تأثیر دمای آب آبیاری در دری برشی قطره‌چکانهای ساخت ایران در آبیاری قطره‌ای

بهروز مصطفویزاده و محمد کهنوجی

چکیده
دینی و فرم مکان تحت تأثیر عوامل گوناگونی می‌جنون فشار دمای آب آبیاری، ضربیت تغییرات ساخت و گرفتنی قرار دارد. به منظور مطالعه تأثیر دمای آب آبیاری بر دینی و فرم مکان‌ها، تغییرات دینی نسبت به فشار، و تغییر ضربیت تغییرات ساخت، به سیستم آبیاری قطره‌ای آزمایش در محل کشاورزی دانشگاه کشاورزی دانشگاه صنعتی اصفهان طراحی و بررسی گردید. جوی حسابی قطره‌چکانه‌های مختلف نسبت به تغییرات دمای آب آبیاری مقایسه و نتایج بودن از جهانی نوع قطره‌چکانه‌های مختلف فرار داشته و درصد این قطره‌چکانه‌ها در آبیاری 14 درصد بود.

نتایج نشان داد که طور کلی با افزایش دمای آب آبیاری، دینی و فرم مکان‌ها به گونه‌ای خفیف تغییر می‌یابد. عوامل کیفیتی پوشش، پوشش میانی و ضربیت تغییرات کیسینی تحت تأثیر تغییرات دینی قطره‌چکانه‌ها قرار گرفت. برای مثال، قطره‌چکانه‌های مورد آزمایش، تغییرات ضربیت ساخت نسبت به دمای آب آبیاری مشابه تغییرات به طور کلی قطره‌چکانه‌ها در دمای تقریبی آب آبیاری 20 درجه سانتی‌گراد، به ترتیب برابر با 17، 13 و 22 درصد بود. به طور کلی، حسابی قطره‌چکانه‌های نوع تغییری، لوله‌های داخل خش، تغییری قطره‌چکانه‌های مورد آبیاری، طولانی مسی و جریان کننده شار به طور مفیدی، به ترتیب همکار بود. قطره‌چکانه‌های نوع تغییری، لوله‌های داخل خش و جریان کننده شار به ترتیب حسابی کمتری را نسبت به تغییرات فشار نشان داده.

واژه‌های کلیدی: آبیاری قطره‌ای، پیک، تغییرات، دمای آب آبیاری

1. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد آبیاری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
مقدمه
در دهه‌های اخیر محدودیت منابع آب برای مصرف کشاورزی از سوی سو و افزایش جمعیت از سوی دیگر، گسترش کاربرد روش‌های آب‌پذیری تحت فشار را اجتناب‌ناپذیر ساخته است. در این زمینه، روشهای آب‌پذیری فن‌آوری‌های اهمیت زیادی بر خودرود این دهه از آنها بهره‌مندی گردیده است (10، 13، 14 و 15).

آگاهی آب‌پذیری‌های دارای مراحلی از لحاظ استفاده از آب، رشد بهتر گیاهان و افزایش محصول، عملکرد زراعی، بهبود مهارت‌ها و اقدامات دیگر (1 و 2) چنان‌چه اصول کلی و مبانی علمی در طراحی در نظر گرفته شود، این روشه‌ها نتیجه‌گیری شدند که به دست آوردن سرمایه‌های نیز خواهد گردید.

عوامل سبسبی‌های مناسب فن‌آوری‌های فیزیکی، شیمیایی و بیولوژیکی، فشار، دما، آب‌پذیری و تغییرات ساختمانی، در نتیجه یک‌نواختی پیش آب را تحت تأثیر قرار می‌دهند. (17) از جمله، سولونه (17) مدلی از یک راهنمایی است که در ان دیگر فن‌آواجی‌ها به صورت تابعی از فشار کاربردی، دما، آب‌پذیری و تغییرات ساختمانی و فن‌آوری‌های فنی استفاده می‌پردازد. (17) که نتیجه آب‌پذیری‌های آب‌پذیری در تغییرات دمای آب‌پذیری در فرآیند اثر تغییرات قرار دارد. نشان می‌دهد که دمای آب در لوله‌های فرآیند آب‌پذیری اثر مورد بررسی قرار دارد. نتایج نشان دادند که در نظر گرفتگی به‌طور گسترده‌ای جریان‌های انرژی و نحوه کارآمدی مختلفی که موجب منجر به یک چکشی مختلف جریان می‌شود، تأثیر دمای آب‌پذیری روشهای فن‌آوری‌های فیزیکی و نحوه کارآمدی که نجات به دست آوردن سرمایه‌های نیز خواهد گردید.

تاکنون فن‌آوری‌هایی متعارض با دستگاه‌های طبیعی عرضه شده است و پژوهشگران زیادی (16 و 18) تأثیر دمای آب‌پذیری روشهای فن‌آوری‌های فیزیکی و نحوه کارآمدی که نجات به دست آوردن سرمایه‌های نیز خواهد گردید.

تاکنون فن‌آوری‌هایی متعارض با دستگاه‌های طبیعی عرضه شده است و پژوهشگران زیادی (16 و 18) تأثیر دمای آب‌پذیری روشهای فن‌آوری‌های فیزیکی و نحوه کارآمدی که نجات به دست آوردن سرمایه‌های نیز خواهد گردید.

با توجه به موارد فوق، دیگر فن‌آوری‌ها، و در نتیجه عملکرد هیدروالکیک سیستم آب‌پذیری فن‌آوری‌های تحت تأثیر تغییرات دمای آب ایزایی قرار می‌گیرد. از سویی، جوین در ایران این برسی‌ها برای فن‌آوری‌های دیگر ساخت اثرات انجام نگرفته است. انجام این برسی‌ها اجتناب‌ناپذیر است. بنابراین،
بیای بررسی تأثیر دماه آب آبیاری در بی خطر پرتوهایی استخوانی از آب شرب دانشگاه صنعتی اصفهان استفاده گردید. به‌منظور جلوگیری از گرفتگی فیزیکی احتمالی پرتوهایی استخوانی شد. این آب به دلیل داشتن SAR و EC خیلی پایین دارد که املاح کمی بوده که در نتیجه می‌توان از تأثیر تأمین دما و املاح پرتوهایی استخوانی کمتری به‌شمار نمود. در جدول ۱ به‌زیگی شیمیایی آب آبیاری مورد استفاده ارائه شده است.

مواد و روش‌ها
برای دست‌یابی به اهداف پژوهش، یک سیستم آبیاری فشارِ برآورده‌ای آزمایشگاهی در محول گلخانه‌های پژوهشی دانشکده کشاورزی دانشگاه صنعتی اصفهان طراحی، نصب و راه اندازی گردید. این سیستم شامل یک مخزن آب به طرفی در (۵۰/۱۵ متر مکعب، یک اکتومیپس تک فاز یا ۱۰۰ دور در دقیقه و طرفت ۵/۱۰ ایام) ۲۰ کیلو پسیوژه از جنس پلی اتیلن به قطر خارجی ۱/۴ میلی‌متر، سه ولتا فریز از جنس پلی اتیلن نرم به قطر خارجی ۲/۸ میلی‌متر و یک ولتا رزندار (دو محفظه‌ای رزندار) به عنوان ولتا فریز چهارم بود. طول هر یک از ولتاها به فریز حذف شش متر بود و ولتاها فریزی در فواصل ۲۵ سانتی‌متری از یکدیگر توسط گرم‌گیری‌های پلی اتیلن به لوله‌های اصلی متصل شده بودند. از چهار نوع پرتوهایی استخوانی ساخت ایران (شکل ۱) که عبارت بودند از طول‌سپری سیستم انتقال (In-Line long path emitter) (Gun emitter)، (اطلس). آنتنگ و ولتا (Pressure compensating emitter) چرخانده فشار استفاده گردید (Double chamber tube) رزندار.

فرش کاربردی در سیستم برای یک اتصال برای ارتفاع برای فشار ۱۰ متر انتخاب گردید که تنظیم فشار از طریق شیرکنترل و شیب‌ساز نصب شده در قسمت ورودی سیستم انتقام می‌شود. سیستم دارای چهار ولتا فریز بود که ۱۶ عضو به‌صورت هر عدد از چهار کمک از پرتوهایی استخوانی مورد آزمایش روش‌هایی برای فریز اولویت دوم و نیز در فواصل ۵×۳ سانتی‌متر یک سیستم فریزی چهارم (ولتا رزندار) برای ۱۰ سانتی‌متر بود.

هدف از پژوهش حاضر بررسی تأثیر دماه آب آبیاری بر دمای نسبی نوع پرتوهایی استخوانی از ایران (طول‌سپری سیستم انتقال)، تغییر معادله می‌باشد فشار، ضربه تغییرات سخت مخزن دما، یک طرفت صبح دمای پرتوهایی پیشگیری کریستالی و پیکنونیک برای این نوع پرتوهایی استخوانی

در دماهای مختلف آب آبیاری یا باد.
جدول 1. میانگین ویژگی‌های شیمیایی آب شرب دانشگاه صنعتی اصفهان

<table>
<thead>
<tr>
<th>هدایت الکتریکی (EC)</th>
<th>کلسیم (Ca)</th>
<th>نیتروژن</th>
<th>کلسیم (Mg)</th>
<th>مس (Zn)</th>
<th>بر متر</th>
<th>سدیم (Na)</th>
<th>نیترات (NO₃)</th>
<th>کلسیم (Ca)</th>
<th>پتاس (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/84</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

شکل 1. قطعه‌چکان‌های مورد آزمایش (A): طول‌نامه مسیر داخل خط، (B): تغییر بافت طیار خارج دسته، (C): عضو هر روزنه‌دار

\[C_v = \left(\frac{q_1^2 + q_2^2 + \ldots + q_n^2 - Nq_a^2}{N-1} \right)^{0.5} \]

[2]

که در آن:
\(C_v \) ضریب تغییرات ساخت قطعه‌چکان
\(q_1, q_2, \ldots, q_n \) مقادیر دی اندوزه‌گیری شده در هر یک از قطعه‌چکان‌های مورد آزمایش
\(q_a \) میانگین دی اندوزه‌گیری (لیتر در ساعت)
\(N \) شمار قطعه‌چکان
\(q = K_d h^a \)

[1]

که در آن:
\(q \) دی اندوزه‌گیری (لیتر در ساعت)
\(K_d \) ضریب نامت قطعه‌چکان
\(h \) بار فشاری قطعه‌چکان (متر)

\[q = m + nT \]

[3]

که در آن:
\(m \) دما آب آبیاری (درجه سانتی‌گراد)
\(n \) شمار قطعه‌چکان

\(T \)
تأثیر دمای آب ایثاری در دیپ برخی قطرچکه‌های ساخت ایران در آیا بر قطره‌ی

\[q_{RT} = q_{T20} \times \frac{n}{m} \]

که در آن:

- \(q_{RT} \) نسبت دیپ قطرچکه در دمای T به دیپ قطرچکه در
- دمای استاندارد 20 درجه سانتی‌گراد

- \(q_{T} \) دیپ قطرچکه در دمای T

\[EU = 100 \frac{q_{n}}{q_{a}} \]

که در آن:

- EU پک‌بوختی بخش قطرچکه (درصد)
- \(q_{n} \) میانگین پک بخش متوسط مقادیر دیپ قطرچکه‌ها (لیتر)

\[UCC = 1 - \frac{\sum_{i=1}^{N} |X_i - \bar{X}|}{NX} \]

که در آن:

- UCC ضریب پک‌بوختی کرستینس (اعشار)

\[EU_a = 100 \left(\frac{q_{a} + q_{x}}{2} \right) \]

که در آن:

- EUa پک‌بوختی بخش مطلی (درصد)
- \(q_{a} \) میانگین بیشتر پربین مقادیر دیپ قطرچکه‌ها (لیتر)

برای توضیح بیشتر نسبت به مواد و روش‌های مورد استفاده

در این پژوهش به منبع 3 رجوع شود.

نتایج و بحث

مقدار ضریب (Kp) و توان (m) معادله‌ای برای برای هر چهار
 نوع قطرچکه مورد بررسی می‌گردد، که تأثیر حاصله
 در جدول 2 ارائه شده است. ارقام جدول 2 نشان می‌دهد که
 مقدار X برای قطرچکه‌های نوع طولانی سیم‌داخل خش، تفکی، جیرانکنده، فشار و لوله‌های روزنه‌دار به ترتیب برای با

30
جدول ۲. ضرایب معادله دی-فشار برای قطره-چکان‌های مورد بررسی

<table>
<thead>
<tr>
<th>قطره-چکان</th>
<th>طولانی مسیر داخل خط</th>
<th>جبران کننده فشار</th>
<th>ضرایب</th>
<th>فنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/048</td>
<td>0/062</td>
<td>0/022</td>
<td>x</td>
<td>0/58</td>
</tr>
<tr>
<td>0/076</td>
<td>2/38</td>
<td>0/086</td>
<td>1/04</td>
<td>2/33</td>
</tr>
</tbody>
</table>

\(K_g \)

جدول ۳. درصد تغییرات دی قطره-چکان‌ها نسبت به درصد تغییرات فشار در دماهای آب اپاری ۲۰ درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>قطره-چکان</th>
<th>طولانی مسیر داخل خط</th>
<th>جبران کننده فشار</th>
<th>دمای درصد تغییرات فشار</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/73</td>
<td>0/052</td>
<td>0/042</td>
<td>16/86</td>
</tr>
<tr>
<td>-11/33</td>
<td>3/39</td>
<td>13/79</td>
<td>-10/87</td>
</tr>
<tr>
<td>-11/42</td>
<td>7/57</td>
<td>12/61</td>
<td>-10/73</td>
</tr>
<tr>
<td>1/40</td>
<td>1/65</td>
<td>5/43</td>
<td>-10/61</td>
</tr>
<tr>
<td>10/84</td>
<td>1/91</td>
<td>17/39</td>
<td>20/43</td>
</tr>
<tr>
<td>10/76</td>
<td>3/35</td>
<td>18/74</td>
<td>30/63</td>
</tr>
</tbody>
</table>

جدول ۴. ضریب تغییرات ساخت قطره-چکان‌ها (درصد) در دماهای مختلف آب آپاری در فشار یک اتصاف

<table>
<thead>
<tr>
<th>قطره-چکان</th>
<th>طولانی مسیر داخل خط</th>
<th>جبران کننده فشار</th>
<th>دما (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴</td>
<td>۲۲</td>
<td>۱۶</td>
<td>۱۱</td>
</tr>
<tr>
<td>۴</td>
<td>۲۲</td>
<td>۱۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>۶</td>
<td>۲۲</td>
<td>۱۶</td>
<td>۱۵</td>
</tr>
<tr>
<td>۶</td>
<td>۲۲</td>
<td>۱۵</td>
<td>۱۸</td>
</tr>
<tr>
<td>۴</td>
<td>۲۲</td>
<td>۱۵</td>
<td>۱۸</td>
</tr>
<tr>
<td>۵</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۱۸</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۲۰/۵</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۲۳</td>
</tr>
<tr>
<td>۲</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۲۸</td>
</tr>
<tr>
<td>۲</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۳۱</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۳۴</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۳۴</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۳۶</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۴۲</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۵۲</td>
</tr>
<tr>
<td>۳</td>
<td>۲۲</td>
<td>۱۳</td>
<td>۶۲</td>
</tr>
</tbody>
</table>
تأثیر دماه آب آبیاری در دمی برخی استخوان‌های ساخت ایران در آب‌پر فطری‌ها

خط و لوله‌های روزنه‌دار نیز در محدوده دماهای آب آبیاری بین 11 تا 14 درجه سانتی‌گراد کمتر از 10 درصد است. که در حذف قابل قبول می‌باشد. ولی این ضریب برای قطر‌داران فنگی در حد تمام‌ساز، و برای قطر‌داران جیران کننده فشار در حد غیر قابل قبول است (11).

مافذیدر دیگر دماهای مختلف آب آبیاری و برای هر چهار نوع قطر‌داران مورد استفاده انداده‌گیری نمی‌گردد. نتایج نشان داد که تغییرات در قطر‌داران ها تحت تأثیر دمای آب آبیاری و نوع قطر‌داران قرار دارند، که باید با ضریب‌های پژوهشگران دیگر (12 و 18) هم‌خوانی دارد. پنبواریان بیشتر بهترین خیاپ در تغییر قطر‌داران نسبت به دمای آب آبیاری تعیین گردید، که نتایج حاصله به صورت مثال در در جدول از دیگر آب روزنه‌دار شده و دیگر روندهای محاسبه می‌باشد. با نویس و تاییز جدول ۵ شاهدها می‌باشد که حساسیت در قطر‌داران نسبت به دمای آب آبیاری در چهار نوع قطر‌داران طولانی‌سیر خیاپ شامل، تغییرهای جیران کننده فشار و لوله‌های روزنه‌دار یکسان نیست. و بیشترین حساسیت در تحت تأثیر دماه آب آبیاری مربوط به قطر‌داران نوع پژوهشگان، به علت جیران تغییر آرام می‌باشد. از مقدار متوسط فشار (5) بزرگتر باشد، حساسیت دیبه قطر‌داران به دماه آب آبیاری نیز بیشتر است. عدم این امر را می‌توان مربوط به نوع رنگ جیران در قطر‌داران دانست. زیرا هرچه مقدار متوسط و نسبت فشار (5) بزرگتر باشد، ریزی جیران در قطر‌داران آرامتر است، و هرچه مقدار x کوچک‌تر باشد، ریزی جیران در قطر‌داران افزایشتر است. هنچنین، با افزایش دماه آب آبیاری لزوم آن کاهش می‌یابد. و در رنگ جیران آرام، حساسیت دیبه قطر‌داران به لزوم و دمای آب به مرتب بیشتر از حالتی است که ریزی جیران کاملاً اشکاف باشد. در قطر‌داران های نوع جیران کننده فشار، ریزی جیران اشکافه ادامه می‌شود که در نتیجه جیران در داخل قطر‌داران بیشتر حالات

در نتیجه برخی استخوان‌های ساخت ایران در آب‌پر فطری‌ها یکسان نیست. به خصوص در قطر‌داران فنگی در حد تمام‌ساز، و برای قطر‌داران جیران کننده فشار در حد غیر قابل قبول است (11).
جدول ۵: میزان دمای دما برای قطعه‌های مورد بررسی (q)

<table>
<thead>
<tr>
<th>ضریب همبستگی</th>
<th>میزان دمای دما برای قطعه‌های مورد بررسی (q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r = 0.9118</td>
<td>طولانی مسیر داخل خانه (q) = 0.118 T + 7/14</td>
</tr>
<tr>
<td>r = 0.9568</td>
<td>تغییر (q) = 0.027 T + 1/100</td>
</tr>
<tr>
<td>r = 0.9335</td>
<td>حسیر کننده فشار (q) = 0.089 T + 0.930</td>
</tr>
<tr>
<td>r = 0.9542</td>
<td>لوله روزنه‌دار (q) = 0.09 T + 0.001</td>
</tr>
</tbody>
</table>

جدول ۶: ضرایب تصحیح دما برای قطعه‌های مورد بررسی نسبت به دمای ۲۰ درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>لوله روزنه‌دار</th>
<th>جنرال کننده فشار</th>
<th>تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>0/925</td>
<td>0/605</td>
<td>0/895</td>
</tr>
<tr>
<td>۱۰</td>
<td>0/950</td>
<td>0/630</td>
<td>0/920</td>
</tr>
<tr>
<td>۱۵</td>
<td>0/975</td>
<td>0/655</td>
<td>0/945</td>
</tr>
<tr>
<td>۲۰</td>
<td>1/000</td>
<td>0/675</td>
<td>0/965</td>
</tr>
<tr>
<td>۲۵</td>
<td>1/025</td>
<td>0/695</td>
<td>0/985</td>
</tr>
<tr>
<td>۳۰</td>
<td>1/050</td>
<td>0/715</td>
<td>1/000</td>
</tr>
<tr>
<td>۴۰</td>
<td>1/075</td>
<td>0/740</td>
<td>1/000</td>
</tr>
<tr>
<td>۴۵</td>
<td>1/100</td>
<td>0/755</td>
<td>1/000</td>
</tr>
</tbody>
</table>

آب کاربردی خواهند داشت. همان‌گونه که از جدول ۷ بررسی می‌آید، برای تمامی دماهای آب آپاریزی و قطعه‌های مورد بررسی، مقادیر ضریب یکنواختی کریستینس (UCC) در دماهای مختلف آب آپاریزی، و برای هر چهار نوع قطعه‌چکان نیز محاسبه‌گردیده که نتایج حاصله در جدول ۷ آورده شده است.

مقداری ضریب یکنواختی کریستینس (UCC) برای هر چهار نوع قطعه‌چکان محاسبه‌گردیده که نتایج حاصله در جدول ۷ آورده شده است. اگر ضریب یکنواختی کریستینس قطعه‌چکان یازدهم (یا بیشتر) تغییرات دی این دماهای آب آپاریزی یکنواختی پخش مطلع قطعه‌چکان با تغییرات دی این دماهای آب آپاریزی
تاثیر دماي آب ایباری در دي بر هم قطعه‌گرانه‌بندی ساخت ايران در آييری قطعه‌گرانه

جدول 7. پک‌گداشتی با پک‌گداشتی برای (EU)، ضریب پک‌گداشتی کریستیانسن (UCC)، ضریب پک‌گداشتی برای (EU)، ضریب پک‌گداشتی کریستیانسن (UCC) و تغییرات دمای (q_v) برای

<table>
<thead>
<tr>
<th>دمای (°C)</th>
<th>EU</th>
<th>UCC</th>
<th>EU_a</th>
<th>q_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>12</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>13</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>14</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>15</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>16</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>17</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>18</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>19</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>20</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>22</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>23</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>25</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>27</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>28</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>29</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>30</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>31</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>32</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>33</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>34</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>35</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>36</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>37</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>38</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>39</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>40</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
</tbody>
</table>

تغییرات دمای قطعه‌گرانه‌ها (q_v)، که از تقسیم اختلاف دمای جدید با دمای حداکثر بر دمای حداکثر محاسبه شده، برای دماهای مختلف آب ایباری و برای هر چهار نوع قطعه‌گرانه محاسبه گردیده که نتایج آن در جدول 7 گزارش شده است. با نوشت‌بندی ارقام این جدول نيز دیده ميشود كه با طور كلي تغییرات دمای قطعه‌گرانه‌ها تحت تأثیر سطح دماي آب ایباری و نوع قطعه‌گرانه‌ها محدود می‌باشد.
جدول 8 اثر قطع‌چکان بر دیپمتوسط

<table>
<thead>
<tr>
<th>قطع‌چکان</th>
<th>دیپ (التر در ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تغییری</td>
<td>۳/۶۵</td>
</tr>
<tr>
<td>طولانی مسیر داخل خش</td>
<td>۳/۰۴</td>
</tr>
<tr>
<td>جبران‌کننده فشار</td>
<td>۳/۷۰۰</td>
</tr>
<tr>
<td>لوله و روغن‌دار</td>
<td>۳/۳۱</td>
</tr>
</tbody>
</table>

۱ اعداد در سطح ۵ دلیل احتمال معنی‌دار نمی‌باشد.

احتمال نیچه درصد، و برای فشار یک تماس به‌روز می‌گردد.

ارقام ارائه شده در جدول ۸ میانگین دیپ هر قطع‌چکان برای دمای مختلف آب آبیاری ممکن است.

۱۰ میانگین ارقام مربوط به قطع‌چکان‌های مختلف است.

جدول ۸ نشان می‌دهد که میانگین دیپ هر چهار نوع قطع‌چکان مورد بررسی با هم اختلاف معنی‌دار دارد. جدول ۹ نشان می‌دهد که دیپ‌های اندازه‌گیری شده در تیم‌های مختلف دام آب آبیاری، بیشتر در قطع‌چکان نوع تغییری دارد. مشاهده می‌کنید که علت آن بالا بودن توان معادله دیپ فشار و در نتیجه آرام‌تر بودن نوع رژیم جریان در این قطع‌چکان، در مقایسه با سه قطع‌چکان دیگر است. جدول ۱۰ نشان می‌دهد که دمای آب آبیاری تأثیر معنی‌دار بر پیکنوانتی بخش و ضربی پیکنوانتی کریستالین تدارد، و تغییرات دیسی بیشتر از ضربی پیکنوانتی بخش مطلوب تحت تأثیر دمای آب آب آبیاری قرار می‌گیرد.

۰ برای طراحی لوله‌های فری، نیمه اصلی و اصلی در سیستم آب آبیاری قطع‌چکان، توصیه می‌شود با استفاده از جدول ضریب صحیح می‌باشد. برای پیکنوانتی طولانی مسیر داخل خش، تغییری گرم، طولانی مسیر داخل خش نشان می‌دهد که دمای آب آبیاری بین ۲۰ تا ۲۵ درجه سانتی‌گراد است به‌عنوان احیای استفاده نمود.

پیش‌بینی‌ها

۱. برای طراحی لوله‌های فری، نیمه اصلی و اصلی در سیستم آب آبیاری قطع‌چکان، توصیه می‌شود با استفاده از جدول ضریب صحیح می‌باشد. برای پیکنوانتی طولانی مسیر داخل خش، تغییری گرم، طولانی مسیر داخل خش نشان می‌دهد که دمای آب آبیاری بین ۲۰ تا ۲۵ درجه سانتی‌گراد است به‌عنوان احیای استفاده

۰
جدول 9. اثر مقابله دمای آب ایبیری و نوع قطره‌کانه بر دمای لوله روغن‌دار و ظرف‌کانه طولانی مسیر داخل خط

<table>
<thead>
<tr>
<th>قطره‌کانه</th>
<th>ظرف‌کانه طولانی مسیر داخل خط</th>
<th>فناکی</th>
<th>جیرانکنده فشار</th>
<th>لوله روغن‌دار</th>
<th>دمای (°C)</th>
</tr>
</thead>
</table>

در هر ستون منبع‌هایی که حداقل دارای یک حرف مشابه می‌باشد اختلاف معنی‌داری ندارند.

جدول 10. اثر دمای آب ایبیاره بر یکنواختی پخش (EU)، مرتبه یکنواختی کربنیلاس (UCC)، ضریب یکنواختی پخش مطلق (EU)، تغییرات دمای (qv) در فشار بر اثر اتصاف.

<table>
<thead>
<tr>
<th>qv</th>
<th>EUa</th>
<th>UCC</th>
<th>EU</th>
<th>EU (°C) دمای</th>
<th>EU (°C) دمای</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>11</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>13</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>15</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>18</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>20</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>22</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>24</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>26</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>28</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>30</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>32</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>34</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>36</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>38</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>40</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>42</td>
</tr>
<tr>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>0/2700</td>
<td>44</td>
</tr>
</tbody>
</table>

در هر ستون منبع‌هایی که حداقل دارای یک حرف مشابه می‌باشد اختلاف معنی‌داری ندارند.
منابع مورد استفاده

1. تیمور احمدی، م. خ. ض. 1371. آبیاری قطره‌ای، انتشارات دانشگاه مازندران.
2. علیزاده، م. خ. 1371. اصول و عملیات آبیاری قطره‌ای. انتشارات آستان قدس رضوی.
3. کهانچی، م. خ. 1378. تأثیر درجه حرارت آب آبیاری بر دنیا چکانده‌ها در سیستم آبیاری قطره‌ای. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
4. مؤیدی نیا، خ. 1377. تأثیر ترکیبات شیمیایی مختلف آب آبیاری بر گردن کنارها در آبیاری قطره‌ای. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.