بررسی امکان تولید گیاه هاپلواید نخود (Cicer arietinum L.) به روش کشت اینو ویترو

چکیده

به منظور بررسی پاسخ اندرورژنیک اراقام نخود، در رقم پیورز و کرچ (2011-12)، به کمک نمایندگان از تیپ های دسی و کابلی می‌باشد.

برای انجام کشت سیک انتخاب شده. سیک‌های داوی مکروسپورهای تشخیص شده در شرایط سرما (تای 10 روز)، در محیط کشت پایه MS حاوی غلظت‌های تنظیمگذار 2 0/5 میلی‌گرم در لیتر، یا کمپیوترهای 2 0/5، 0/5 میلی‌گرم در لیتر، تا کننده MS کشت‌گردیدند. برای پاساژ از، ارگیزی‌ها کشت MS کننده‌ها رشد و غلظت تنظیم‌های مختلف استفاده شد.

نتایج نشان داد که ارگیزی کننده‌ها، به ترتیب سیک‌های کم‌ایستایی در یک تیپ کالوس بی‌پردازی است. و با افزایش غلظت هرکدام از

این تنظیم کننده‌ها بیشتر از کالوس به طور معنی‌داری کاهش یافت. محیط کشت و غلظت‌های کم‌تر دو تنظیم کننده‌ها (1 و

0/5 میلی‌گرم در لیتر، به ترتیب سیک‌های کم‌ایستایی) بهترین و ارکید کالوس را در پی داشت. همچنین، افزایش غلظت

ائع‌های اولویت‌های نزدیک‌تر به پی‌دار شده، به طوری که روی به وسیله رشد در واکنش به غلظت‌های اولویت‌های نزدیک‌تر، پاسخ بهتری یافت. محیط کشت کالوس از 0/5 کشت به شکل MS کوتاه است. یافته‌های این تحقیق نشان داد که میزان چگالی کالوس به طور معنی‌داری کاهش یافته است.

از اینجا می‌توان گفت که غلظت هرکدام از

1 0 درصد ساکارز اثر افزایش

چیزی به کالوس‌های جدید از سیک در محیط کشت کلیدی غنی شده با 0/5 میلی‌گرم در لیتر کننده و 10 درصد ساکارز انتقال افتاد.

بررسی سیستان‌های جدید از سیک در محیط کشت اینو ویترو یا به انتخاب رسانا. در این رابطه، به هنگام کننده‌ها، به ترتیب کننده‌ها به خورایی از

یافته کشت با استفاده از غلظت‌های مختلف می‌تواند به‌طور کم‌ایستایی از

سیک‌های نخود را به دنبال داشته باشد. به نظر می‌رسد، تعیین فاکتورهای اصلی کالوس از مرحله الکا تا پاساژ و نیز تعیین عوامل بررسی‌های سرما در

آزمایش‌های بعدی پوان‌دن در بهبود باکتری کشت سیک در نخود سایر استفاده شود و

واژه‌های کلیدی: الکا کالوس، پاساژ، کشت سیک‌های نخود، هاپلواید

1. مریم زریع، پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد

2. دانشیار بیوتکنولوژی، دانشگاه کشاورزی دانشگاه فردوسی مشهد

3. استادیار بیوتکنولوژی، مرکز تحقیقات منابع طبیعی و امور دام استان خراسان

7
مدقته

با توجه به اهمیت نحوه در میان حیوانات از لحاظ سطح زیرکشت و تولید، و نیز چگونگی درآموزش و تأمین بخشی از پروژه مورد نیاز کشور، لزوم پژوهش در زمینه‌های اصلاحی، و به ویژه رفع موانع اصلاحی این گیاه بیش از پیش احساس می‌شود (1). امرزه تولید گیاهان هاپلوپید از طریق کشت بسیار به عنوان یکی از ابزارهای اصلاحی مکمل در بهبود بیماری از گیاهان زراعی به شمار می‌رود (5 و 6). علاوه بر این تولید گیاهان هاپلوپید عموماً به کاربرد آنها برای گردید. هاپلوپیدها بیان موتیفونی‌های مغلوب و شکف نرخ تولیدی به ویژه را آسان کرده و کارایی انتخاب را انرژی‌های می‌دهند (13 و 18). به علاوه، با دو برابر کردن شرایط کروموزوم‌های گیاهان هاپلوپید، تولید سریع و ساده‌تر گیاهان هم‌زیست‌گر در این دسته‌های مختلف گیاهان توانسته به برد (3 و 5).

به نوعی از بخش پژوهش‌های پراکنده در زمینه تولید گیاهان هاپلوپید به تقلید، تاکنون مطالعات منسجم و سیستماتیک در هیچ یک از گونه‌های آن صورت نگرفته است (15). بیان اطلاعات یا به در زمینه کشت گیاهان به عنوان بسیار گیاهان از عوامل دیگر رکود تولید هاپلوپیدی در گیاهان می‌باشد (2 و 6). به طور کلی، واکنش تبرک قبوله نسبت به نرخ زردرنگ به طریق کشت بسیار به مشکل همه‌ارته است. به‌همین دلیل به گیاهان سرعت‌مند مشهور شده‌اند. کارهای اولیه کشت بسیار گیاهان این ارتباط معنی‌دار بود. سیستم‌ها، نشانه، شبهر (3 و 9) به تولید کالوس و یا تشکیل ساکت‌های شبه حیتان شده است. افرود کالوس از Trifolium (15) موفق شد عالی با تولید گیاه یک کشت گیاهان در پونجه گیاهی به دست آورد که برخی از آنها در برخی کشور خشکی نسبت به گیاهان والد خود پس از 30 روز بر ایجاد مقاومت نشان دهد. 

68
بررسی ایمکان تولید گیاه های ویولید نخود (Cicer arietinum L.) به روش کشت اینوپتو

کرج 31-12-13 و بیروز بود، که به ترتیب نمایندگان دو طبقه معروف کالسیک و دسی بوده و از بانک دانشگاه کشاورزی دانشگاه فردوسی مشده تهیه گردیده. به منظور به دست آوردن گنجهه‌های جدید به این اکسپرس پس از ضدعفونی با سم ورباکس دو درصد، در فضای بایز و در حالی که کشت شد. فرا رسانده مراحل گل‌دهی آن دسته از گنجهه‌های کالسیک و سپاسی‌های که ویژگی‌های مورفولوژیک آنها در مراحل نمو در مطالعات سیستم‌زیکی به کمک شبکه ای با محلول یک درصد استوکارمین غلیقی در مراحل نه هسته‌های تغییر شده بوده بر فاصله هر سه روز یک بار ساده جمع آوری و برای اعمال پیش‌تیمار سرم به مدت 10 روز در دمای 4 درجه سانتی‌گراد در یخچال‌های نگهداری شدند.

برای آزمایش‌های مورفولوژیک، از کالسیک یکی از گنجهه‌های کشت شده در تنهای‌ای مقدار هورمون در نظر گرفته شد. از آن گاک لیا به مدت 90 روز و به اسید استیک خاص، قرار گرفته، سپس در اسید نتریکس یک درصد در دمای 20 درجه سانتی‌گراد به مدت 9 دقیقه محیط شدند. و در نهایت با فلزیک و استوکارمین برای مشاهده هورمون‌ها رنگ‌آمیزی شدند.

نجات داده‌ها به روش آزمایش فاکتوریل 2×3 در چارچوب طرح کاملاً تصادفی با نتیجه نکرات انجام شد. فاکتورها شامل هورمون‌های توقفی و کیتنین، به‌کمک به سطح و یا 4 رنک بودند. به منظور سپس به توزیع نمرات یک نزدیک به نمرال داده‌ها، تبدیل آکس سوئیژ انجام شد. پس از آن تجزیه آماری داده‌ها با استفاده از نرم‌افزار STATSoft و مقایسه میانگین‌ها به روش آزمون‌هندسه‌ای دانکن صورت گرفت.

نتایج و بحث

الف) کالسیک

نتایج آماری ترم در سنگ‌ها و تولید کالسیک پس از گذشت هفت روز از کشت آنها در محیط‌های کشتی بسیار مقادیر کم (M1) از هورمون توقفی و کیتنین (محیط‌های کشتی آشکار شد. و پس از گذشت 78 روز در تیمارهای مناسب توده‌های کالسیک با اندازه‌های مختلف به خوبی شکل گرفتند. بنابراین کالسیک‌های تولید شده از شیری نا کریم معمول به سیر
جدول 1. میوه‌های کشت به کار رفته و درصد بازیابی کالسوس‌های حاصل از کشت باکس

<table>
<thead>
<tr>
<th>شمار کالسوس‌های برداشت</th>
<th>درصد بازیابی از کالسوس‌های مولفه‌ای</th>
<th>میوه</th>
<th>کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>MS (30 گرم در لیتر) ساکارز + (بدون هورمون)</td>
<td>R1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>NAA MS (30 گرم در لیتر) ساکارز + BA(1/4)</td>
<td>R2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>BioYb + Kin (1) + LAA (40) ساکارز +</td>
<td>R3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>BioY + Kin (100) ساکارز +</td>
<td>R4</td>
<td></td>
</tr>
</tbody>
</table>

a: غلظت هورمون‌ها بر اساس میلی‌گرم در لیتر

ب: میوه کشت بدلیز تغییر یافته (به متن مراجعه شود)

مقدار، و از انواع کالسوس‌های فرشده و سخت بودن‌ها، که در واکنش‌هایی به بنیاد نرم و شکنندگی شده، و در برخی از واکنش‌های استخارت‌اهای گلوبولی نمی‌توان افتتاح را شبه جنبی ملاحظه گردد. و یگریگر یافته‌ها گزارش‌های دیگر در زمینه کشت باکس نتیجه‌های بین‌المللی نشان داد (2 و 8).

تأثیر زنوتیپ

نتایج حاصل از تجزیه آماری بر روی نرخ نشان داد که میان دو رقم تکرار مورد بررسی از نظر درصد کالسوس‌های اختلاف معنی‌داری (P<0.05) وجود دارد. به گونه‌ای که رقم بی‌روز با میانگین کل 176 درصد کالسوس‌زا در باکس‌های کشت شده، نسبت به رقم کری 31-32 به 11/1 درصد، صرفاً نظیر می‌باشد که کشت باکس نتیجه‌های کشت کار رفته، برتری معنی‌داری در نتیجه کالسوس از خود بروز دارد. در آزمایش‌های کشت کشت باکس نتیجه‌هایی به دنبال گفتگوی با کشت‌هایی که در نتیجه روی شکست طبیعی گزارش شده است (2). باید جاج و گوسال (3) در بررسی واکنش کشت باکس ارقام نخورده، تأثیر زنوتیپ بر کشت‌هایی و اتفاق کالسوس را از عوامل مهم بیان کرده. در این گامه سیاری از یوگونه‌های مرتب بیان کشت به باکس‌های مختلف نمی‌توان نتیجه‌ای تأثیر عوامل زنوتیک در کشت باکس در گیاه‌ها کمک کند که در نتیجه افراشته‌ها آن‌ها بایستی بررسی شوند (11).

برخی از بررسی‌ها نیز نشان دادند که باکس‌های از میان بین نیز کشت که در بررسی کشت باکس ضعیف‌تر

70
بررسی امکان تولید گیاه هفتولید نخود (Cicer arietinum L.) به روش کشت اینوتروپی به Har Chole و G54 به معنی کلمه بود. میلی گرم در لیتر تورفوردی، بین رقم 0.25 و 3.08 درصد، اختلاف معنی‌دار ویژگی‌های کشت و رقم 13/5 درصد در کالوس‌زایی مشارکت داشت. البته در نمونه‌های مختلف، هر کدام از شاخه‌های مختلف کشت و رقم بود، باعث کاهش میزان چشمه‌های کشت و رقم 40 درصد بود. در میان گرم در لیتر TGF با کاهش میزان چشمه‌های کشت و رقم 27/2 درصد بود. درصد مشابه کشت به تورفوردی 43/8 برای مبنای کشت اینوتروپی می‌باشد (شکل 2). میلی گرم در لیتر BA با کاهش میزان چشمه‌های کشت و رقم 40 درصد بود. درصد مشابه کشت به تورفوردی 43/8 برای مبنای کشت اینوتروپی می‌باشد (شکل 2). به سخن دیگر، میزان وابستگی به آزمایش‌های مختلف گروه تورفوردی و BA برای مبنای کشت اینوتروپی می‌باشد (شکل 2).
پرسی‌های مشاهده‌ای نشان داد که با انتقال چهار قطعه کالوس برسی‌های مشاهده‌ای به میان رخ داده که می‌تواند افتکاری گردد که با انتقال ایجاد می‌شود. 8.2 درصد آنها که به رشد مشاهده می‌شود، با انتقال به پروسید دیدار می‌شود که می‌تواند نشان دهد که این مدت کاملاً متوافق شده و کم کم در حدود نیمی از آنها به رنگ قهوهای تبدیل و سپس نگرده شدند. از 80 قطعه کالوس انتقال یافته به
بررسی امکان تولید گیاه هاپلواید نخود (Cicer arietinum L.) به روش کشت اینوئید

پیچولت دانه‌ی همبسته‌ی پروتئین محیط کشت بیلارد تغییری ناپذیری در محیط کشت بیلارد تغییری ناپذیری در محیط

واکنش خوبی در جنین‌زایی و بازایی از کالس‌های ماله‌ای زده از

بسکا به عمره‌ای داشته است (15). به دلیل نیازهای غذایی

متفاوت برای افزایش آندروژن و رشد جنین‌های آندرودزینیک،

محیط کشت پایه و ترکیب میادین. آن به ویژه از اینوئید آمی‌زون،

شکل مهلک در کشت و نزو گیاههای سالم بر عنوان دارد

(5). بنابراین، در پژوهش حاضر، غلظت مواد در محیط کشت

بیلارد تغییری همان‌طور با نشو و بازایی ماله‌ای نشان داشته است. همچنین، گزارش‌ها نشان می‌دهد که ساکارز به

عنوان سایه‌ای حل‌دیده و اسکران عمل کرد و در اتقای کالس و

بازایی نشان‌دهنده دارد (2) و (5). هم‌چنین، گزارش‌ها نشان می‌دهد که ساکارز به

غلظت زیاد ساکارز سبب افزایش بازایی گیاهان سبب شده است

(5).

از عوامل دیگری که احتمالاً در ترکیب جنین‌ها مؤثر بوده

است پیش‌بیمار سرمایه‌ای گرچگی در آزمایش‌های دیگر کشت

بسکا نخود تیمار سرمایه‌های نرم در طول 6 هفته یا 10 روز افزایش یافته است (15، 17 و 18). در دی ماه این تیمار به 10 روز افزایش یافته است (15، 17 و 18). در دی ماه این تیمار به 10 روز

برای افزایش کالوس‌زاپی و ترکیب جنین‌های موزیک بیش‌سازی شده

است (15، 17 و 18). در دی ماه این تیمار به 10 روز

عماکر شبه جنین را به ترتیب 30 نا 118 برای افزایش یافته (بدون پیش‌بیمار سرمایه‌ای افزایش داده است (17). بنابراین، به نظر

نتایج گیری

در مجموع، نتایج نشان داد که در واکنش آندروژن، تأثیر

ازنوتیپ بسیار بارز بوده و رقم مستند (رقم پیروز) در برابر

73
متابع مورد استفاده

1. باقری ع.، ناظمی ع.، نجفی ع. و م. پارسا. 1376. رقعت و اصلاح نخود (ترجمه). انتشارات جهاد دانشگاهی مشهد.

