پیشنهادی انتقال زن به ارقام گلابی (Pyrus communis L.) با استفاده از gus زن گزارشگر

سوده دشتی، علی اکبر حبیبی، حمید عبدالهی، محمد جمی ی و مريم جعفرخانی کرمانی

(تاریخ دریافت: 20/05/2021; تاریخ پذیرش: 20/01/2022)

چکیده
امروزه استفاده از روش‌های مهندسی زنگیک توانسته است ضمن کوتاه‌کردن دوره طولانی اصلاح درختان میوه، این برنامه‌ها را هدف‌اند. Agrobacterium tumefaciens کنن. منظور از احراز این حقیقت، پیشنهادی و بررسی عوامل مؤثر بر انتقال زن با استفاده از گلابی پارلنت (Harrow Delight) و هرودیلیت (Bartlett) معرفی شده است. به منابع راستا، دو ریزنمون گرگی و مریسوم جوانه‌ای با استفاده از نتایج مشابه و نتیجه‌گیری‌های نگرانی برای پاسیوپن جوانه‌ای تراپیکانت بوده و به نتیجه‌گیری پاسیوپن جوانه‌ای تراپیکانت بوده است. با توجه به نتایج جامع و بهینه‌سازی عوامل مؤثر بر انتقال gus و فعالیت زن در این مطالعه بررسی شاند. نتایج کلی شامل نتایج باکتری مورد استفاده در تلقیح با وی‌آپ و میزان OD600 استوارت‌گون (100 و 400 µmol) (28). پلورونیک F 68 (2.5 بر روی 0.5 سوی دیگر) بوده و میزان هکت (27.23 و 198 ساعت) استوارت‌گون. نتایج داده که روش گلابی پارلنت از نظر بازیابی و بیان زن gus موثری از روش هرودیلیت است. مهم‌ترین نتایج جلوگیری مناسب برای ریزنمون گرگی شناخته شد. نتایج پیشنهادی عوامل مؤثر بر انتقال زن در این آزمایش نشان می‌دهد در هر دو ریزنمون، استفاده از گل‌فرش کم‌کنن بر انتقال کاهش گرفت و بنابراین کاهش کمتر از وی‌آپ در نتایج داده که در هر دو ریزنمون، استفاده از 100 و 400 µmol مشاهده شد. در این مطالعه، حضور پلورونیک به عنوان یک ماده روش مشکل موثر شناخته شد. در بین مدت زمان‌های هکت، کوتاه‌ترین تیمار (24 ساعت) با بیشترین میزان انتقال زن را نشان داد. تأیید انتقال زن به زن گیاهان تراپیکانت به پاسیوپن (PCR) و آزمون شیمی سولولی GUS و واکنش زنجیره‌ای پلیمراز (Dot Blot) و مستقیم باریک نشان دادند. با توجه به این نتایج، می‌توان به استفاده از گلابی پارلنت از نظر سبک و سرعت انتقال گیاهان تراپیکانت برای کاهش زمان نشان داد. (Southern Blot)

واژه‌های کلیدی: مهندسی زنگیک، پاسیوپن، گیاهان تراپیکانت

1. پیرتریب دانشجوی سابق کارشناسی ارشد و دانشیار بیوتکولوژی کشاورزی دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علم و تحقیقات تهران
2. استادیاران پژوهشگاه بیوتکولوژی کشاورزی ایران، کرج
3. استادیار مؤسسه تحقیقات اصلاح و تهیه نهال و پاتریک، کرج
4. ahabashi@abrii.ac.ir

175
امروزه تولید ارقام متحمل به تننی‌های زندگی و غیرنی‌های از جایگاه ویژه‌ی بروخ‌زادن است. دست کاری زننیکی می‌تواند ابزاری سریع باشد که بدون نوعی عمد در ذهن یا زننیکی نماید، تولید کننی روی آن نسبت به میوه جداسازی گرددنی و نیروی تنگه و تحلیل چگونگی عملکرد این زننی را، آن را به گیاهان مدل حیوانی Nicotina tobbacum و Lycopersicon esculentum Italiana متقن کرده‌اند (11). اما به تغییر مشخص است که این گیاهان مدل بررسی‌ها به همراه میوه و ارزیابی مقاومت به این دگرباشان نمی‌باشد و می‌باشد برای بررسی‌های تکمیلی به درختان میوه متقن شوند. از مهم‌ترین نیروی نیروی گیاهانی درختان میوه داماد از جمله گلابی گیاهانی بیماری اشکب می‌باشد که در ایران برای اولین بار در سال 1387 در کرج گزارش شد (22) و تا به امروز تغییراتی آن در سال‌های اتمم‌دادی و وجود مهم‌نامه‌هایی انجام شده در اکثر مناطق ایران کارش‌های و باعث نمود که گیاهان به است (3). مشکلات زیادی در رابطه با اصلاح و سنتی درختان میوه مانند گلابی و وجود دارد که از جمله آنها می‌توان به طولانی مدت زمان بلند شدن این گیاهان اشاره کرد که بین 5 تا 7 سال طول می‌کشید از سبب دیگر، یا بدون م.selection هتروژیگوتی در این کشور اصلاح شده و باعث نمود که نهاده است. استفاده از روش‌های دوگرگیری با نوعی زننیکی مقاومت به P. assuriensis بیماری آتشک نظیر گلابی گونه کننی نسبت به برگشت ارقام به تغییرات و ظهور صفات نامطلوب نظیر کیفیت به میوه، دیفر بارده و میوه‌های کوکشانی که تأثیری بر گیاه که حذف این صفات اصلاحی گزارش نشده است (4).

از آنجایی که گلابی یکی از میزان‌های طبیعی است (2), استفاده از آن Agrobacterium tumefaciens باکتری همراه با مثبتی خلق سلاح شده جهت انتقال زنن مورد نظر به ارقام گلابی امکان‌پذیر شده است. با این وجود، انتقال
مواد و روش‌ها

الف- مواد گیاهی: سویه **Pyrus communis (L.)* به دنبال تحقیق، در رقیم گلابی **(Pyrus communis)** مورد استفاده قرار گرفت. بارندگی که از مهم‌ترین و پرکشت‌ترین نوع گلابی در دنیا به حساب می‌آید به عنوان رقم حساب به بیماری‌ها و هور دیابت به عنوان رقم متداول به بیماری‌ها. این گیاهان در محیط درون شیشه در دمای 25 درجه سلسیوس و در میخ تغییر پاته (16) براساس روش لبی و همکاران,

ب- تکنیک شدن. در این مطالعه از سویه **EHA101** با گیاهان Agrobacterium tumefaciens

: pBI121 حاوی Agrobacterium tumefaciens

: *CaMV355* و *gus* ژن بای پیش و پیشرفت مولکول گل کلمن و *nptII* با کلمن مطالعه، به عنوان ژن گزارشگر و نیز ژن نیاز با

: خانم‌هدهنه بیشین و خانم‌هدهنه به عنوان نانوگان انگیزه مقاومت به

: کانامپسین به منظور ژن انگیزه در گیاهان تراختی استفاده.

: گردیدری (شکل 1).

 ج- عوامل مورد پرسی

: **غلظت باکتری:** غلظت باکتری در هنگام تلخیج معمولاً از عواملی به شمار می‌آید که این موتان در تراختی ریزومونه‌ها بسیار مؤثر است. در این آزمایش، باکتری‌ها به همراه آنتی‌بیوتیک‌های ذکر شده نسبت به یک جفت کشت داده شد. از دو غلظت اِرگوکلروپنیوم /% و OD / میلی‌گرم در لیتر، کریوینسی بیشین و کمینه که تاکنون در پاته‌های انگیزه ژن با گلابی و سویه **EHA101** مورد آزمون کشت داده شده است. غلظت استوسترینگون: استوسترینگون ماده‌ای فنی به شمار می‌آید. از آنجایی که اِرگوکلروپنیوم با بارای ورود به گیاهان و ایجاد بیماری در آنها معمولاً به سمت زخم‌های گیاه حرکت می‌کند، به نظر می‌رسد که مواد فنی که شده از آنجا در این جدید خیلی فنی و در همین راستا در آزمایش‌ها انتقال زن معمولاً از این ماده به محیط تلخیج استفاده می‌شود. در این مطالعه، غلظت‌های مختلف استوسترینگون ۱۰۰ میکرومول و اِرگوکلروپنیوم (Pluronic) به شمار می‌آید که می‌تواند از به

: ۱۵۰ میکرومول در نظر گرفته شد.

: **روکش‌گر (Surfactant) الاستفاده از پلورونینیک F-86 به ماده‌ای (Pluronic) به شمار می‌آید که می‌تواند از به

: ۱۷۷
 şekل 1. نفضة T-DNA موردن نظر به هرمز زن gus و زن nptII

محيط انتخاب دلازی کانامایسین قادر به رشد بودن بر گره‌ها می‌باشد و به ترتیب نیاز به ۱/۵ میلی‌لیتر منتفی و در محلول رنگ‌آمیزی غرق شدن. پس از کشیدن ۲۴ ساعت، محلول رنگ‌آمیزی حذف و نگهداری در دما ۷۰/۵ ثانیه شدند.

PCR

از نمونه گیری ترایخت احتمالی انجام گرفته‌است. به منظور تأیید زن gus در زن گیاه از آغازگرهای انتخابی استفاده شده است. با استفاده از سایه‌گیری اولیه و جهت اضافه شدن واقعیت است که زن خارج از شده است و گیاهان ترایخت نیاز به رنگ را داشته باشند. آغازگرهای زن gus شامل آغازگر پیشروب GATCGCGAAACTGTGGAATT و آغازگر مکوس GATGCATCAGT TAAACGAAACTGTGGAATT یا GATGATTTATGCACGTTACGAGA1 و آغازگر بیش از در نظر گرفته شد. واکنش زنجیره‌ای پلیمرزا بی‌رنگی‌شده است. در نهایت، جریه دمایی و آغاز زنجیره‌ای پلیمرزا تحت شرایط بهینه شده با استفاده از آغازگر gus طبق برنامه حرارتی زیر انجام شد.

واشرشماری اولیه در دما ۴۹ درجه سلسیوس، ۴ دقیقه و ۲۵ درجه شد. بکی شل‌سیسوی ۳۴ درجه سلسیوس، ۵ دقیقه و ۲۵ درجه شد. بکی شل‌سیسوی ۳۴ درجه سلسیوس، ۵ دقیقه و ۲۵ درجه شد. بکی شل‌سیسوی ۳۴ درجه سلسیوس، ۵ دقیقه و ۲۵ درجه شد. بکی شل‌سیسوی ۳۴ درجه سلسیوس، ۵ دقیقه و ۲۵ درجه شد. بکی شل‌سیسوی ۳۴ درجه سلسیوس، ۵ دقیقه و ۲۵ درجه شد.

GUS

(۵) آزمون زنگ‌آمیزی

فعالیت زن gus به صورت شیمی‌سیالو بیا تغییراتی در روش جل‌سیلوگ و همکاران (۶) مورد بررسی قرار گرفت. این تغییرات شامل کاربرد ۲۰٪ منتوال برای جلوگیری از فعالیت بی‌رنگی درون‌زد کوسپیک و همکاران (۸) و کلراملینک برای جلوگیری از فعالیت ناشی از آلودگی باکتری‌ای در محلول زنگ‌آمیزی، طبق روش قره‌پا (۷) بود. از گیاه‌های که در
(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)

(PCR purification kit)

(PCR DIG probe synthesis kit)

(DIG nucleic acid detection)

(DNA)

(PCR)
جدول 1: مقایسه تاریخی بین دو رقم در گیاهان حاصل از ریزیمونه مریسمت جوانی

<table>
<thead>
<tr>
<th>رقم در گیاهان بازیا</th>
<th>شده پس از تحقیق GUS</th>
<th>رقم در گیاهان که در آزمون برنامه‌ریزی می‌شود</th>
</tr>
</thead>
<tbody>
<tr>
<td>برانت 1</td>
<td>1421 ± 3/76</td>
<td>2/3 ± 2/77</td>
</tr>
<tr>
<td>هرودیالبیت 3</td>
<td>1541 ± 4/78</td>
<td>3/5 ± 3/71</td>
</tr>
</tbody>
</table>

اعداد بینکر میانگین 4 تکرار انجم شده ± خطای استاندارد می‌باشد. میانگین‌های دارای حرف متفاوت در هر ستون تفاوت معنی‌داری در احتمال 5% طبق آزمون دانکن دارند.

جدول 2: مقایسه تاریخی بین دو رقم در گیاهان حاصل از ریزیمونه برگ

<table>
<thead>
<tr>
<th>رقم در گیاهان بازیا</th>
<th>شده پس از تحقیق GUS</th>
<th>رقم در گیاهان که در آزمون برنامه‌ریزی می‌شود</th>
</tr>
</thead>
<tbody>
<tr>
<td>برانت 1</td>
<td>1542 ± 3/65</td>
<td>3/7 ± 3/70</td>
</tr>
<tr>
<td>هرودیالبیت 3</td>
<td>172 ± 3/71</td>
<td>7/8 ± 3/70</td>
</tr>
</tbody>
</table>

اعداد بینکر میانگین 4 تکرار انجم شده ± خطای استاندارد می‌باشد. میانگین‌های دارای حرف متفاوت در هر ستون تفاوت معنی‌داری در احتمال 5% طبق آزمون دانکن دارند.

به‌سعتی آن محصول کشاورزی شده و وارد گیاه می‌شود. استرس می‌تواند در شرایط فنی با شمار می‌رود که می‌تواند در افزایش گیاهان تاریخی مؤثر باشد (15). در این مطالعه، از دو غلظت این ماده استفاده شد. در ریزیمونه جوانه‌گرانی غلظت کمتر باعث بازیا 2/37٪ گیاهان گردد و در غلظت بیشتر این میزان به 16/24٪ رسید و میزان تاریخی نیز به 7/82٪ رسید (جدول 5). در ریزیمونه برگ، غلظت بیشتر برابر با میزان تاریخی برابر با 1/17٪ شد. افزایش درصد گیاهان بازیا شده از 17/24٪ به 0/72٪ شد (جدول 6).

کاربرد پلوتیوئکس 68

پلوتیوئکس پلوترنیکس همراه با اکسید آلی این و اکسید بروپین است که به‌صورت گسترده برای جلوگیری از انتشار های هیدروپیامیک سلولهای جانوری و حشرات در بیولوژی و مورد استفاده قرار می‌گیرد (13 و 20). مکانیزم اکتیویتی پلوتیوئکس به عنوان واکنش های است که به سطح سلول می‌دهد و باعث کاهش جذب مولکول بین سلول و حبوبهای هوا در محیط اطراف می‌شود و سلولهای می توانند از حبوبهای پاره کندن دیواره در مراحل انجامی گردند.

غلظت استرس‌پریگن

به‌طور معمول، اگروکارتریکومبا شناسایی مواد فنی ناشی از زخم
جدول 3: مقایسه تاراکنی بین دو غلظت باکتری در هنگام تلخی در گیاهان حاصل از ریزپنونه مریسمت جوانه گانی

<table>
<thead>
<tr>
<th>غلظت باکتری</th>
<th>درصد گیاهان بازاز شده پس از تلخی</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.78±0.67</td>
<td>12/38/0.64a</td>
<td></td>
</tr>
<tr>
<td>6.91±0.64a</td>
<td>7/91±0.74a</td>
<td></td>
</tr>
</tbody>
</table>

احتمال 7/ طبق آزمون دانکن دارند.

جدول 4: مقایسه تاراکنی بین دو غلظت استوسیرینگون در گیاهان حاصل از ریزپنونه مریسمت جوانه گانی

<table>
<thead>
<tr>
<th>غلظت استوسیرینگون (میکرومول)</th>
<th>درصد گیاهان بازاز شده پس از تلخی</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/38±0.75a</td>
<td>6/37±1/4a</td>
<td></td>
</tr>
<tr>
<td>7/21±2/4a</td>
<td>9/16±2/4a</td>
<td></td>
</tr>
</tbody>
</table>

احتمال 7/ طبق آزمون دانکن دارند.

جدول 5: مقایسه تاراکنی بین دو غلظت استوسیرینگون در گیاهان حاصل از ریزپنونه مریسمت جوانه گانی

<table>
<thead>
<tr>
<th>غلظت استوسیرینگون (میکرومول)</th>
<th>درصد گیاهان بازاز شده پس از تلخی</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/17±0.23a</td>
<td>1/17±0.23a</td>
<td></td>
</tr>
<tr>
<td>2/92±0.78b</td>
<td>2/92±0.78b</td>
<td></td>
</tr>
</tbody>
</table>

احتمال 7/ طبق آزمون دانکن دارند.

مواد بیشتری بررسی قرار گرفته است (10). مطالعات در مورد امان بمانند در آزمایش، چنگ و همکاران (1) نشان دادند که استفاده از پلوونیک می‌تواند به افزایش گیاهان تاریکل کمک کند. اخیراً این مله به عنوان یک آنتی‌بیوتیک رشد و بیماری مخصوصی کشت سلول‌ها و بافت‌های جدید گیاه اضافه گردد و اثر آن

181
مجله تولید و فراوری محصولات زراعی و بافی / سال دوم / شماره پنجم / 1391

۱۸۲

مدت زمان هم کشتی
در این آزمایش، به مدت زمان هم کشتی مختلف مورد مطالعه قرار گرفت. بیشترین درصد بازهای در جوانه جانینی و در برگ به ترتیب ۳۱/۲۹ (۲۸/۵۲) در ۲۴ ساعت دیده شد. پس از آن ۲۲ ساعت بود که در صورت دیدن در جوانه جانینی به مقدار ۲/۳۴ و ۷/۹۶ درصد تراکمی بود (جدول ۸). در برگ این درصدها کاهش یافت، که برای بازهای ۴/۶ و ۲/۵ درصد و برای تراکمی ۴/۶ و ۲/۵ درصد بود (جدول ۱۰). در صورت دیدن در جوانه هم کشتی، به این نتیجه رسید که در صورت دیدن در جوانه جانینی در چهار روز و کاهش و هم کشتی (۹) مدته ۳ روز را برای هم کشتی انجام داده بودند. در آزمایش های انجام شده در این تحقیق نشان داد که تفاوت معنی‌داری بین این دو مدت وجود ندارد. چهار روز که در صورت دیدن در جوانه تراکمی افزوده نیز Malus×domestica Borkh کاهش زمان هم کشتی در سیب مؤثر بود (شکل ۱۹).

ژئن GUS آزمون هم کشتی
در این آزمون ژئن GUS آزمون به مدت اولیه انتقال زن گزارش شده و بینان آزمون ژئن GUS بازه نشان دهنده در صورت دیدن در جوانه هم کشتی (۹) در این مدت رشد کرده برگ صورت گرفت. شکل ۲ نشان می‌دهد که در صورت دیدن در جوانه جانینی در چهار روز و کاهش و هم کشتی (۹) نشان داد که تفاوت معنی‌داری بین این دو مدت وجود ندارد. چهار روز که در صورت دیدن در جوانه تراکمی افزوده نیز Malus×domestica Borkh کاهش زمان هم کشتی در سیب مؤثر بود (شکل ۱۹).

ب) آتالیز شیمی سلولی و مولکولی ژئن تایید گیاهان

تراکمی GUS آزمون هم کشتی
در این آزمون، ژئن GUS تا حدی تاییدی از گیاهان زبان و حذف تعدادی از آنها که ممکن است تراکمی باشد، آنالیز نشان دهنده قطعات برای ۲۱ عدد از گیاهان مقاوم از هر دو رقم که روز ۲۰ می‌باشد حاوی کانامپس رشد کرده برگ صورت گرفت. شکل ۱۵ عدد از گیاهان از منشا می‌باشد حاوی می‌باشد ۱۰ میلی‌گرم کانامپس از جوانه و نشان دهنده این آزمون گیاهان بازه شده از رزینومنه برگی تحت این آزمون
جدول 7. مقایسه تراکمیتی بین دو غلفت پلورونیک در گیاهان حاصل از ریزونونه مرسیم جوانی

<table>
<thead>
<tr>
<th>غلفت پلورونیک</th>
<th>درصد گیاهان بازرا شده پس از تلفیق</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>2/24±0/57a</td>
<td>6/50±1/18a</td>
</tr>
<tr>
<td>7/48±2/12 b</td>
<td>16/14±2/21 b</td>
<td>0/04/22</td>
</tr>
</tbody>
</table>

احتمال 5% طبق آزمون دانکن دارند.

جدول 8. مقایسه تراکمیتی بین دو غلفت پلورونیک در گیاهان حاصل از ریزونونه برگی

<table>
<thead>
<tr>
<th>غلفت پلورونیک</th>
<th>درصد گیاهان بازرا شده پس از تلفیق</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>1/13±0/25 a</td>
<td>1/13±0/25 a</td>
</tr>
<tr>
<td>2/43±0/55 b</td>
<td>2/96±0/77 b</td>
<td>0/04/22</td>
</tr>
</tbody>
</table>

احتمال 5% طبق آزمون دانکن دارند.

جدول 9. مقایسه تراکمیتی بین زمان همبستگی در گیاهان حاصل از ریزونونه مرسیم جوانی

<table>
<thead>
<tr>
<th>مدت زمان همبستگی (ساعت)</th>
<th>درصد گیاهان بازرا شده پس از تلفیق</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/31±2/45 a</td>
<td>20/31±2/80 a</td>
<td>24</td>
</tr>
<tr>
<td>4/31±1/50 b</td>
<td>1/25±2/50 b</td>
<td>72</td>
</tr>
<tr>
<td>0/86±0/20 b</td>
<td>0/46±1/50 b</td>
<td>120</td>
</tr>
</tbody>
</table>

احتمال 5% طبق آزمون دانکن دارند.

جدول 10. مقایسه تراکمیتی بین زمان همبستگی در گیاهان حاصل از ریزونونه برگی

<table>
<thead>
<tr>
<th>مدت زمان همبستگی (ساعت)</th>
<th>درصد گیاهان بازرا شده پس از تلفیق</th>
<th>درصد گیاهانی که در آزمون GUS رنگ آبی را نشان دادند</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/24±0/54 a</td>
<td>3/75±0/5 a</td>
<td>24</td>
</tr>
<tr>
<td>1/94±0/30 b</td>
<td>1/81±0/30 b</td>
<td>72</td>
</tr>
<tr>
<td>0/54±0/10 b</td>
<td>0/54±0/20 b</td>
<td>120</td>
</tr>
</tbody>
</table>

احتمال 5% طبق آزمون دانکن دارند.
شکل ۲. آزمون شیمی سلولی شناسایی بیان زن gus. فعالیت زن به وسیله سویسترا ی مورد آزمون قرار گرفت. در تصویر سمت یکی شاهد قرار دارد و سمت راست برگی از گیاه تراپیکت را نشان می‌دهد.

شکل ۳. واکنش زنجبیرهای پلیمراز برای برخی از گیاهان رشد کرده روی محیط انتمایی. ألف: پاندهای حاصل از تکahr زن gus نمونه را نشان می‌دهد. ب: همان ۹ نمونه مثبت زن gus تحت آزمون واکنش زنجبیرهای برای زن G قرار گرفته. یک چیزگرد آلوگری باکتریایی حاصل از اگروپاتریوم را از خود نشان ندادند. نمونه ۱۲ در هر دو شکل شاهد مثبت و نمونه‌های ۱۱ و ۱ به ترتیب شاهد منفی آب و گیاه غیر تراپیکت می‌باشد.

شکل ۴. بیست و یک نمونه از گیاهان حاصل از ریزمنوتیا جوانی و برگی تحت آزمون لک‌گذاری نقطه‌ای برای زن gus قرار گرفته. پلاسمید به عنوان شاهد شمیث (۰) و گیاه غیر تراپیکت به عنوان شاهد منفی (–) در نظر گرفته شد.

همر دیلاپت با توجه به نتایج آزمون لک‌گذاری نقطه‌ای صورت پذیرفت. در هر یک از گیاهان حداکثر ۲ نسخه از این زن تشخیص داده شد (شکل ۵). در ضمن، در گیاهان غیر تراپیکت قرار گرفته. شکل ۴ نشان دهنده دو گروه شدن قطعه نشان داد با استخراج برخی از این گیاهان است. آزمون لک‌گذاری DNA ساده‌تر برای دو گیاه تراپیکت از منشأ برگی دو رقم بارتنست و
بسیاری

بنر این بررسی، به‌طورکلی استفاده از غلظت‌های کم‌تری باعث

منابع مورد استفاده

