بررسی تبعیض و تجزیه ضرایب مسیر صفات مرتبط با کیفیت نانوایی در لایه‌های اصلاحی،

ارقام زراعی و بومی گندم

فهیمه شاهین‌نیا، عبدالملجید رضاپی و عباس سعیدی

پیکره

بهمنظور بررسی میزان تبعیض و مطالعه همبستگی میان صفات مرتبط با کیفیت نانوایی از طریق تجزیه ضرایب مسیر، 145 زنوتیب گندم نسان مربک از 90 لایه اصلی در 55 رقم بومی و زراعی مورد آزمایش قرار گرفتند. از صفات درصد پروتئین، حجم و رسوپ زلتي، حجم رسوپ پروتئین، حجم نان، حجم نان درصد رطوبت دانه و جذب آب، به عنوان متغیرهای خاکستر سطحی برای SIDS روسوب با سختی دانه، وزن حجمی (مکتبی) حجم نان، درصد رطوبت دانه غیر مجازی مستجیب مسیر SIDS ارزیابی کیفیت نانوایی گندم‌ها استفاده شده.

صفات سختی دانه، حجم رسوپ زلتي و حجم رسوپ با SIDS به ترتیب با ضرایب تغییرات 13/01، 1/38 و 0/11 از بیشترین میزان تنومند برخوردند. نتایج تجزیه عامل‌ها برای ZNTO منتشر شده نشان داد که با توجه به تغییراتی که در تحلیل مدل‌ها در صفات برای SIDS اثر بیشتر در صفت رسوب نان دانه و حجم نان از زبان توصیف شده است. نتایج تجزیه مدل طبقه‌بندیت صفات گندم‌ها با SIDS به ترتیب سنجش و معنی‌دار برای درصد پروتئین و حجم رسوپ با SIDS با دیگر صفات مرتبط با کیفیت نانوایی گوانی داد. در نهایت، درصد پروتئین به عنوان سطح‌گذری که به عنوان مقدار متوسط در تغییرات صفات کلی دیگر در مرحله‌ای در سطح طولی که تکمیل می‌کند، درصد میان‌رده‌ها و گونه‌های دیگر در حجم نان درصد رطوبت دانه غیر مجازی مستجیب SIDS به عنوان صفت خوب‌تری در نظر قرار گرفت. در صفات از طریق درصد پروتئین بر تغییرات حجم رسوپ با SIDS می‌باشد. در تجزیه

خوشه‌های از پایا صفات کیفیت نان دانه، نوریت مولد ZNTO با ZNTO و دانه از حیث صفات مرتبط با کیفیت پروتئین در مقایسه با ZNTOهای گروه‌های دیگر (به طور عادی لایه‌های اصلاحی) بود.

واژه‌های کلیدی: نمونه‌گیری سپر، دانه‌گیری سپر، کیفیت نانوایی گندم

1. به ترتیب دانشجوی سال دانشگاه ارشد و استاد اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

2. عضو هیئت علمی بخش علوم غلات مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرج
مقدمه

از ویژگی‌های کیفی مورد نظر در برنامه‌های به‌نوعی گندم (Triticum aestivum L.) که ارزش نانوایی مؤثر بوده و بیشتر تحت تأثیر عوامل زنگی‌کاری یا می‌باشد (10 و 20). گل‌مرین پرتونیت نخست اصلی این دوره کرومین به بهبود حساسیت و خصوصیت‌های فیزیولوژیکی گونه می‌باشد. به‌عنوان است (11 و 12)، با توجه به نوع کنترل زنگی‌کاری، مصرف مشابه با کفیت آرد گندم، ارزش نانوایی صفت کیفی بهتر رقیم با حضور یک و یا دو گونه می‌باشد (13).

چند ویژگی همچون خروس شیمیایی، خروس آسیاب کردن، ویژگی‌های پخت و خروس فیزیکی خمیر در کیفیت نانوایی مؤثر بوده و حیات بهبود می‌یابند. بسیاری از نانوایی‌ها به دلیل قابلیت بی‌پرداز مشابه با کفیت آرد گندم است. به‌عنوان است (11 و 12)، با توجه به نوع کنترل زنگی‌کاری، مصرف مشابه با کفیت آرد گندم، ارزش نانوایی صفت کیفی بهتر رقیم با حضور یک و یا دو گونه می‌باشد (13).

مواد و روش‌ها

مواد غذایی

مواد گیاهی مورد ارزیابی ۱۴۵ زنگی‌کاری گندم نان شمار

Sodium Dodecyl Sulfate (SDS) (Mixograph) (Farinograph) (Alveograph) (Near-Infrared Spectroscopy) (Viscoelastic)
بررسی تنش و تجزیه ضرایب مسر صفات مرتب با کیفیت نتابی در لایه‌های

۷۹

(۱۲۳۱) CYMMIT در این اصلاح شده از مرکز تحقیقات سبیمیت (۱۲۳۱) آزمون روابط با این اتحادیه انجام

آزمون واژگان (SDS) در آزمون یک رابط خطی ۴۲ درصد و

محله ۲۰ گرم سدیم دودی سولفات در یک مواد سبیمیتی

در دمای ۲۵ درجه سانتی‌گراد تعیین گردید و اندکی گردید، ارتفاع روابط هر نمونه چهار مربیت نگهدار

تجویز و تحلیل آماری

ویژگی‌های شاهدها برای تعیین وضعیت یک‌نواختی زمین و

ازرو توصیح برای این تحقیق در تجزیه واریانس شدت، به

مظور توجه روابط داخلی میان صفات کیفی و شناخت طول

یک‌نواختی و تفسیر به‌درصد انجام شد. به علامت‌ها به روش

نجوز درصد مثبی استفاده گردید. با استفاده از روش

رگرسیون مرحله‌ای، صفات که بیش‌ترین سهم را در توجیه

تغییرات صفات کیفی داشتهند مشخص و انتخاب شدند.

همچنین، ضرایب همبستگی فنولی بین صفات کیفی محاسبه

شد. با استفاده از تجزیه و تحلیل ضرایب ممیز، آمار مستقیم و

غیرمستقیم دیگر صفات کیفی بر حجم روابط با

بررسی فار و کرفت سراجیلاج، از تجزیه خوشه‌ای به روش وارد

با استفاده از معنای طبقه‌بندی استانداردهای وارد

فلسفی، به منظور گروه‌بندی نتایج از اساس صفات کیفی

استفاده شد (۱۹). تجزیه آماری با استفاده از نرم‌افزار

ICC (International Association of Cereal Chemistry)

برای نمونه‌های زیرتیپ‌های مورد بررسی عمل کالیبراسیون

صرف گرفته (۱۸). دستگاه دارای یک سیستم کنترل استاد

که ذهن گرم را تمام آرد را تشکیل می‌دهد و برای انجام آزمایش به

گرم آرد اختیار دارد. پس از تایید همه ماده می‌توان به صد

نتایج و بحث

نتایج تجزیه واریانس برای برسی یک‌نواختی زمین نشان داد

که برای کلیه صفات کیفی تفاوت معنی‌داری بین بلک‌ها وجود

ندارد و نیازی به تصاحب صفات برای اثر بلک ناقص نیست.
برای تایپ جدول 1 در میان صفات مورد بررسی، سختی ساخته شده. پرتویان افزایش عاملی اول و دوم منجر به بهبود ارزش نانوایی خواهد شد.

نتایج رگرسیون مبتنی بر یک از صفات کیفی به عنوان متغیر ناپایدار و صفات دیگر کیفی به عنوان متغیر مستقل در جدول 3 آورده شده است. به طور کلی، در توجه تغییرات صفات کیفی از طریق رگرسیون مدل ساخته شده و دو درصد پرتویان در مراحل اول دوم رگرسیون با ضریب تیب شایع توجهی برای تغییرات صفات دیگر وارد مدل شد. در نتایج خواص کیفی گندی نیز بر قابلیت کشش خمیر، زمان فرم گردن خمیر و مقاومت آن در برابر آب فارویگرافی، عدل و الکتریکی و نگرانی هر صفحه رابط با SDS آزمون رضوی را به عنوان میزان غیر مستقیم بازگو کننده خواص فیزیکی شیب شال کشش، چسبندگی، تورم و مقاومت گلون در محیط اساسی عناوین کرد. جایگزین کردن سدیم در مولوئیک سفید (SBS) به جای آوزربوریل در روش زنی، بیشتر شدت پرتویان با کدکسک، و با دار به آرد و ایجاد یک لز پرتویان در محلول اسید لاکتیک، و در نهایت تشکیل رضوی خواهد شد. میزان رضوی به دراین در مطالعه کلیوپتید ارتباط داشته، و به کیفیت پرتویان از همبستگی زیادی برخوردار است. این عامل با توجه به نقش صفات توجه کندن درعین حال، شاخه پرتویان دانه‌مانی است. در تینی عامل، صفات درصد رطوبی دانه، دوم، دنبال آب، حجم نان و سختی دانه به همیشه وابسته. این با توجه به کیفیت حبوبات نان نشان دهنده طریق پرتویان برای جذب آب و حبوبات توسط گلون است. و به همین این افرام با بافت اندازه سخت

به دلیل جذب آب بیشتر و افزایش حجم نان کیفیت بهتری.
جدول 1. آمار توصیفی مرتبه ی صفات کیفی در زنویپی‌های مورد بررسی

<table>
<thead>
<tr>
<th>صفات</th>
<th>میانگین</th>
<th>واریانس</th>
<th>حداکثر</th>
<th>حداقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>سختی دانه</td>
<td>55/87</td>
<td>4/00</td>
<td>7/69</td>
<td>4/00</td>
</tr>
<tr>
<td>حجم رسوب زنی (میلی لیتر)</td>
<td>32/81</td>
<td>2/00</td>
<td>15/07</td>
<td>11/00</td>
</tr>
<tr>
<td>حجم رسوب با SDS (میلی لیتر)</td>
<td>35/75</td>
<td>2/00</td>
<td>15/02</td>
<td>11/00</td>
</tr>
<tr>
<td>درصد پروتئین</td>
<td>14/00</td>
<td>1/00</td>
<td>10/06</td>
<td>8/00</td>
</tr>
<tr>
<td>درصد رطوبت دانه</td>
<td>13/00</td>
<td>1/00</td>
<td>11/06</td>
<td>8/00</td>
</tr>
<tr>
<td>وزن هکتولیتر</td>
<td>94/00</td>
<td>2/00</td>
<td>78/07</td>
<td>56/00</td>
</tr>
<tr>
<td>حجم نان (میلی لیتر)</td>
<td>52/05</td>
<td>5/00</td>
<td>45/00</td>
<td>35/00</td>
</tr>
<tr>
<td>درصد جذب آب</td>
<td>8/67</td>
<td>1/00</td>
<td>61/07</td>
<td>37/01</td>
</tr>
</tbody>
</table>

1. صفات بر اساس بیشترین ضریب تنوع مرتب شده‌اند.

جدول 2. پارامترهای دوران یافته و واریانس‌های نسبی و تجمیع تجزیه عامل‌ها برای صفات کیفی

<table>
<thead>
<tr>
<th>صفات</th>
<th>پارامترهای دوران یافته</th>
<th>واریانس نسبی (%)</th>
<th>واریانس تجمیعی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن هکتولیتر</td>
<td>0/16</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>درصد پروتئین</td>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
</tr>
<tr>
<td>حجم رسوب زنی</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
</tr>
<tr>
<td>حجم نان</td>
<td>0/81</td>
<td>0/81</td>
<td>0/81</td>
</tr>
<tr>
<td>درصد رطوبت دانه</td>
<td>0/84</td>
<td>0/84</td>
<td>0/84</td>
</tr>
<tr>
<td>سختی دانه</td>
<td>0/94</td>
<td>0/94</td>
<td>0/94</td>
</tr>
<tr>
<td>حجم رسوب با SDS</td>
<td>0/92</td>
<td>0/92</td>
<td>0/92</td>
</tr>
</tbody>
</table>

ملاحظه: می‌گردد، از میان صفات کیفی مورد بررسی، صفات دانه و جذب آب در توجه تغییرات حجم رسوب باید از SDS پروتئین، حجم رسوب زنی، حجم نان، درصد رطوبت دانه و نسبت مهند برخوردار هستند. صفت درصد پروتئین، از داشتن بزرگترین نیاز مستقیم (4/80) و اثر غیر مستقیم زیادی از طبقه دیگر صفات کیفی، حلقه اصلی زنجیره ارتباطی صفات دیگر

صفات، به متر مطالعه‌های هرچه بهتر روابط مستقیم و غیر مستقیم این صفات با کیفیت نتایج، از تجزیه ضرایب مسیر استفاده شده. در این تجربه ضرایب مسیر برای حجم رسوب با SDS و مجموعه صفات کیفی مؤثر بر آن در شکل 1، نتایج حاصل از این تجزیه در جدول 5 اورده شده است. همان‌کونه که...
جدول 3. رگرسیون مرحله‌ای برای میانگین مربوط به عرض از مبدأ ضربین نبین (درصد) تغییرات تاریخی وارد شده به مدل

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضربین نبین</th>
<th>میانگین مربوط به عرض از مبدأ</th>
<th>درصد تغییرات تاریخی وارد شده به مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>جسم رسوب زنی</td>
<td>1</td>
<td>74/13</td>
<td>74/13</td>
</tr>
<tr>
<td>دصرد جدب ابی</td>
<td>2</td>
<td>6/25</td>
<td>6/25</td>
</tr>
<tr>
<td>حجم رسوب یا (X) SDS</td>
<td>3</td>
<td>1/25</td>
<td>1/25</td>
</tr>
<tr>
<td>مدل نهایی</td>
<td>4</td>
<td>37/74</td>
<td>37/74</td>
</tr>
</tbody>
</table>

** \(\hat{Y} = 37/74 \times X_1 + 2/37 \times X_2 \)**

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضربین نبین</th>
<th>میانگین مربوط به عرض از مبدأ</th>
<th>درصد تغییرات تاریخی وارد شده به مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>دصرد پروتون (X)</td>
<td>1</td>
<td>151/68</td>
<td>151/68</td>
</tr>
<tr>
<td>حجم رسوب دانه (X)</td>
<td>2</td>
<td>26/4</td>
<td>26/4</td>
</tr>
<tr>
<td>دصرد جدب ابی (X)</td>
<td>3</td>
<td>9/50</td>
<td>9/50</td>
</tr>
<tr>
<td>حجم رسوب زنی (X)</td>
<td>4</td>
<td>1/50</td>
<td>1/50</td>
</tr>
<tr>
<td>مدل نهایی</td>
<td>5</td>
<td>101/68</td>
<td>101/68</td>
</tr>
</tbody>
</table>

** \(\hat{Y} = 101/68 \times X_1 + 2/101 \times X_2 \)**

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضربین نبین</th>
<th>میانگین مربوط به عرض از مبدأ</th>
<th>درصد تغییرات تاریخی وارد شده به مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>حجم رسوب زنی (X)</td>
<td>1</td>
<td>63/4</td>
<td>63/4</td>
</tr>
<tr>
<td>دصرد پروتون (X)</td>
<td>2</td>
<td>9/25</td>
<td>9/25</td>
</tr>
<tr>
<td>دصرد جدب ابی (X)</td>
<td>3</td>
<td>6/25</td>
<td>6/25</td>
</tr>
<tr>
<td>مدل نهایی</td>
<td>4</td>
<td>100/58</td>
<td>100/58</td>
</tr>
</tbody>
</table>

** \(\hat{Y} = 100/58 \times X_1 + 1/100 \times X_2 \)**

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضربین نبین</th>
<th>میانگین مربوط به عرض از مبدأ</th>
<th>درصد تغییرات تاریخی وارد شده به مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>دصرد رطوبت دانه (X)</td>
<td>1</td>
<td>87/19</td>
<td>87/19</td>
</tr>
<tr>
<td>دصرد پروتون (X)</td>
<td>2</td>
<td>63/10</td>
<td>63/10</td>
</tr>
<tr>
<td>دصرد جدب ابی (X)</td>
<td>3</td>
<td>6/10</td>
<td>6/10</td>
</tr>
<tr>
<td>مدل نهایی</td>
<td>4</td>
<td>277/6</td>
<td>277/6</td>
</tr>
</tbody>
</table>

** \(\hat{Y} = 277/6 \times X_1 + 1/277 \times X_2 \)**

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضربین نبین</th>
<th>میانگین مربوط به عرض از مبدأ</th>
<th>درصد تغییرات تاریخی وارد شده به مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>دصرد پروتون (X)</td>
<td>1</td>
<td>11/90</td>
<td>11/90</td>
</tr>
<tr>
<td>حجم رسوب زنی (X)</td>
<td>2</td>
<td>6/25</td>
<td>6/25</td>
</tr>
<tr>
<td>دصرد رطوبت دانه (X)</td>
<td>3</td>
<td>85/2</td>
<td>85/2</td>
</tr>
<tr>
<td>مدل نهایی</td>
<td>4</td>
<td>11/90</td>
<td>11/90</td>
</tr>
</tbody>
</table>

** \(\hat{Y} = 11/90 \times X_1 + 1/11 \times X_2 \)**

* ** به ترتیب معنایی دار در سطوح احتمال 1 درصد (P < 0.05) **
بررسی توزیع و تجزیه ضرایب مسرین صفات مرتبط با کیفیت نانوایی در لایه‌های

<table>
<thead>
<tr>
<th>جدول 4: ضرایب همبستگی میان صفات کیفی</th>
<th>حجم ورود</th>
<th>حجم رسوپ</th>
<th>حجم نان</th>
<th>حجم رطوت</th>
<th>حجم جذب آب</th>
<th>وزن هکتونیتر</th>
<th>وزن پروتین</th>
<th>وزن رسوپ زنی</th>
<th>وزن رسوپ</th>
<th>وزن نان</th>
<th>وزن رطوت دانه</th>
<th>وزن سختی دانه</th>
<th>وزن جذب آب</th>
<th>وزن رسوپ با SDS</th>
<th>وزن SDS با SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>1</td>
<td>1.00</td>
<td>0.54</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>درصد پروتین</td>
<td>0.98</td>
<td>0.85</td>
<td>0.46</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>حجم رسوپ زنی</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>حجم نان</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>حجم رطوت دانه</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>سختی دانه</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>درصد جذب آب</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>حجم رسوپ با SDS</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* ** به ترتیب معنی‌دار در سطح احتمال 5 و 1 درصد

(سی‌دی‌اس‌بی) Y

(سی‌دی‌اس‌بی) X

شکل 1: دیاگرام تجزیه ضرایب مسرین حجم رسوپ با SDS و مؤثرین صفات کیفی

(سی‌دی‌اس‌بی) X1 تا Xn در جدول 3 تعریف شده‌اند

ردیابیگرام نشان دهنده تاثیر پروتینهای زنی در نانوایی‌های اولیه در حالت تغییر کیفیت و حجم رسوپ با SDS است. نتایج حاصل از تجزیه خورشایی و بر اساس آزمون T کاذب، کیفیت را تحت تاثیر قرار داده، بنابراین ارتباط مؤید حجم رسوپ با SDS به عنوان معیار مناسب برای ارزیابی و گردش کیفیت و حجم رسوپ را تأیید کرد.
جدول ۵: یاروید آثار مستقیم و غیر مستقیم صفات کیفی بر حجم رسوپ با

| SDS | صفات | اثر مستقیم | اثر غیر مستقیم از طریق
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X₁</td>
<td>X₂</td>
</tr>
<tr>
<td></td>
<td>درصد پروتئین (X₁)</td>
<td>0/795**</td>
<td>0/795**</td>
</tr>
<tr>
<td></td>
<td>حجم رسوپ زنی (X₂)</td>
<td>0/795**</td>
<td>0/121**</td>
</tr>
<tr>
<td></td>
<td>حجم نان (X₃)</td>
<td>0/795**</td>
<td>0/121**</td>
</tr>
</tbody>
</table>

* ** به ترتیب معنی‌دار در سطوح احتمال ۰/۵ و ۰/۱ درصد

جدول ۶: تعداد گروه مقدار T۱ کاذب هوتینگ و معیار نماینده دوم گروه‌ها (سی. سی.)

<table>
<thead>
<tr>
<th>سی. سی.</th>
<th>T۱ کاذب</th>
<th>اتصال گروه‌ها</th>
<th>تعداد گروه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۴۳۵</td>
<td>۴۳/۴۱</td>
<td>۴۹/۳۱</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۰۴۷۱</td>
<td>۹۸/۲۶</td>
<td>۹۸/۳۷</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۰۴۸۳</td>
<td>۶۸/۳۷</td>
<td>۶۸/۳۸</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۰۴۹۵</td>
<td>۲۴/۳۸</td>
<td>۲۴/۴۱</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۰۵۰۰</td>
<td>۱۵/۳۷</td>
<td>۱۵/۳۷</td>
<td>۴</td>
</tr>
</tbody>
</table>

زیان گروه‌ها که در گروه اول طبق‌بندی شدند، از ورزش‌ها، دندان‌دردگرای حاصل (شکل ۲) در فاصله ۰/۴۱ در مقدار تغییر بالاتر گروه‌ها قطع شد.

مورد بررسی را به پنج گروه مستقل تفکیک نمود، برای تشکیل پنج گروه، دندان‌دردگرای حاصل (شکل ۲) در فاصله ۰/۴۱ در مقدار تغییر بالاتر گروه‌ها قطع شد.

۲۵/۰۳ در مقدار تغییر بالاتر گروه‌ها قطع شد.

میانگین حاصل از تجربه واریانس و مقایسه میانگین‌های صفات مختلف گروه‌ها (جدول ۷) وجود تفاوت سیگنال معنی‌دار بین گروه‌ها، یا که مؤید محل صحیح قطع دندان‌دردگرای این گروه‌ها بود، که مشابه در میانگین حاصل از تجربه واریانس و مقایسه میانگین‌های صفات مختلف گروه‌ها بود.
فاصله میزان تغییر یافته گروهها

شکل 2: دندوکریم حاصل از تجزیه خوشه‌های زیرتیپ‌ها بر اساس صفات کیفی

شماره‌های 1 تا 85 لایه‌های اصلاحی سیمیت مکزیک، شماره‌های 86 تا 91، 92، 93، 94، 95 و 86 ارقام زراعی خارجی، و بقیه ارقام زراعی ایران می‌باشد.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21/6</td>
<td>41/6</td>
<td>44/1/11</td>
<td>51/4/11</td>
<td>56/4/10</td>
<td>62/4/10</td>
<td>68/4/10</td>
<td>76/4/10</td>
<td>80/4/10</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>44/1/11</td>
<td>51/4/11</td>
<td>56/4/10</td>
<td>62/4/10</td>
<td>68/4/10</td>
<td>76/4/10</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>44/1/11</td>
<td>51/4/11</td>
<td>56/4/10</td>
<td>62/4/10</td>
<td>68/4/10</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>44/1/11</td>
<td>51/4/11</td>
<td>56/4/10</td>
<td>62/4/10</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>44/1/11</td>
<td>51/4/11</td>
<td>56/4/10</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>44/1/11</td>
<td>51/4/11</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>44/1/11</td>
</tr>
<tr>
<td>31/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
<td>41/6</td>
</tr>
</tbody>
</table>

Note: The table contains values that are not clearly specified in the image.
بررسی تنویع و تجزیه ضرایب مسیر صفات مرتبط با کیفیت نانوایی در لایه‌های...