن دانه را کاهش می دهد (7 و 18). این نتیجه در گزارش ملی و همکاران (11) نیز به‌دست آمده و عامل‌کردن دانه کاهش به‌حالت در تیمار نشان خشکی، نسبت به تیمار عامل‌کردن دانه و سایر کاهش عامل‌کردن و شاخص برادشت برای گندم‌های با چهار نشان مشاهده شده که تیمار خشکی شاخص برادشت را کاهش داده ولی بر عامل‌کردن زیستی تأثیر معنی‌داری نداشتی است (17). ولی در گزارش سیدری نشان داده که نشان خشکی نه تنها بر عامل‌کردن زیستی که بر شاخص برادشت نیز اختلاف معنی‌داری از خود نشان داده (12). هم‌چنین زیادی بین عامل‌کردن دانه و وزن زیستی در شرایط ترشیت و بدون تنظیم مشاهده شده بطوری که اگر عامل‌کردن دانه در اثر نش روطیت کم شود و وزن زیستی نیز کاهش می‌یابد که خود باعث کاهش بشرت عامل‌کردن دانه می‌گردد.

نتایج آزمایش‌ها نشان داده که استفاده از کودهای آلی نقش مرتب را در افزایش عامل‌کردن به‌همراه داشته است. مصرف کودهای آلی به‌وسیله فراهم فسفر و بیشتر عناصر کم‌منسوب سبب افزایش رشد و عملکرد گیاهی می‌شود. رفع کمبود عناصر غذایی کم‌منسوب به‌وسیله مواد آلی به‌علت قدرت سیلیکس کننده ای این مواد عنوان‌شده است (13). ولی در گزارش‌های مختلف بین شده که کود شیمیایی عامل‌کردن زیادی نسبت به کود دامی داشته است (16 و 17). هم‌چنین مشاهده

مقدمه

مشاهده که باکتری‌های محروک رشد گیاه نیز عامل‌کردن گیاهان زراعی را بهره‌مند می‌سازد (6 و 20). در پژوهش‌های انگشاده شده مشخص شده که استفاده از کود زیستی سفید عامل‌کردن گیاه را به‌صورت وقوع نسبت به کود شیمیایی افزایش می‌دهد (14). به‌دلیل این که پژوهش‌های بیشتری در مورد تأثیر کودهای زیستی و دامی ضد و نقش است، لیکن این موضوع احتمالاً در ارتباط با ویژگی‌های خاک و اقلیم‌های منطقه قابل توجهی است. در مجموع، پژوهش‌ها چنین نتیجه‌گیری نمود که هر جزء از عامل‌کردن با زمان و فضای نشان رابطه نگاشته‌گردیده. از طرفی، می‌توان با مدیریت صحیح و استفاده از بسته‌های تغذیه‌ای، اثر تنش خشکی را بر عامل‌کردن کاهش داد و در این پژوهش با توجه به شرایط آب و هوا خوزستان، سعی می‌شود برنداری رنگ‌های جدید در تولید بهینه کردن در شرایط خشکی‌های بایان دوز، مورد بررسی قرار گیرد. با توجه به این موضوع، این آزمایش با اهداف کاهش اثر تنش خشکی بایان دوز بر عامل‌کردن و تعیین مؤثراتی که در شرایط تنش خشکی گندم صورت گرفت.

مواد و روش‌ها

در این مطالعه، برای تعیین خصوصیات شیمیایی و فیزیکی خاک مزرعه مورد آزمایش، نمونه‌برداری به‌صورت تصادفی از عمق 30 سانتی‌متری خاک صورت پذیرفت و براساس روش‌های استاندارد در آزمایشگاه کره‌خاک‌شناسی دانشگاه امام خوستگر مورد پرساچر قرار گرفت (12). نتایج در جدول ۱ ارائه شده است. این آزمایش به‌صورت کرت‌های خرد شده در قابل طرح پلوکهای کامل تصادفی با تکرار اندازه‌گیری شد. در این آزمایش، تیمار رشته آب‌زدایی شامل ۳ سطح آب‌زدایی به عنوان کرت های اصلی به‌صورت ۱ حذف آب‌زدایی از مرحله سنبلهدی تا زمان برادشت (با ظروف ۷۵٪ سنبله‌ها از گلف برگ پرچم)، ۲ حذف آب‌زدایی از مرحله گرده‌شانه تا زمان برادشت (با ظروف پرچم در ۶۰٪ سنبله‌ها) و ۲ آب‌زدایی کامل براساس تیزی کیسه بود (این زمان سنبله‌ها تا زمان گرده‌اشنا حداکثر ۴ روز طول می‌برد).
جدول 1: ویژگی‌های فیزیکی و شیمیایی خاک مزرعه

<table>
<thead>
<tr>
<th>کوشش‌گزین شکن‌نشین</th>
<th>FC (٪)</th>
<th>EC (میلی‌جمع‌سازی‌هایی بر متر)</th>
<th>pH</th>
<th>فسفر (mg/L)</th>
<th>نیتروژن (mg/L)</th>
<th>عمق تروم‌برداری (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک</td>
<td>0/59</td>
<td>0/62</td>
<td>7/7</td>
<td>18</td>
<td>4/3</td>
<td>30</td>
</tr>
</tbody>
</table>

کشید. البته جهت جلوگیری از اثر بارندگی‌های فصلی و اعمال قطع آبیاری، از پوشش‌های پلاستیکی استفاده گردید. تغییرات مدا و مانگنز بارندگی محل آزمایش در فصل رشد گندم در سال زراعی ۱۳۸۹-۹۰ در جدول ۲ ارائه شده است.

تیمارهای فرعی شامل ۴ نوع کود مختلف شامل کود شیمیایی (NPK، کود بیولوژیک (B)، کود دامی (M) و کود دامی مخلوط با کود زنی (MB). ترکیب کود شیمیایی (براسوس عرف منطقه) به‌صورت ۱۲۰ کیلوگرم در هکتار نیتروژن خالص، ۱۸۰ کیلوگرم در هکتار سوپر فسفات تریپل و ۱۵۰ کیلوگرم در هکتار سولفات پنیسیم بود که با کنولیپاتور با خاک مخلوط گردید. کود نیتروژن‌سنج (حوزه غلط‌هدایه) مختلف از باکتری‌های ازتوکتار، آروسپیرولوم و باکتری‌های محکر، رشد می‌باشد که باعث جذب نیتروژن خاک توسط گیاه می‌گردد. به میزان یک لیتر در هکتار و کود بارور ۲ (باکتری‌های موجود در آن حاوی باکتری‌های از جنس باسلیسوس و سودوموناس که باعث جذب فسفر خاک توسط گیاه می‌شوند) به میزان یک کیلو در هکتار مصرف گردید.

ناب‌پذیری فرعی به میزان ۴۰ تن در هکتار (عطف منطقه) بوده که توسط کنولیپاتور با خاک مخلوط گردید تا از هدر داشت نیتروژن.

ان (به‌صورت NO₃) جلوگیری شود. کود لیفیفی (دام و کود زنی) نیز شیل کود گاوری (۱۰ تن در هکتار) + کود نیتروژن‌سنج (۴۰ لیتر در هکتار) + کود بارور (۲) ۰/۵ کیلو در هکتار) بوده که هر کرت بارش به طول ۲ متر و عرض ۱/۶ متر بود و ۸ خط کاشت داشت. فاصله بین کرت‌های اصلی ۲ متر و بین کرت‌های فرعی ۱/۵ مت در نظر گرفته شد. رقم جمودار در تاریخ ۱۰ آذر ماه به روش خشکه کاری با دست و با نتراکم
جدول 2. مشخصات هوشمندی منطقه مورد آزمایش در سال زراعی 1388-89

<table>
<thead>
<tr>
<th>ماده</th>
<th>پارامتر</th>
<th>کمیت دما (سلسیوس)</th>
<th>بیشتر دما (سلسیوس)</th>
<th>میانگین دما (سلسیوس)</th>
<th>مجموع بارندگی (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>هایلایت</td>
<td>20</td>
<td>40</td>
<td>50</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>اشرف</td>
<td>7/24</td>
<td>12/42</td>
<td>18/42</td>
<td>7/24</td>
<td>12/42</td>
</tr>
<tr>
<td>مهر</td>
<td>8/28</td>
<td>14/52</td>
<td>22/52</td>
<td>8/28</td>
<td>14/52</td>
</tr>
<tr>
<td>آذر</td>
<td>6/26</td>
<td>11/50</td>
<td>17/50</td>
<td>6/26</td>
<td>11/50</td>
</tr>
<tr>
<td>دی</td>
<td>4/30</td>
<td>8/45</td>
<td>12/45</td>
<td>4/30</td>
<td>8/45</td>
</tr>
<tr>
<td>شهری</td>
<td>3/30</td>
<td>5/40</td>
<td>11/40</td>
<td>3/30</td>
<td>5/40</td>
</tr>
</tbody>
</table>

جدول 3. تجزیه واریانس عملاکرد دانه، عملاکرد پیوپیویک و شاخص برداشت

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>متغیر</th>
<th>عملاکرد پیوپیویک</th>
<th>عملاکرد دانه</th>
<th>درجه آزادی</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/24</td>
<td>0/24</td>
<td>9/24</td>
<td>11/24</td>
<td>1</td>
<td>تکرار</td>
</tr>
<tr>
<td>0/25</td>
<td>0/25</td>
<td>9/25</td>
<td>11/25</td>
<td>2</td>
<td>خطای a</td>
</tr>
<tr>
<td>0/26</td>
<td>0/26</td>
<td>9/26</td>
<td>11/26</td>
<td>3</td>
<td>کود (B)</td>
</tr>
<tr>
<td>0/27</td>
<td>0/27</td>
<td>9/27</td>
<td>11/27</td>
<td>4</td>
<td>A x B</td>
</tr>
<tr>
<td>0/28</td>
<td>0/28</td>
<td>9/28</td>
<td>11/28</td>
<td>5</td>
<td>خطای b</td>
</tr>
<tr>
<td>0/29</td>
<td>0/29</td>
<td>9/29</td>
<td>11/29</td>
<td>6</td>
<td>ضریب تغییرات (%)</td>
</tr>
</tbody>
</table>

**، *** به ترتیب معنی‌دار در سطح احتمال 1% و 5% و بدون اختلاف معنی‌دار.

![شکل 1. تاثیر تغییرات عملاکرد در مراحل مختلف نمو بر عملاکرد دانه گندم رقم چمران. میانگین های دارای حریف مشترک در هر ستون مطابق آزمون چنددمه‌ای دانکن در سطح 5% اختلاف معنی‌دار ندارند.](image-url)
برهمکش تنش خشکی انتهای فصل و مصرف کودهای آتی بر عملکرد...
شکل ۲. تأثیر سیستم کودی بر عملکرد دانش‌آموختگان در فعالیت های دارای حروف مشترک در هر سطح متوافق آزمون چندان‌مانی‌ای.

شکل ۳. تأثیر مقابل تیمار‌های قطع آبیاری در مرحله مختلف نمو و افزایش کود بر عملکرد دانش‌آموختگان در فعالیت‌های دارای حروف مشترک در هر سطح متوافق آزمون چندان‌مانی‌ای.

بود. احتمالاً دلیل اصلی آن تأثیر شدید خشکسالی بر اجرای عملکرد دانش‌آموختگان است. بیشترین عملکرد زیستی تحت تأثیر تیمار آبیاری کامل (۱۲۷/۶۸ کیلوگرم در هکتار) صورت گرفت و کمترین قطع آبیاری در زمان سیسمه‌روی (۹۹۳/۶۸ کیلوگرم در هکتار) بود (شکل ۴). گزارش‌های تولید و افزایش (۱۹) و (۲۰) همکاران نشان داد که هر چقدر نادره شدن خشکسالی شدیدتر باشد، تأثیر آن بر عملکرد زیستی بزرگتر خواهد و...
شکل ۴. تأثیر فتع آبیاری در مراحل مختلف نمود بر عملکرد پیلولیزیک گندم رقم چهار. میانگین‌های دارای حروف مشترک در هر ستون مطابق آزمون مجدداً دانکن در سطح ۵% اختلاف معنی‌دار ندارند.

شکل ۵. تأثیر سیستم کودی بر عملکرد پیلولیزیک گندم رقم چهار. میانگین‌های دارای حروف مشترک در هر ستون مطابق آزمون.

چندادامتای دانکن در سطح ۵% اختلاف معنی‌دار ندارند.

تعداد سنبله مناسب و هم‌چنین تعداد دانه در سنبله و وزن هزار دانه زیاد بوده است. مقایسه میانگین برهمکنش عملکرد زیستی نشان داد که بیشترین عملکرد در شیپاژ آبیاری کامل می‌باشد. نتیجه‌گیری‌های دانکن در سطح ۵٪ معنی‌داری داشته است و با نتایج رانک و همکاران (۱۶) نیز مطابقت دارد (شکل ۶).

کمترین عملکرد زیستی مربوط به تیمار کود زیستی در شیپاژ آبیاری در مرحله ظاهر شدن سنبله بود. به نشانه‌های دانکن در سطح ۵٪ معنی‌داری داشته است. تفاوت بین عملکرد زیستی در کودهای زیستی مخلوط با کود زیستی تعداد پنج‌پنج،
نتش رطوبتی باعث کاهش عملکرد دانه می‌شود، وزن خشک کل نیز کم می‌شود. بنابراین اثر تیمار قطع آبیاری بر شاخص برداشت معنی‌دار نگردید. بررسی مقایسه میانگین‌های تیمارهای کودک نشان داد که بیشترین مقدار شاخص برداشت در این آزمایش، در تیمار کود دامی مخلوط با کود زیستی به میزان 33/38 و کمترین مقدار در تیمار کود زیستی به میزان 33/31 حاصل شد. که فاوتی بین این دو تیمار معنی‌دار بود (شکل 7). مصرف کود دامی به همراه کود زیستی باعث افزایش شاخص برداشت شد، که با نتایج آرایی و همکاران (2). تلفی و همکاران (11) و اقیال و همکاران (4) مطابقت دارد. افراش  

کودک بر عملکرد زیستی می‌باشد. تولید ماده خشک در سیستم‌های کودک با افزایش نیاز آبیاری کاهش یافته و این کاهش با شدت تنش کاهش بیشتری نشان داد. لیل شدت کاهش عملکرد در تیمار تلفیقی (کود دامی همراه کود زیستی) کمتر بود. این امر می‌تواند بیانگر این مسئله باشد که تیمار تلفیقی توانست مقاومت به خشکی را أفزایش دهد. 

شاخص برداشت دارای یک حد بالاست که در برخی از گیاهان زراعی به‌داختر خود نزدیکی شده است. لذا حفظ شاخص برداشت در شرایط کم‌بود آب اهمیت بی‌حرانی دارد. بنابراین شاخص برداشت عملکردی خاص تابی است. زیرا ته سبک طوریه
نتیجه‌گیری
نتایج موضوع بیان کننده آن است که هر گونه از مراحل رشد کرکم از نظر واکنش به آب از حساب‌سازی زیادی برخورد و بوده و بطور مؤثر بر عملکرد و شاخص‌های آن تأثیر می‌گذارد و لی می‌توان با تمهیدات زراعی و استفاده از کودهای آلی و بیولوژیک، شرایط را برای عملکرد از دامآ در وضعیت نامناسب‌ترین آب بهبود بخشید.

منابع مورد استفاده


