بررسی امکان تولید گیاه هاپلوپید نخود (Cicer arietinum L.) به روش کشت اینوویترو

سعیدرضا وصال 1، عیدالرضا باقری 2 و عباس صفرنژاد 3

چکیده

 به منظور بررسی پاسخ آندورژئیک ارقام نخود، در رزم برونز و کرم (0.5-2.0) که به ترتیب نمونه‌هایی از تیپ‌های دمی و کابلی مستند، برای انجام کشت سپاک انتخاب شدند. سپاک‌های حاوی مصرف‌های کاهش‌هایی متخب از مصرف‌های کل تیمار شده در شرایط سرما (نمونه‌های حاصل از غلظت‌های منفعتی در تنظیم کننده رشدی تولوریدی (2 ، 3 و 3.5 میلی‌گرم در لیتر) و کم‌رکورد MS) تا 10 روز، در محیط کشت پایه MS می‌توانند کننده رشدی نخود گردد. برای پاسخ‌هایی از محیط‌های کشت MS و پیوند میزان پاشنه با ترکیبات مختلف تنظیم کننده‌های رشد و غلظت منفعتی ساکارز استفاده شد.

نتایج نشان داد که اثر تنظیم کننده‌های رشدی تولوریدی و کیتین در تولورید کالسوس به معنی‌دار است و با افزایش غلظت هرکدام از این تنظیم کننده‌ها میزان تولورید کالسوس به طور معنی‌داری کاهش یافت. محیط کشت حاوی غلظت‌های کم و تنظیم کننده‌های MS نمونه‌های حاصل از نخود نشان داد، محیط کشت هرکدام، با MS و BA با غلظت‌های کم‌رکورد MS و غلظت‌های تولوریدی نیز معنی‌داری نداشت. به طوری که گرهریز نسبت به رکورد درآمد، در کشت با غلظت‌های تولوریدی، پاسخ بهتری از غلظت‌های کلاسوس نشان داد. گرهریز با کشت‌های ساکارز اتفاق افتاد. گرهریز در کشت‌های کلاسوس به جای غلظت کشت پیش‌گرختی به روش گرهریز در محیط کشت‌های MS و NAA با غلظت‌های کم‌رکورد MS. با غلظت‌های کلاسوس این گردید که کشت‌های ساکارز در محیط کشت‌های بی‌احراز کشت‌های کلاسوس می‌توانند به‌عنوان مدل‌هایی برای کشت‌های بی‌احراز با عملکرد برتری باشد. به‌طوری که کشت‌های ساکارز با غلظت‌های کلاسوس به نخود مورد استفاده مورد نگهداری گردید.

واژه‌های کلیدی: الف: کلاسوس، بزازی، کشت سپاک، نخود، هاپلوپید

1. مربی زراعت، پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد
2. دانشیار بیوتکنولوژی، دانشگاه کشاورزی دانشگاه فردوسی مشهد
3. استادیار بیوتکنولوژی، مرکز تحقیقات منابع طبیعی و امور دام استان خراسان
مقدمه

با نظر به اهمیت نخود در میان جنوبان از لحاظ سطح زیرکشت و تولید، و نیز چگالی زراعی و تأمین منشأی از پروتئین پردازش کشور، لازم بود این مسئله در زمینه‌های اصلی، و به ویژه رفع موانع اصلی این گیاه بیش از پیش احساس می‌شود (1). امروزه تولید گیاهان هالپیلیپید از طریق کشت سپاس به عنوان یکی از انواعی از ابزارهای اصلاحی مکمل در بهبود بیماری‌های گیاهی از دیدگاه زراعی به شمار می‌رود (4، 5.1 و 15). علایم به تولید گیاه هالپیلیپید عموماً به کاربرد آنها برای گردید هالپیلیپید‌ها بیان مونتاسیون مغولب و شناسی نتایج یافته‌ها را آسان کرد و کارایی انتخاب را قوی‌تر می‌کند (5 و 18). به علاوه، با در بردار کربن شرکت کروموتروپ‌های گیاهان هالپیلیپید، تولید سریع گیاهان همبستگی ارکان ساختار خود را به منظور تولید گیاهان در این راه پیش‌برده برد (3 و 6).

به غیر از برخی پژوهش‌های پراکنده در زمینه تولید گیاهان هالپیلیپید در بلادنی‌ها، تنها مطالعات منسجم و سیستماتیک در هیچ یک از گونه‌های آن صورت نگرفته است (15). بنابراین اطلاعاتی به آنها اشاره شده است (2 و 3، 5 و 14).

گرچه تاکنون محیط بیابه MS با ترکیبات هورمونی و مواد آلی مختلف در کشت سپاس نخود به کار رفته است (2 و 3) با این حال به نظر می‌رسد تنها به‌سوی مطالعات سیستماتیک در زمینه مقدار و نوع هورمون‌ها و نیز استفاده نکردن از دیگر محیط‌های کشت بیابه، احتمالاً از دلایلی ناکامی در تولید هالپیلیپید در این گیاه بیابه. بنابراین، در این پژوهش بررسی سیستماتیک هورمون به منظور القای کالسوس و نخود براوان بارای بازیابی از گیاهان کشت شده و در هم‌نشستی و ضعیف پایه، غلظت مصرف و هورمون‌ها، و همچنین بهبود کردن شرایط کشت می‌باشد.

مواد و روش‌ها

مواد گیاهی به کار رفته در این آزمایش دو رقم نخود به نام

"دانشجویان و محققان در حوزه علوم و فنون کشاورزی و منابع طبیعی / جلد ششم / شماره دوم / تابستان 1381"
بررسی امکان تولید گیاه هاپالیورد نخود (Cicer arietinum L.) به روش کشت اینوورتو

کرج 31-6-10 و پیروز بود، که به ترتیب نماینده دو تیپ معروف کاپکی و دسی بوده و از یک بانک دانشگاه کشاورزی دانشگاه فردوسی مشهد تهیه گردیده. به منظور به دست آوردن غنچه‌های گل، بذر آن این ارقام پس از ضدعفونی بایستی ویاکس و درصد در فضای بار با جایگذاری در محله کشت شد. در با فرا رسیدن محله گل‌دهی، آن دسته از غنچه‌های گل و بساک‌هایی که در قیمت‌بندی ویاکسیک آنها در محله نمود در مطالعات استوک برای محاسبه به کمک رنگ‌آمیزی به محلول یک درصد استوکاریمی گالیا در محله نه سه‌تایی تعبیه شده بود، به فاصله هر سه روز یک بار صحیح زود جمع‌آوری و برای عامل پیش‌تیمار سرما به مدت 10 روز در دمای 4 درجه سانتی‌گراد در نیلگری کشت شده.

سپس از زمان نخود به محلول کشت شامل مونیترید از کاستاریکا به مدت 9 دقیقه دردست به سبلی استیک، در خاص قرار گرفتن و سپس در اسید کیفیت یک درصد در خاص قرار گرفتن و سپس در اسرد کیفیت یک درصد در مدت 90 دقیقه، به مدت 10 دقیقه و در بین آن سه ماه شستشو با آب 30 درجه استریل جمعا به مدت 10 دقیقه صورت گرفت. تعداد 40 بسک مناسب پس از جدا کردن از میله پرچم به وسیله سوزن و بای thíل در زیر بینی کورا و در محیط استریل به محیط‌های کشت اقلیت کالس درون هر یک از ظروف پشتی متقلب، و اطراف درب آنها به وسیله پارافیلم کماً مسدود شده و به این‌نکته رشد، با شرایط تیمار تازیک (شست نور) 4 میکروموم بر متبر مربع در نهایت و دمای 4 درجه 35 درجه سانتی‌گراد انتقال یافت.

MS محیط‌های کشت اقلیت کالس شامل محیط کشت پایه (2،4-D) و کیتین (Kinetin) بر حسب میلگرم در لیتر به شرح ذیل بود:

\[\text{M}_{1}: 2.4D(1)+\text{Kinetin}(0.1) \]
\[\text{M}_{2}: 2.4D(1)+\text{Kinetin}(0.5) \]
\[\text{M}_{3}: 2.4D(2)+\text{Kinetin}(0.1) \]
\[\text{M}_{4}: 2.4D(2)+\text{Kinetin}(0.5) \]

برای ارزیابی اقلیت کالس در تیمارهای محیط کشت اندازه‌گیری غنچه‌های کاپکی به روش کشت اینوورتو. در نهایت نتایج بدست آمده.
جدول ۱ محیط‌ها کشت به کار رفته و درصد بازیابی کالوس‌های حاصل از کشت باک

<table>
<thead>
<tr>
<th>فرمولاسیون</th>
<th>محیط</th>
<th>درصد بازیابی از کالوس‌ها</th>
<th>شمار کالوس‌های منتقل شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>MS</td>
<td>۴۰ گرم در لیتر (ساقاز + بدون هورمون)</td>
<td>۱۰</td>
</tr>
<tr>
<td>R2</td>
<td>NAA MS (۴۰ گرم در لیتر)</td>
<td>۴۰</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>BioYb + Kin (۱) + LAA (۴۰ گرم در لیتر)</td>
<td>۲۰</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>BioY + Kin (۱۰۰ گرم در لیتر)</td>
<td>۲۰</td>
<td></td>
</tr>
</tbody>
</table>

ا: غلفت هورمون‌ها بر اساس میلی‌گرم در لیتر
ب: محیط کشت بیلدز تغییر یافته (به متن مراجعه شود)

د: نتایج حاصل از تجزیه آماری اثر رقم نشان داد که میانی در رقم

تخدود مورد بررسی از نظر درصد کالوس‌زایی اختلاف

میانگین کل: ۱۷۵ درصد کالوس‌زایی در بسیاری کشت‌ها کشت شده,

نسبت به رقم کرج: ۱–۳۱ به میانگین ۱٧/۱ درصد، صرف

نظر از کالوس از خود پوست داد. در آزمایش‌های کشت

بیان، واکنش و نتیجه ترتیبی کلاس‌های شده است (۲). یکی و

گوسال (۳) در بررسی واکنش کشت باک ارقام نخود هندی,

تأثیر زنوتیب بر کشت‌زایی و افزایش کالوس را از عوامل مهم

یاد کرده. گذشته از آن به بررسی از تسره‌های مربوط به

کشت باک در گیاهان مختلف نیز تأثیر عوامل زنوتیب در

کشت باک این فرآیند کاملاً شکل اتفاق افتاد (۲) با نوع

زنوتیب کنترل می‌شود که می‌تواند در اثر تلاش آنها را به

زنوتیب‌هایی منتقل کرد که در برای کشت باک این عوامل ضعیف‌
شکل 1. تأثیر جداسازی هورمون‌های تونفوردی و کیتین ر بر درصد القای کالوس

کالوس‌زایی‌ها به نحو چشم‌گیری کاهش خواهند داد. در بیشتر آزمایش‌های مربوط به کشت بسکاک در تغذیه تیز عملاً غلظت پایین سیتوکینین، مقدار 0.2 میلی‌گرم در لیتر کیتین و 0/20 میلی‌گرم در لیتر BA استفاده شده است (۲ و ۸). گرچه حضور تونفوردی سبب القای کالوس، رشد و تقوی‌سازی سلول‌ها می‌گردد، ولی حضور کیتین به قسمی سلول‌کشکی دارد. با توجه به نتایج که حضور اکسین برا رقای قای زایی و سیتوکین برای حداکثر واکنش ضروری می‌باشد (۱۶). از نکات قابل توجه دیگر، اثر مقیاس معنی‌دار (0/01) غلظت هورمون تونفوردی و رقم بود (شکل 2).

به همین جهت، میزان واکنش دو رقمی به کار رفته در آزمایش در پرداز غلظت معینی از هورمون تونفوردی یکسان نیست و اختلاف تعدادی را نشان داده. پایه رقم ترمو بر اساس میزان هورمون تونفوردی به شدت کاهش یافته در حالی که کاهش در رقم دیگر اختلاف معنی‌داری را نشان نداده (شکل 2). از این دیدگاه، واکنش رقم پرور نسبت به رقم دیگر در مقدار

پایین هورمون تونفوردی بسیار بیشتر بود. در آزمایش‌های دیگر نیز واکنش مقیاسات ارک متفاوت می‌باشد. گزارش‌های دیگر نیز ملاحظه شده است (۲ و ۸). به عنوان مثال، بجاح و کورکال خواری در MS (۳) در کشت بسکاک نخود در محیط کشت انجام شد.
شکل ۲. تأثیر سطح هورمون توتورلوردن بر درصد اتفاق کالوس در رم نخود

شکل ۳. اثر متقابل ترکیب محیط‌های کشت هورمونی و رم بر درصد اتفاق کالوس

محیط کشت R₃ پس از گذشت چهار هفته، بازیابی ساقه (در رم پرورز) و بازیابی ریشه در رم کرک یا فراوانی پسپ درصد مشاهده شد. در مرحله سوم، به دلیل لزوم آزمایش‌های سیتلورزیک و پاسخ ضعیفتر رقم کرک ۳۱-۱۲/۳ به اتفاق کالوس، تنها ۲۰ قطعه کالوس رقم پرورز به محیط‌های کشت R₃ و R₄ انتقال یافت. که در محیط کشت R₄ یا جنین‌های قلبی و شبیری شکل در سطح کالوس‌ها بیدار، و با انتقال آنها به محیط کشت MS کشته بدون هورمون، جوانسی صورت گرفت، و دو مورد از این جنین‌ها تولدی ریشه داشته و ساقه‌های نمو دادند.

پس از کشت با ۱۰۰ گرم در لیتر (بیلندز نگیرن یافت) و افزایش غلظت ساکارز (۱۰۰ گرم در لیتر)، از عوامل اصلی در بازیابی از طریق جنین‌زایی در محیط کشت R₃ باشد. زیرا در بازیابی کالوس، انتقال یافته بیشتر بود.

واژگان:
کالوس‌های حاصل از ۹ محیط کشت مختلف هورمونی برای انجام بازیابی به محیط‌های کشت مختلف (جدول ۱) انتقال پذیرند. در این مرحله، محیط کشت یا نشانه بازیابی نخود. خلاف دیگر گزارش‌های موجود در زمینه کشت فیروز نخود. تغییر داده شد تا نشانده نیازی از بازیابی از کالوس می‌شود. بررسی‌های مشاهده‌ای نشان داد با انتقال چهار قطعه کالوس (حداقل قطر ۵ میلی‌متر) به محیط کشت R₃ (جدول ۱) پس از چهار هفته ۷۵ درصد آنها عملاً از قسمت زندگی شدن و رشد اندک را پرور دادند. با این حال، رشد آنها طی این مدت کاملاً متوقف شده و کم کم در حدود نیمی از آنها به زنگ قهوه‌ای تبدیل و سپس نکروز شدند. از ۴۰ قطره کالوس انتقال یافته به

۷۲
بررسی امکان تولید گیاه هایپولید نخود (Cicer arietinum L.) به روش کشت اینوزین

فقطات دانه‌ای همچون بوته، محیط کشت باید تغییر یافته باشد و اکتش خوبی در جنین‌زایی بازیابی از کالس‌های لقا شده از بسیار به همسان داشته‌اند. نتایج باراکه (5) بانوان در پرورش حاضر، غلظت مواد در محیط کشت بیلدرز تغییر یافته است، نتایج بازیابی جنین‌زایی این باید تغییر یافته باشد در نهایت و اکتش جنین‌زایی محیط مهمی در کنترل القا و تنجه گیاه‌های سالم بر عهده دارد. (5).

بررسی سیستم‌آموزی

در بروز سیستم‌آموزی کالس‌های افزایش بر نمونه در انتظار سلول‌ها، نمونه در شمار کروموزوم‌های زیاد کاملاً آشکار بود. به گونه‌ای که که در مینه 88 سلول قابل شمارش از نمونه‌های مختلف (نکات 4) درصد از آنها سلول‌های هایپولید درصد دوبلوپدید و قیمه آنولووید بوده، که به نتایج بررسی سیستم‌آموزی چان و فوش (9) در کالس‌های حامل از کشت بسکا (یعنی 1/28/1963) درصد تقریبی مشابه داشت، ولی با نتایج پیشنهاد و گوسل (4). مبنی بر وجود 17 درصد سلول‌های هایپولید، هم‌خوانی داشت.

احتمال تفاوت‌های زیستی در این امر تأثیر داشته است، به‌هرحال، عواملی نظیر درآمیختن هسته‌های روپی و خاشی دانه گردند، رشد میکروسپوره‌های کاهش‌نامه، و همچنین تأثیر هورمون‌های همچون تولرانت ممکن است در بررسی پلیپلودی و آنولوویدی تأثیر داشته باشد. (7).

نتایج گیری

در مجموع، نتایج نشان داد که در واکنش آندرورژن، تأثیر این بیمار بارز بوده و رقم مستند (رقم پیروز) در برابر...
必ずしも vontoz و لانگز یا هیپولیپید را در این گیاه توقعات غلظت هورمون‌ها از حساسیت برش‌دار است. به‌هر حال، نتایج مثبت مفهومی کم و در حوزه پژوهش، هورمون به‌طوری که در اینجا آمده و در قسمت‌های مختلف برازیلی برخلاف دیگر پژوهش‌های صورت گرفته، نویس می‌توان ساکارز و پروتئز یا انجام شده، اطلاعات بخشنده در اختیار قرار داد. همچنین، با اثبات حضور سلول‌های پروتئین‌آلفا در کالوپس‌های حاصل از آنتی‌بیکاکی می‌توان اندازه‌دانست که با

متابع مورد استفاده

1. باقی، ع. آ. نظامی، ع. گنجعلی و. پارسا. 1376. در اینجا و اصلاح نحود (ترجمه). انتشارات جهاد دانشگاهی مشهد.