تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت

عبدالمجید رونقی، محمدضااچاکرالحسینی و تجفعی کریمیان

چکیده
فسفر و آهن از عناصر غذایی ضروری گیاهاند. در خاک‌های آمکن ایران، به دلیل نرخ‌هایی کم گیاهان، و نیز ب-هاشماکی، قابلیت استفاده آهن کم می‌باشد. همچنین، ظرفیت بیش از نیاز کودهای فسفردار ممکن است قابلیت استفاده آهن را کاهش دهد. هدف این بررسی ارزیابی گلخانهای تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت (Zea mays L.) بود. تیمارها شامل پنج سطح فسفر (۰، ۱۰، ۲۰، ۴۰ و ۱۲۰ میلی‌گرم در کیلوگرم از منبع مسکرات آهن) به صورت فاکتوریل در پنج تکرار بود. گیاهان به مدت هشت هفته در پیک خاک رشد کردند. نتایج نشان داد که کاربرد فسفر تا سطح ۴۰ میلی‌گرم در کیلوگرم موجب افزایش وزن خشک قسمت میوه‌گردنی غلظت و جذب کل فسفر با مصرف فسفر افزایش، ولی با کاربرد آهن کاهش یافت. کاربرد آهن تا سطح پنج میلی‌گرم در کیلوگرم، وزن خشک را افزایش، ولی در سطح بالاتر آن را کاهش داد. غلظت و جذب کل آهن با کاربرد آهن افزایش، ولی با کاربرد فسفر کاهش یافت. با مصرف فسفر، غلظت روی و سر در گیاه به طور معنی‌داری کاهش پیدا کرد. غلظت مغنیز در سطح ۴۰ میلی‌گرم فسفر در کیلوگرم افزایش، ولی در سطح بالاتر کاهش یافت. کاربرد آهن غلظت روزی و مگنزی می‌تواند در سطح هوا در ذرت کاهش داد، ولی تاثیری بر غلظت سر نداشت.

واژه‌های کلیدی: فسفر، آهن، تغذیه گیاه، ذرت، کرتینه کلسیم، ب-هاشما

1. به ترتیب استادیار، دانشجوی سابق کارشناسی ارشد و استاد خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز
گزارش دانشگاهی که در پ-هاش پیشتر از ۷۵ آهن محصول در خاک به تصفیه فریک تبدیل شده، که در شرایطی آبیایی یا قابلایی غیر محصولی باشد، در تریبو فریک است منجر به کمبود آهن در محصولات کشاورزی شود.

لیپسی و شواب (۳۱) نشان داده که کاهش کمبود آهن در یک خاک آهکی یا FeDTPA و FeEDDDHA مؤثرتر از FeEDDDHA به ۵۸۸ مولیلوله فریک محلول Fe۳+ Feۢ
شیمیایی خاک در جدول ۱ نشان داده شده است.

از آمیاژ در شرایط گلخانه‌ای (میانگین درجه حرارت روز و شب به ترتیب ۲۴ و ۱۴ درجه سانتی‌گراد و میانگین شدت نور ۵۵۰۰۰۰ لوس) به صورت فکتوری و در مراحل طرح کامل تصادفی با چهار تکرار انجام شد. تیمارهای مورد استفاده عبارت بودند از پنج سطح فسفر (صفر، ۱۰۰، ۲۰۰ و ۴۰۰ میلی‌گرم فسفر در کیلوگرم خاک) و چهار سطح آهن (صفر، ۵۰، ۱۰۰ و ۵۰۰ میلی‌گرم آهن در کیلوگرم خاک).

فسفر از میکر و دی‌هیدروفلورات (KH₂PO₄) ۱۹۸۹ به آن مصرف کردن. میزان مورد استفاده یکی از کشت (FeEDDHA) از آنجایی که خاک افزوده شد. از مقدار ۵۰ میلی‌گرم در کیلوگرم خاک از کشت از منبع فسفر به کمک تیمارها اضافه کردند. فسفر، آهن و از به صورت مخلوط به کیلوگرم از خاک مورد آزمایش کیسه‌های پلاستیکی افزوده و مسیپا چوبی به به کمک مزرعه رسانده شد.

پس از کاشت رطوبت خاک موجود در داخل کیسه‌های پلاستیکی کاملاً محیط و مسیپا به کمک گلدان‌های به کیلوگرمی منتفی گردید. پنج دانه درخت، رسم بسیار کراس ۲۰۰۰ در عمق ۳–۴ سانتی‌متری از سطح خاک کاشته شد. حدود دو هفته پس از کاشت، شمار بونه‌های آن کار داده شد. ایپارازی گلدان‌ها در طول رشد پایین تر شدند، هر یک از مزرعه میزان گلدان‌ها در حد انتظار مزرعه صورت گرفت.

پس از هشتم هفته، گیاهان از محل طوفان به دنیای سطح خاک (قطع و پس از شش ماه) در آن به دام افتاده ۲۵ درجه سانتی‌گراد. همگام با وزن نمونه‌ها ثابت شدند. خشکی و نمونه‌های گیاهان پس از توزیع به واسطه آسیاب برقی پودر گردیدند. برای تجزیه گیاهان، یک گرم نمونه در خاک فسفر اکثریکی در دمای ۵۰ درجه سانتی‌گراد خاک‌سنج شده و مسیپا بین مایع‌ملی امید کلریدیک در نرم‌الب به آن افزوده گردید. سپس نمونه جلب شده از کاغذ‌سافو و انتهای ۵۲ غیرو داده شد.
جدول ۱. بررسی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>مقدار</th>
<th>ویژگی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰</td>
<td>شن (درصد)</td>
</tr>
<tr>
<td>۴۶</td>
<td>سیلت (درصد)</td>
</tr>
<tr>
<td>۲۴</td>
<td>رس (درصد)</td>
</tr>
<tr>
<td>۰۵</td>
<td>بافت</td>
</tr>
<tr>
<td>۰/۹</td>
<td>ب-هاش (خمیر اشباع)</td>
</tr>
<tr>
<td>۱۰/۱</td>
<td>قابلیت هدایت الکتریکی (دی‌سی ایمپانس بر متر)</td>
</tr>
<tr>
<td>۵۰/۵</td>
<td>ظرفیت تبادل کاتیونی (سانتی مول در کیلو گرم خاک)</td>
</tr>
<tr>
<td>۴/۰</td>
<td>کربنات کلسیم (درصد)</td>
</tr>
<tr>
<td>۰/۰۵</td>
<td>فسفر محلول در پی کربنات سدیم (میکرو گرم در گرم خاک)</td>
</tr>
<tr>
<td>۲۵۰</td>
<td>افزایش محلول در استان امونیوم (میکرو گرم در گرم خاک)</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>ماده آلی (درصد)</td>
</tr>
<tr>
<td>۸۲</td>
<td>بهبود محلول در دی‌تی‌بی‌ای (میکرو گرم در گرم خاک)</td>
</tr>
<tr>
<td>۹۶</td>
<td>روز محلول در دی‌تی‌بی‌ای (میکرو گرم در گرم خاک)</td>
</tr>
<tr>
<td>۵۰</td>
<td>منگنز محلول در دی‌تی‌بی‌ای (میکرو گرم در گرم خاک)</td>
</tr>
<tr>
<td>۸۷</td>
<td>مس محلول در دی‌تی‌بی‌ای (میکرو گرم در گرم خاک)</td>
</tr>
</tbody>
</table>

دانکن مقایسه شد.

تأمل و بحث

با افزایش سطوح فسفر، میانگین وزن ماده خشک از ۴/۱۹ گرم در گلدان در شاهد به ۱۰/۱۶ گرم در گلدان در سطح ۸۰ میلی‌گرم فسفر در کیلو گرم خاک رسیده، که افزایش برای برای ۲۰/۴ درصد را نسبت به شاهد نشان می‌دهد. این کاربرد سطوح بالاتر فسفر سبب کاهش وزن ماده خشک گردیده است (جدول ۲). کربنیک در (۲۲) حذف بحرانی فسفر را برای ژرت در خاک‌های آهکی استان فارس ۲/۰ میلی‌گرم در کیلو گرم خاک با روش اولین گازارش کرده‌اند. با توجه به این که غلظت فسفر در خاک مورد آزمایش ۵/۴ میلی‌گرم در کیلو گرم خاک بوده است، باسک گیاه به افزودن فسفر قابل توجه است.

و حجم محلول صاف شده با آب مقترح به ۵۰ میلی‌لیتر رسماً شد. غلظت آهرب، روز، منگنز و مس در استانه از دستگاه جذب گردید. فسفر محلول به میکرو گرم در گرم خاک تعیین گردید. فسفر و آهن قابل استفاده خاک به ترتیب به روش اولین و همکاران (۳۸) و (۳۰) عصاره‌گری، و توسط دستگاه رنگ‌سنجی و جذب اتمی اندوزه گرفته شد. باسک گیاهی، شاخص وزن خشک اندام هویبی گیاه، غلظت آهن و فسفر جذب کل آهن و فسفر در هر گلدان (حاصل ضرب وزن ماده خشک در غلظت عصر غذایی)، غلظت و جذب کل روز، منگنز و مس به وسیله روش‌های آماری و برانامه کامپیوتری MSTATC و با استفاده از آزمون F مورد تجزیه و ارائه قرار گرفته و میانگین‌ها مربوط به اثر

اصلي هر یک از عواملها برهمکنش آنها استخراج و با آزمون
جدول 2 تأثیر سطوح مختلف فسفر و آهن و برهمکش آنها بر وزن خشک اندام هوایی. غلظت و جذب کل فسفر در بهتر

<table>
<thead>
<tr>
<th>میانگین سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک اندام هوایی (گرم در گلدان)</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>8/04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>قیمت</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>8/04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>غلظت فسفر (میکرو‌گرم در گرم ماده خشک)</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>27/79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جذب کل فسفر (میلی‌گرم در گلدان)</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>3/21</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، میانگین‌هایی که در هر رنگ در یک حرف برگ، و یا میانگین‌هایی که در هر جدول در یک حرف کوچک مشخص می‌شود، طبق آزمون دانکین در سطح پنج درصد تفاوت معنی‌داری ندارد.

خاک‌ها که فسفر بومی زیاد داشتند، کمتر بوده است. کاربرد آهن تن سطح پنج میلی‌گرم در کیلوگرم خاک سبب افزایش معنی‌داره وزن ماده خشک در نتیجه افزودن فسفر به خاک افزایش می‌یابد، به طوری که وزن ماده خشک گیاه در سطوح 482 و 79 میلی‌گرم فسفر در کیلوگرم خاک به حداکثر خود رسید. ولی مقدار بریش فسفر سبب کاهش وزن ماده خشک گیاه گردید. گفته‌شده (5) نشان داد که مصرف 0.5 و 100 میلی‌گرم فسفر در کیلوگرم خاک وزن ماده خشک گیاه در یک حرف افزایش می‌یابد. با افزایش سطح فسفر، غلظت و جذب کل فسفر افزایش می‌یابد. در 120 میلی‌گرم فسفر
آنان گزارش کردن که فسفر بر اثر رقابت با سیتونات، که وظیفه آن انتقال آنها به آلوده‌ها ارائه است، سبب ساخت انتقال آنها می‌شود و می‌تواند (47) انتقال می‌تواند که کاهش داشته باشد. مقایسه میانگین بلوک‌های خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله شامل کاهش بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل توجهی به سوی نسبت به بلوک‌های طبیعی که فسفر در گیاه‌ها کاهش داده شده است. نتایج بلوک‌های خاک‌آموز در سه مرحله:

فیزیولوژی خاک‌آموز در سه مرحله: نشانه‌گذاری اثر قابل T
جدول 3 تأثیر سطح مختلف فسفر و آهن بر همکنش آنها بر غلظت و جذب کل آهن، و نسبت فسفر به آهن در ذرت

<table>
<thead>
<tr>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم ماده خشک ذرت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>غلظت آهن (میلی گرم در کیلوگرم ماده خشک ذرت)</th>
<th>جذب کل آهن (میکروگرم در گذاران)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

برای هر یک از پاسخ‌های گام‌های میانگین‌هایی که در صورت رفتار در یک حرف برگ، و میانگین‌هایی که در هر جدول در یک حرف کوچک مشترک هستند، طبق آزمون دانکر در سطح پنجم درصد تفاوت معنی‌داری ندارند.

واژه‌ای نسبت می‌تواند به معنی نبود آهن یا قروین فسفر، و کاهش آن دلیل سبب آهن و یا کمبود احتمال فسفر باشد. کاشی راد و مارشتر (28) افراشیت نسبت فسفر به آهن در ساخته‌ها در میزانی با کاهش اندازه‌ای از ریشه به ساقه می‌داشد. با افراشیت سطح فسفر، غلظت روی در گیاه کاهش یافت (جدول 4). هرچند این گاه غلظت روی در سطح 40 با 20 و 140 با 120 میلی گرم فسفر در کیلوگرم خاک نفوذی معنی‌داری

59
جدول 4. تأثیر سطوح مختلف فسفر و آهن و برهمکشن آنها بر غلفت و جذب کل روی، و نسبت فسفر به روی در ذرت

<table>
<thead>
<tr>
<th>سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/8A</td>
<td>11/27b</td>
</tr>
<tr>
<td>14/8B</td>
<td>10/84b</td>
</tr>
<tr>
<td>12/1A</td>
<td>9/55b</td>
</tr>
<tr>
<td>13/3C</td>
<td>8/55</td>
</tr>
<tr>
<td>10/0B</td>
<td>11/03</td>
</tr>
<tr>
<td>میانگین</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>غلفت روی (میلی‌گرم در کیلوگرم ماده خشک ذرت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112/3 A</td>
</tr>
<tr>
<td>111/8 A</td>
</tr>
<tr>
<td>113/8 A</td>
</tr>
<tr>
<td>101/0 B</td>
</tr>
<tr>
<td>میانگین</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جذب کل روی (میکرو‌گرم در گلدار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>320 A</td>
</tr>
<tr>
<td>259 B</td>
</tr>
<tr>
<td>249 C</td>
</tr>
<tr>
<td>186 D</td>
</tr>
<tr>
<td>میانگین</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نسبت فسفر به روی</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/44 b</td>
</tr>
<tr>
<td>10/1 f</td>
</tr>
<tr>
<td>2/5 a</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی میانگین‌هایی که در هر روز در یک حرف پودر، و یا میانگین‌هایی که در میان جدول در یک حرف کوچک مشترک هستند طبق آزمون دانکین در سطح پنج درصد قبول می‌شوند نتایج.

اختلاف فسفر مصری و وجود دارد. بیانات، وزن‌‌ها و تعداد (12) دریافتند که نسبت فسفر به روی را به‌طور صندوق با اختلال معیارهایی ناشی از اثر فسفر در پیدایش علاطم کمبود روی نشان می‌دهد. در نسبت فسفر به روی کمتر از 400 مقدار روی در گیاه کافی بوده و در نسبت‌های بالاتر از 400 گیاه دچار کمبود روی شده است. بررسی میانگین‌های غلفت و جذب کل روی و نسبت فسفر به روی در جدول 4 نشان می‌دهد که با کاربرد آهرب این مقدار این سه ویژگی در ذرت کاهش یافته است، به طوری که اورایی و همکاران (39) با بررسی اثر فسفر بر جذب روی در خاک‌های آهکی مصر گزارش نمودند که عملکرد و جذب کل روی توسط زرد با افزایش فسفر، افزایش می‌یافت. از لحاظ ذکر شده رابطه تنازی میان فسفر و روی در گیاه می‌تواند اثر رفت باشد.

کاربرد فسفر سبب افزایش معناداری نسبت فسفر به روی در تمام سطوح فسفر مصری نسبت به شاهد است. (جدول 4) همچنین، تفاوت معناداری بین این نسبت در سطوح
تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت

فسفر کاهش یافته است (جدول 5). یک بار کل منگنز نیز از روند مشابه پیوسته می‌کند. و تقابل معنی‌داری میان کلیه نیازها به شاده وجود دارد. نسبت آهن به منگنز تا سطح 2/0 میلی‌گرم فسفر در کیلوگرم خاک کاهش یافته است. ولی کاربرد 160 میلی‌گرم فسفر در کیلوگرم خاک سپس افزایش این نسبت شده است. کاهش اولیه را می‌توان به تأثیر فسفر در کاهش غلظت آهن و افزایش غلظت منگنز نسبت داد.

غلظت و جذب کل منگنز با کاهش آهن به طور معنی‌داری کاهش یافته است (جدول 5). به نحوی که بین منگنز‌های غلظت و جذب کل منگنز با یکدیگر نیز به شاهد تفاوت معنی‌داری دیده می‌شود. این نتیجه تأثیر غلظت و جذب کل منگنز در فسفر کاهش یافته است. افزودن آهن غلظت منگنز به گیاه سروگرم به طور معنی‌داری کاهش یافته است. ولی کاهش جذب کل منگنز تنها در سطح بالای آهن شایان توجه بوده است. این آن است که در اثر رفتار میان آهن و منگنز باعث اشغال محل با جذب روي ناقابل در سطح ریشه ذکر می‌گردد. مقایسه منگنز نسبت آهن به منگنز نشان می‌دهد که با افزایش سطح آهن مصرفی، این نسبت به طور معنی‌داری افزایش یافته است (جدول 5). لوسنا و همکاران (32) در یک آزمایش به صورت آبیکشت، دریافتند که نسبت آهن به منگنز پارامتر مناسبی از ارزیابی وضعیت آهن در نت‌های فرلنگی می‌باشد. این نسبت در ریشه دری لیزر بوده و دلیل آن را جمع آکسیده‌های آهن در سطح ریشه ذکر کرده‌اند. نتایج (42) نسبت آهن به منگنز 0/15 تا 0/25 را برای رشد طبیعی بسیاری از گیاهان مناسب می‌داند.

در سطح مختلف فسفر، کاربرد آهن سبب کاهش غلظت و جذب کل منگنز شده است. ولی نسبت آهن به منگنز را به صورت معنی‌داری افزایش داده است (جدول 5). با افزایش سطح فسفر، غلظت مس در گیاه به طور معنی‌داری کاهش یافته است. یک بار کل مس نسبت تا سطح 0/80 میلی‌گرم فسفر در 3 کیلوگرم خاک افزایش و سپس در سطح بالاتر کاهش یافته است (جدول 6). با افزایش سطح در میان 30-15 تا 30/5-15 سانتی‌متری، با کاربرد فسفر در سطح خاک و در عمق 15 تا 30 سانتی‌متری.
جدول 5. تأثیر سطوح مختلف فسفر و آهن و برهمکشی آنها بر غلظت و جذب کل منگنز، و نسبت آهن به منگنز در ذرت

<table>
<thead>
<tr>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک) (میلی گرم در کیلوگرم)</th>
<th>سطح آهن</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح منگنز (میلی گرم در کیلوگرم ماده حضک ذرت)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81/98A</td>
<td>74/35</td>
<td>83/71</td>
</tr>
<tr>
<td>72/71B</td>
<td>64/30</td>
<td>74/25</td>
</tr>
<tr>
<td>05/12C</td>
<td>40/50</td>
<td>51/80</td>
</tr>
<tr>
<td>63/23D</td>
<td>22/83</td>
<td>32/72</td>
</tr>
<tr>
<td>میانگین</td>
<td>42/19</td>
<td>52/01</td>
</tr>
<tr>
<td>جذب کل منگنز (میکروپری در گلدان)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64/2A</td>
<td>60/69</td>
<td>43/73</td>
</tr>
<tr>
<td>56/2B</td>
<td>42/99</td>
<td>33/21</td>
</tr>
<tr>
<td>03/1C</td>
<td>32/91</td>
<td>49/18</td>
</tr>
<tr>
<td>37/1D</td>
<td>19/9/8</td>
<td>10/31</td>
</tr>
<tr>
<td>میانگین</td>
<td>39/10</td>
<td>59/2/6</td>
</tr>
<tr>
<td>نسبت آهن به منگنز در گیاه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/64D</td>
<td>0/54</td>
<td>0/24</td>
</tr>
<tr>
<td>1/10C</td>
<td>0/11</td>
<td>0/94</td>
</tr>
<tr>
<td>1/30B</td>
<td>1/21</td>
<td>1/15</td>
</tr>
<tr>
<td>1/03A</td>
<td>1/59</td>
<td>1/93</td>
</tr>
<tr>
<td>میانگین</td>
<td>1/54</td>
<td>1/97</td>
</tr>
</tbody>
</table>

برای هر یک از پاسخ‌های گیاهی، میانگین‌های که در هر روش‌ها در هر ستون در یک حرف بزرگ، و یا میانگین‌های که در میان ستون در یک حرف کوچک مشترک هستند، طبق آزمون دانکن در سطح پنج درصد تفاوت معنی‌داری دارند.

جدول 6. تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل منگنز در ذرت

<table>
<thead>
<tr>
<th>جذب کل منگنز (میکروپری در گلدان)</th>
<th>غلظت منگنز (میلی گرم در کیلوگرم ماده حضک ذرت)</th>
<th>سطح</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>(میلی گرم در کیلوگرم خاک)</td>
<td>(میلی گرم در کیلوگرم ماده حضک ذرت)</td>
<td>فسفر</td>
<td>آهن</td>
</tr>
<tr>
<td>20/21A</td>
<td>7/22</td>
<td>0/23</td>
<td>0</td>
</tr>
<tr>
<td>60/72A</td>
<td>0/83</td>
<td>0/83</td>
<td>80</td>
</tr>
<tr>
<td>71/25A</td>
<td>0/82</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>48/93B</td>
<td>0/80</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>76/72C</td>
<td>3/99</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>48/13A</td>
<td>0/76</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50/2A</td>
<td>0/66</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>48/2A</td>
<td>0/56</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>48/3A</td>
<td>0/55</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>میانگین</td>
<td></td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

برای هر یک از پاسخ‌های گیاهی، میانگین‌های که در هر روش‌ها در هر ستون در یک حرف بزرگ مشترک می‌باشند، طبق آزمون دانکن در سطح پنج درصد تفاوت معنی‌داری نمی‌باشد.
تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت

با مصرف فسفر، غلظت آهن، روی و مس در گیاه به طور معناداری کاهش یافت. اثربخشی این ماده در قسمت هواپیمایی ذرت کاهش داد و در نتیجه مشاهده گردید که میزان مس قبل استفاده در خاک کاهش یافت.

نتیجه‌گیری

کاربرد فسفر تا سطح ۸۰ میلی‌گرم و آهن تا سطح ۵ میلی‌گرم در کلیوک‌های عالی رشد افزایش وزن ماده خشک ذرت گردید. ولی سطح بالاتر این عناصر عملکرد ماده خشک را کاهش داد.

هرچنین که تأثیر بروهک‌شناسی فسفر و آهن بر این پارامتر رشد منفی بود، اما به نظر می‌رسید نسبت غلظت فسفر به آهن در گیاه معیار مناسبی برای ارزیابی وضعیت این عناصر در ذرت باشد.

منابع مورد استفاده

1. چراغی آراوی، ع. ۱۳۷۶: تأثیر فسفر و ماده آلی بر رشد و جذب روی به سیستم گیاه جو و شکل‌های شیمیایی روی در دو خاک.
2. حقی‌بختی نیما، م. (مرجع). ۱۳۷۶: تغذیه و منابع غذایی گیاهان. انتشارات دانشگاه آزاد اسلامی.
3. سالاری‌نیا، ع. ۱۳۷۸: حاضر زیستی خاک. انتشارات دانشگاه نورن.
4. سالاری‌نیا، ع. ۱۳۷۷: انتشارات دانشگاه نورن.
5. قنبری، ع. ۱۳۷۸. تأثیر فسفر و آهن بر رشد و تغذیه گیاهان در چندین ماده خشکی، گیاه‌شناسی، دانشگاه شیراز.
7. ملوکی‌نیا، م. ۱۳۷۱: حاضر زیستی خاک و کودهای. انتشارات دانشگاه تبریز.
25. Jackson, M. L. 1975. Soil Chemical Analysis. Advanced course, Univ. of Wisconsin, Madison, WI.