بهرمکش تشکیل خشکی انتهای فصل و مصرف کودهای آلم بر عملکرد گندم نان

(Triticum aestivum)

معصومه نمرویی٢، قدرت الله فتحی٢، عبدالملکی بخشندی، محمد حسین قربه، و سیروس جعفری٢

(تاریخ دریافت: ۱۳۹۰/۱/۱۱، تاریخ پذیرش: ۱۳۹۰/۲/۲۵)

چکیده

به منظور بررسی تأثیر تشکیل خشکی در مراحل مختلف رشد و سیستم‌های مختلف تغذیه‌ای بر عملکرد و اجزای عملکرد گندم رقم چیران، آزمایشی در سال‌های ۹۸–۹۹ به صورت کرده‌های خرد شده در قابل طرح بلوک‌های کاملاً صادقی با ۳ تکرار در مزرعه تحقیقاتی دانشگاه کشاورزی و منابع طبیعی رامین خوزستان انجام شد. در این آزمایش، آبیاری در سه سطح شامل I (قطع آبیاری در مرحله سبزده کاملاً تا زمان برداشت- ۵۵ زادکه تا بعد از آن)، II (قطع آبیاری در مرحله گره‌افشانی تا زمان برداشت- ۵۵ زادکه تا بعد از آن) و III (آب‌برداری تمامی مرحله‌های گوناگون گردید). نتایج نشان داد که تشکیل خشکی و سیستم‌های تغذیه‌ای بر عملکرد گندم به‌طور مستقیم و مثبت تأثیر می‌گذارد. بهترین عملکرد دانه و عملکرد زیستی (در سطح ۸/۲) و سیستم کرده برای برداشت (در سطح ۵/۲) معتبر گردید. بیشترین عملکرد دانه در تیمار I به مقدار ۱۳۴ کیلوگرم در هکتار و کمترین عملکرد دانه در تیمار III به میزان ۵۲ کیلوگرم در هکتار بود. همچنین بیشترین عملکرد دانه در تیمار III به میزان ۵۲ کیلوگرم در هکتار بود. نتایج به دست آمده از پژوهش و برای حصول عملکرد مطلوب، استفاده از کود دامی به همرود کود زیستی حتی در شرایط تشکیل پایان دوره، می‌تواند برای زراعت گندم مفید باشد.

واژه‌های کلیدی: سیستم‌های تغذیه، کود زیستی

1. بهترین دانشجوی سابق کارشناسی ارشد، استادی و دانشیار زراعت و اصلاح نیان‌های دانشگاه کشاورزی و منابع طبیعی رامین، اهواز
2. استاد خلاقیت‌سازی، دانشگاه کشاورزی و منابع طبیعی رامین، اهواز

namarvar_i2009@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: namarvar_i2009@yahoo.com

163
مقدمه

ایجاد تنش در مرحله‌ی از رشد گیاه، بدون کاهش زیاد عکس‌برداری و به صورت منطقی و نیمه‌نحوه مورد توجه اغلب یک تنش خشکی به ازای عکس‌برداری عکس‌برداری، عکس‌برداری دانه را کاهش عکس‌برداری دانه در اثر تنش خشکی به ازای عکس‌برداری عکس‌برداری دانه را کاهش خشکی در سطح 20/ص.در شروع بوده است. همین تناوب عکس‌برداری به ازای نیمه‌نحوه (11) نیز به‌معنی دائم و عکس‌برداری دانه را 33/ص. دانه به خلاصه است. نتایج آزمایش‌ها نشان می‌دهد که کاهش عکس‌برداری و شاخص برداشت گیاه‌هایی با تیمار عکس‌برداری در شرایط تنش خشکی بالا یابان دوره، مورد بررسی قرار گرفت. با پیوستن به این موضوع: این آزمایش با اهداف کاهش اثر تنش خشکی یابان دوره به عکس‌برداری و تعیین مؤثرترین نوع کود در شرایط تنش خشکی گند کود گرفت.

مواد و روش‌ها

در این مطالعه، برای تعیین خصوصیات شیمیایی و فیزیکی خاک مزرعه مورد آزمایش، نمونه‌برداری به صورت تصادفی و از عمق 30–60 سانتی‌متری خاک صورت گرفت و بر پایه روش‌های استاندارد در آزمایشگاه کرده خاکشناسی دانشگاه امین خورسان مورد بررسی قرار گرفت (13). نتایج در جدول 1 ارائه شده است. این آزمایش به صورت کرت های خرد شده و قابل طرح بلوک‌های کامل تصادفی با 3 تکرار انجام شد. در این آزمایش، تیمار رژیم آبیاری شامل 3 سطح آب‌بردایه به عنوان کرت‌های اصلی به صورت حذف آب‌بردایه از مرحله سبب و گچ‌بندی تا زمان برداشت (با ظهور 50% سبب‌های آن، بر اساس برگ در) حذف آب‌بردایه از مرحله گرفته‌شده تا زمان برداشت (با ظهور 50% برگ در)، حذف آب‌بردایه از مرحله سبب و گچ‌بندی تا زمان برداشت (با ظهور 50% برگ در) و گچ‌بندی کامل بر پایه خاک‌سنجی کیه به بود (این زمان سبب‌های آن، زمان گچ‌بندی حداکثر 4 روز طول می‌برد.) نسبت به کود دامی داشته است (16 و 17). همچنین مشاهده
برهنة شکست نش خشکی انتهایی فصل و مصرف کودهای آلی بر عملکرد...:

جدول 1. ویژگی‌های فیزیکی و شیمیایی خاک مزرعه

<table>
<thead>
<tr>
<th>شیمیایی خاک</th>
<th>FC</th>
<th>ماده آلی</th>
<th>EC<sub>e</sub></th>
<th>pH<sub>e</sub></th>
<th>فسفر</th>
<th>نیتروژن</th>
<th>عمق تهیه برداری (سمتی هم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوم رسمی</td>
<td>10</td>
<td>0/59</td>
<td>8/77</td>
<td>6/23</td>
<td>4/36</td>
<td>0/35</td>
<td>138/34</td>
</tr>
</tbody>
</table>

کشید). البته جهت حلولگیری از اثر بارندگی های فصلی و اعمال
قطع آبایی، از پیش‌هبای پلاستیکی استفاده گردید. تغییرات
دما و میانگین بارندگی محل آزمایش در فصل رشد گندم در
سال زراعی 83-84 در جدول 2 ارائه شده است.

تیمارهای فرعي شامل 4 نوع کود مختلف شامل کود
شیمیایی (NPK (کود پایدار (M) و کود
دبی مخلوط با کود زستی (MB. ترکیب کود شیمیایی
(براسعر منطقه) به‌صورت 140 کیلوگرم در هکتار
نیتروژن خالص. 150 کیلوگرم در هکتار سه نیم سعت تریب و
150 کیلوگرم در هکتار سولفات پیام بود که با کولپیاکو با
صاصع غلاف‌کننده. کود بنا به یک سطحی از لایه گرفته
مختلف از باکتری‌های از آورکتیک و آرسپیریپولوم و باکتری‌های
محکر رشد می‌باشد که باعث جذب نیتروژن خاک و توسط گیاه
می‌گردد. به میزان بیش‌تر در هکتار و کود بارور
(بناک‌ری‌های موجود در آن حاوی باکتری‌هایی از جنس
اسبیلوس و سودوموناس که باعث گاز نیتروژن خاک و توسط
گیاه می‌شود) به میزان بیش‌تر کیلو گرم در هکتار مصرف گردید.
(براسعر محسوب روز کود. کود دامی سردر استفاده، کود
گاوی بودند به میزان 20 تن در هکدار (عرف منطقه) بوده که
توسط کولپیاکو با حاکم مخلوط غراف، از هدروژن نیتروژن
آن (به‌صورت NO₃-) جلوگیری شد. کود تلئیفی (دبی و کود
زستی) نیز شمار کود گردن (10 تن در هکتار) + کود
نیتروژنی (50 لیتر در هکتار) + کود بارور (150 کیلو در
هکتار) بوده. هر کیلو فرعی هب طول 2 متر و عرض 1/6 متر بود
و 8 خط کاشت داشت. فاصله بین کرت‌های اصلی 2 متر و
بین کرت‌های فرعی 1/5 متر در نظر گرفته شد. رقم جمیزان در
تاریخ 10 آذر ماه به روش عشکه کاری با دست و با تراکم

نتایج و بحث

نتایج حاصل از تجربیات این مطالعه نشان داد که تنش خشکی و
سیستم‌های کودی بر عملکرد دانه و عملکرد بیولوژیک در
سطح 7/5 و اثر سیستم کودی بر نشاک برداشت در سطح
مثبت دارند. همچنین اثر مقایسه این دو عامل بر عملکرد دانه
و عملکرد بیولوژیک در سطح 5/0 معنی‌دار بررسی شد (جدول 3).
به‌طور کل عملکرد عملکرد استریه بارور 35 کیلوگرم در
بیشترین عملکرد در تهیه آب‌پذیری کامل 35 کیلوگرم در
به‌طور کل عملکرد عملکرد استریه بارور 35 کیلوگرم در

سیستم‌های کودی بر عملکرد دانه و عملکرد بیولوژیک در
سطح 7/5 و اثر سیستم کودی بر نشاک برداشت در سطح
مثبت دارند. همچنین اثر مقایسه این دو عامل بر عملکرد دانه
و عملکرد بیولوژیک در سطح 5/0 معنی‌دار بررسی شد (جدول 3).
به‌طور کل عملکرد عملکرد استریه بارور 35 کیلوگرم در
بیشترین عملکرد در تهیه آب‌پذیری کامل 35 کیلوگرم در

محدودیت آب از طریق کاهش طول مدت پر شدن دانه و
سرعت انتقال مواد فتوستاتیکی از منبع (قسمت‌های فتوستاتینه
گیاهی) به سمت مقابل (دانه)، تقضای تعادل دانه در مسبقه و
وزن هزار دانه را با دیپال داشت که موجب کاهش عملکرد دانه
گیاه گردید. همچنین هرچه میزان تنش خشکی افزایش یافت،
اصل زمان کاهش از گیاه در طول دوره رشد پیشین شد و در اواخر
جدول 2. مشخصات هوشمندی منطقه مورد آزمایش در سال زراعی 1388-89

<table>
<thead>
<tr>
<th>ماه</th>
<th>پرازامتر</th>
<th>تعداد</th>
<th>ماه</th>
<th>پرازامتر</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>بهمن</td>
<td>10/33</td>
<td>2</td>
<td>بهمن</td>
<td>10/24</td>
</tr>
<tr>
<td>2</td>
<td>بهمن</td>
<td>10/28</td>
<td>3</td>
<td>بهمن</td>
<td>10/18</td>
</tr>
<tr>
<td>3</td>
<td>بهمن</td>
<td>10/38</td>
<td>4</td>
<td>بهمن</td>
<td>10/12</td>
</tr>
<tr>
<td>4</td>
<td>بهمن</td>
<td>10/38</td>
<td>5</td>
<td>بهمن</td>
<td>10/21</td>
</tr>
<tr>
<td>5</td>
<td>بهمن</td>
<td>10/38</td>
<td>6</td>
<td>بهمن</td>
<td>10/24</td>
</tr>
<tr>
<td>6</td>
<td>بهمن</td>
<td>10/38</td>
<td>7</td>
<td>بهمن</td>
<td>10/27</td>
</tr>
<tr>
<td>7</td>
<td>بهمن</td>
<td>10/38</td>
<td>8</td>
<td>بهمن</td>
<td>10/28</td>
</tr>
<tr>
<td>8</td>
<td>بهمن</td>
<td>10/38</td>
<td>9</td>
<td>بهمن</td>
<td>10/21</td>
</tr>
<tr>
<td>9</td>
<td>بهمن</td>
<td>10/38</td>
<td>10</td>
<td>بهمن</td>
<td>10/24</td>
</tr>
<tr>
<td>10</td>
<td>بهمن</td>
<td>10/38</td>
<td>11</td>
<td>بهمن</td>
<td>10/27</td>
</tr>
<tr>
<td>11</td>
<td>بهمن</td>
<td>10/38</td>
<td>12</td>
<td>بهمن</td>
<td>10/28</td>
</tr>
</tbody>
</table>

جدول 3. تجزیه واریانس عملکرد دانه، عملکرد بیولوژیک و شاخص برداشت

<table>
<thead>
<tr>
<th>منابع</th>
<th>شاخص برداشت</th>
<th>عملکرد بیولوژیک</th>
<th>عملکرد دانه</th>
<th>تغییرات</th>
<th>درجه آزادی</th>
<th>تفاوت</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین دارایی</td>
<td>میانگین دارایی</td>
<td>میانگین دارایی</td>
<td>میانگین دارایی</td>
<td>میانگین دارایی</td>
<td>میانگین دارایی</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td></td>
</tr>
</tbody>
</table>

شکل 1. تأثیر قطع آیاپر در مراحل مختلف نمو بر عملکرد دانه گندم رقم چمن. میانگین های دارای حروف مشترک در هر ستون مطابق آزمون جکمن های دانکن در سطح 5% اختلاف معنی‌دار ندارند.
برهمشک تسنیم خشکی انتقال فصل و مصرف کودهای آن بر عملکرد...
شکل ۲. تأثیر سیستم کودک بر عملکرد دانه گندم رقم چهارم. میانگین‌های دارای حروف مشترک در هر سطح مطابق آزمون چندامتیا دانکن در سطح ۵٪ اختلاف معنی‌دار ندارند.

شکل ۳. تأثیر مقابل تیمارهای قطع آبیاری در مراحل مختلف نمو و انواع کود بر عملکرد دانه گندم رقم چهارم. میانگین‌های دارای حروف مشترک در هر سطح مطابق آزمون چندامتیا دانکن در سطح ۵٪ اختلاف معنی‌دار ندارند.

بود. احتمالاً دلیل اصلی آن تأثیر شدید خشکسال بر اجرای عملکرد زیاد بوده است. بیشترین عملکرد زیستی تحت تأثیر تیمار آبیاری کامل (۰.۴۴) برای گونه کودک در هفتم و هکتار در هفتم (۷۵۰۰ کیلوگرم در هکتار) بوده است. بیشترین عملکرد زیستی مربوط به تیمار کودک تلفیقی دامی و زیستی به میزان ۱۲۳۹۰ کیلوگرم در هکتار و کمترین آن مربوط به تیمار کودک زیستی به مقدار ۹۲۵ کیلوگرم در هکتار بوده است.

ناشی از رشد مورفولوژیک مناسب و اجرای عملکرد زیاد بوده است. بیشترین عملکرد زیستی تحت تأثیر تیمار آبیاری کامل (۰.۴۴) برای گونه کودک در هفتم و هکتار در هفتم (۷۵۰۰ کیلوگرم در هکتار) بوده است. بیشترین عملکرد زیستی مربوط به تیمار کودک تلفیقی دامی و زیستی به میزان ۱۲۳۹۰ کیلوگرم در هکتار و کمترین آن مربوط به تیمار کودک زیستی به مقدار ۹۲۵ کیلوگرم در هکتار بوده است. (شکل ۵) که با نتایج آنالیزهای همکاران (۱)، اشاره و
برهمکش تنش خشکی انتهای فصل و مصرف کودهای آهن بر عملکرد...

شکل ۴: تأثیر فلع آبیاری در مراحل مختلف نمو بر عملکرد بیولوژیک گندم رقم چمن. میانگین‌های دارای حروف مشترک در هر سطح مطابق آزمون چندان‌اندازی دانکن در سطح ۵% اختلاف معنی‌دار دارند.

شکل ۵: تأثیر سیستم کودی بر عملکرد بیولوژیک گندم رقم چمن. میانگین‌های دارای حروف مشترک در هر سطح مطابق آزمون چندان‌اندازی دانکن در سطح ۵% اختلاف معنی‌دار دارند.

تعداد سبکه مناسب و هم‌چنان تعداد دانه در سبکه و وزن هزار دانه زیاد یا بوده است. مقایسه میانگین برهمکش عملکرد زیستی نشان داد که مشترک عملکرد در شرایط آبیاری کامل مربوط به تیمار کود شیمیایی بوده که با مقایسه‌ی اختلاف معنی‌داری داشت است و با نتایج رانک و همکاران (۱۷) نیز مطابقت دارد (شکل ۶). کمترین عملکرد زیستی مربوط به تیمار کود زیستی در شرایط در دلال آبیاری در مرحله ظاهر شدن سبکه بود. در نتیجه، تأثیر زیاد رطوبت خاک در سیستم‌های مختلف همکاران (۳) و کاپیماک و همکاران (۸) مطابقت دارد. احتمالاً تلفیق بذر با بکتری‌های حل کننده فسفات و میکروگانیسم‌های تثبیت کننده نیتروژن مولکولی قادر است با بهبود شرایط خاک و جذب بیشتر عناصر غذایی موجب افزایش وزن خشک گیاه درند که با نتایج کاپیماک و همکاران (۸) و همکاران (۶) و اقبال و همکاران (۴) مطابقت دارد. پیچیدنی، تعداد سبکه و تعداد دانه بیشتر در سبکه احتمالاً باعث افزایش عملکرد زیستی در تیمار کودهای شیمیایی گردیده است. دلیل افزایش عملکرد زیستی در کودهای دامی مخلوط با کود زیستی تعداد پنج‌نفره.
شکل 6: تأثیر متقابل تیمارهای فطق آبیاری در مرحله مختلف نمو و انواع کود بر عملکرد بیولوژیک گندم رقم جمی. میانگین‌های دارای حروف مشترک در هر ستون مطابق آزمون چنداناتبای دانکن در سطح ۵/۰ اختلاف معنی‌دار دارند.

شکل ۷: تأثیر سبیل‌های مختلف کودی بر شاخص برداشت. میانگین‌های دارای حروف مشترک در هر ستون مطابق آزمون چنداناتبای دانکن در سطح ۵/۰ اختلاف معنی‌دار دارند.

کودی بر عملکرد زیستی می‌باشد. تولید ماده خشک در سبیل‌های کودی با افزایش کاهش آبیاری کاهش یافته و این کاهش با شدت تئب کاهش بیشتری نشان داد. وی‌شاند کاهش عملکرد در تیمار تلفیقی (کود دامی همه‌رگ کود زیستی) کمتر بود. این امر می‌تواند بانگر این مسئله باشد که تیمار تلفیقی بتواند مقاومت به خشکی را افزایش دهد.

شاخص برداشت دارای یک حداکثر خود ندیمیک شده است. لذا حفظ شاخص برداشت در شرایط کمبود آب مهم‌ترین بحرانی دارد. بنابراین شاخص برداشت عمل‌الا ثابت است. زیرا همان‌طور که در نتایج نشان داده شد، کاهش در حاصل منجر به کاهش قرار گرفته که باعث شد که حاصل افزایش کودی باعث شاخص برداشت بیشتر شود.

نتش رطوبتی باعث کاهش عملکرد دانه می‌شود، و زن خشکی کل نیز کم می‌شود. بنابراین افزایش فطق آبیاری بر شاخص برداشت معنی‌دار نگردید. بررسی مقایسه میانگین‌های تیمارهای کودی نشان داد که بیشترین مقدار شاخص برداشت در این آزمایش در تیمار کود دامی مخلوط با کود زیستی به میزان ۳۱/۳۵ و کمترین مقدار در تیمار کود زیستی به میزان ۳۱/۳۵ حاصل شد. نتایج این پژوهش نشان می‌دهد که حاصل افزایش کودی باعث شاخص برداشت بیشتر شود.

واکنش گیاهان زراعی به حداکثر خود ندیمیک شده است. لذا حفظ شاخص برداشت در شرایط کمبود آب مهم‌ترین بحرانی دارد. بنابراین شاخص برداشت عمل‌الا ثابت است. زیرا همان‌طور که در نتایج نشان داده شد، کاهش در حاصل منجر به کاهش قرار گرفته که باعث شد که حاصل افزایش کودی باعث شاخص برداشت بیشتر شود.
نتایج گیری

نتایج موضوع بیان کننده آن است که هر کدام از مراحل رشد کندم از نظر واکنش به آب از حساسیت زیادی برخوردار بوده و خطر موتور بر عملکرد و شاخص‌های آن تأثیر می‌گذارد و لی می‌توان با تطبیق ارزوی و استفاده از کودهای آلی و بیولوژیک شرایط را برای عملکرد ایجاد آن در وضعیت نامناسب تأمین آب بهبود بخشید.

منابع مورد استفاده

