اثر مواد آلی بر خواص شیمیایی خاک، جذب عناصر به وسیله ذرت و عملکرد آن

یحیی رضایی‌نژاد و مجید افکوئی

چکیده
با توجه به ولایت روزافزون موارد آلی، به ویژه لجن فاضلاب و کمپومت، از نظر زیست محیطی احتمالاً مطمئن ساختن راه پیشگیری از انتشار شدن این مواد آلی در اثر زیست محیطی و انجام ورشکستگی این ماده توسط فرآیندهای زیست محیطی است. در این مقاله از تکنیک‌های مختلف در زمینه کنترل این مواد آلی به ویژه کمپومت بررسی گردیده و اثربخشی و ویژگی‌های شیمیایی این مواد در خاک نمایش داده شد.

جذب عناصر غذایی و فازهای سنگین به وسیله ذرت و عملکرد آن در زمینه‌های مختلف به صورت طرح کامل تصادفی با بکارگیری مدل‌های آماری چهار تیمار کودک‌کاری، شامل کودگاهی، کمپومت، شیمیایی و کمپومت شیمیایی انجام گرفت. کودک‌کاری آلی به مقادیر 0 و 5 در هکتار و کودگاهی به مقادیر 0 و 5 در هکتار به قدرت همکاری در زمینه کنترل افزایش میزان آلی شد.

کودک‌کاری آلی باعث افزایش مقادیر حادثه آلی می‌شود. در این مقاله، اثربخشی تکنیک‌های مختلفی از جمله کمپومت و کودها در این زمینه تشریح و بررسی گردیده است.

واژه‌های کلیدی: کودگاهی، لجن فاضلاب، کمپومت، عناصر غذایی، فازهای سنگین، ذرت

مقدمه
استفاده از مواد آلی نظیر کودهاي حیوانی و فاضلاب در باروری خاک‌های زراعی، از دید بهبود ظرفیت جهانی می‌باشد. این روش با توجه به کمپونه مواد آلی در خاک‌های مناطق خشک و کوهی مانند کودهاي حیوانی و فاضلاب در طول زرشک و خاک‌های خشک بهبود را به بهبود می‌رساند. با توجه به لجن فاضلاب و کمپومت، این مواد آلی به ویژه کمپومت از نظر زیست محیطی احتمالاً مطمئن ساختن راه پیشگیری از انتشار شدن این مواد آلی در اثر زیست محیطی و انجام ورشکستگی این ماده توسط فرآیندهای زیست محیطی است. در این مقاله از تکنیک‌های مختلف در زمینه کنترل این مواد آلی به ویژه کمپومت بررسی گردیده و اثربخشی و ویژگی‌های شیمیایی این مواد در خاک نمایش داده شد.

قلمدر
استفاده از مواد آلی نظیر کودهاي حیوانی و فاضلاب در باروری خاک‌های زراعی، از دید بهبود ظرفیت جهانی می‌باشد. این روش با توجه به کمپونه مواد آلی در خاک‌های مناطق خشک و کوهی مانند کودهاي حیوانی و فاضلاب در طول زرشک و خاک‌های خشک بهبود را به بهبود می‌رساند. با توجه به لجن فاضلاب و کمپومت، این مواد آلی به ویژه کمپومت از نظر زیست محیطی احتمالاً مطمئن ساختن راه پیشگیری از انتشار شدن این مواد آلی در اثر زیست محیطی و انجام ورشکستگی این ماده توسط فرآیندهای زیست محیطی است. در این مقاله از تکنیک‌های مختلف در زمینه کنترل این مواد آلی به ویژه کمپومت بررسی گردیده و اثربخشی و ویژگی‌های شیمیایی این مواد در خاک نمایش داده شد.

نقشه
نیمه خشک، کاربرد تركیبات آلی در این مناطق باعث بهبود خواص فيزيکي، شیمیائي و حامل خزي خاک مي‌گردد. ارزش کوده پسماندهي مواد آلی مانند کودهاي حیوانی، کمپومت و

1. استادياران خاکشناسی، دانشگاه كشاورزي، دانشگاه صنعتي اصفهان
لجن فاضل، در تحقيقات متعدد در كشورهای مختلف نشان داده شده است (15، 16، 17، 31 و 32). در اثر نگرش بر افزایش جمعیت و تولید حیوانات، سپردههای آنی، مانند لجن فاضل، احتمالاً بالاتر شده و از نظر زیست محیطی مطمئن‌ترین راه برای پیشگیری از این مشکل است. موارد آنها به زمینه کشاورزی است.

خطرات احتمالی اضافه کردن سپرده‌های آنی به زمین‌های کشاورزی، بالا قرار داده که افزایش کودی و اقتصادی آن مورد ارزیابی قرار گیرد. بخش از موارد از بین می‌آید که به آن توجه نشده و وجود فلزات سنگین در سپرده‌های آنی لحاظ شده است. لجن فاضل و کمپوزیت بسته به منحصربه‌فردی‌ها، اغلب درازهای مقابل نسبتاً زیادی عناصر سنگین نکره کدامیکی سپرده، بیرون می‌آیند. به همین دلیل، می‌تواند موجب ترکیب نامناسب کردن کادمیوم، محیط زیست و سایر بیماری‌ها شود.

لجن فاضل و کمپوزیت حاوی عناصر سنگین می‌باشند. عناصر سنگین می‌تواند به مغز و سایر بخش‌های بدن مضر باشد.

به طور مشابه، افزایش می‌باشد.

با توجه به توجه‌های وزارت کشاورزی برای مصرف کمتر کودهای محلی به عنوان پیش‌گیری از آلودگی محیط زیست، و همچنین دلایل اقتصادی و ترغیب کشاورزان به مصرف بیشتر کودهای محلی، بررسی اثر کودهای محلی بر خاک و گیاه از اولویت بی‌بی‌بیک خورده است. بنابراین، هدف از اجرای این طرح از افزایش تأثیر کودهای محلی و در کمک به کلیه فلزات سنگین، لجن فاضل و کمپوزیت زیست‌های شهرهای خوشه‌ای شیمیایی ممکن است باشد.

لجن فاضل، در مراحل رشد و روان‌های این طرح در سال 1375، در مراحل تحقیقاتی، منطقه‌ای، متعلق به منطقه خاک‌های امکان‌پذیر است. می‌تواند همکاری (24) در تحقیقات در اسپانیا، شرکتی محرکی دارد که در جلب فلزات سنگین به وسیله گیاه، این تیمار مشاهده شده و می‌شود که میکس‌های نیز در این فکرکار مشاهده می‌شود.

1. Fine loamy, Mixed thermic, Typic Haplargid
اثر موارد آلی بر خواص شیمیایی خاک، جذب عناصر به وسیله ذرت و عملکرد آن

کردن، یک نمونه مرکب از هر کرت برای انجام آزمایش‌ها نیز در
درصد سیلت و درصد رس می‌باشد. متوسط بزرگ‌تر و

درجه حرارت سالانه منطقه به ترتیب 150 می‌باشد و

سیلت گسترده است. این آزمایش به صورت طرح بلوکی کامل

تکرار و چهار تیمار کودی، شامل کود گاوی، لجن فاضلاب،

کمپوست زباله عطشی، کود شیمیایی و شهد (بدون هیچ گونه

کود)، با گته‌های حوضه متوسط به‌صورت 60/4 متر

انجام شد. کودهای آلی به مقدار 50 تن (بیش‌تر درون و زیر

خشک) و کود شیمیایی به مقدار 250 کیلوگرم فسفات دی

آمونیوم و 250 کیلوگرم اوره (به صورت سرک) در هفتار

کرده‌هاضما و تا مقدار 30 تایانه طبق مرحله‌گذاری

کشت در این مطالعه در تاریخ 15/16 به صورت روزانه و با

فاصله 70 و 100 سیال متری و به صورت روزانه و

انجام گرفت. در طول رشد گیاههای علفی‌های پذیرش و سیلت

علف‌کش و با دست کنترل شد. آب‌یاری به صورت کریتی و با آب

چاه مزو به صورت گرفت. هدایت الکتریکی و

pH آب آبیاری به ترتیب معلام 12 و 7/4 بود. هدایت

الکتریکی آب آبیاری عامل محدودیتی عملکرد ذرت

نمی‌باشد (26).

نتایج و پیش‌بینی

خصوصیات کودهای آلی

جدول 1 بخشی از ویژگی‌های شیمیایی کودهای آلی مورد

استفاده در این تحقیقات استفاده نشان می‌دهد. کود گاوی و کمپوست

حوایی در pH 3 می‌باشد. حال آن که لحاظ فلایورات دارای

پس از این اثبات ایجاد شد و تا پایان می‌باشد. نتایج این

pH به مبنای یون‌ها و اواسط در اثر تأثیر بودن و وجود اسیدهای

(26). به همان دلیل کود گاوی و کمپوست هر دو

دارند و لحاظ فلایورات، به علت تأثیر یون‌ها و وجود اسیدهای

pH آلی، دارای

مقدار عناصر غذایی مورد نیاز گیاهی در هر سه کود آلی نسبتاً

زیاد است. مصرف 40 تن در هر کرت از این کودها

می‌تواند اغلب عناصر مورد نیاز گیاه، مخصوصاً آت، فسفر و

1. Ethyelendiamine tetra acetic acid
2. Walkly and Black
3. Kjeldahl

1. Ethyelendiamine tetra acetic acid
2. Walkly and Black
3. Kjeldahl

1. Ethyelendiamine tetra acetic acid
2. Walkly and Black
3. Kjeldahl

1. Ethyelendiamine tetra acetic acid
2. Walkly and Black
3. Kjeldahl
جدول 1. ترکیب شیمیایی کودهای آلی مورد استفاده

<table>
<thead>
<tr>
<th>کمیوسوئت</th>
<th>لجن فاضلاب</th>
<th>کورگاوی</th>
<th>واحد</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8</td>
<td>6/4</td>
<td>8/6</td>
<td>-</td>
<td>pH</td>
</tr>
<tr>
<td>14/7</td>
<td>9/1</td>
<td>17</td>
<td>(dS/m)</td>
<td>هدایت الکتریکی</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>60</td>
<td>%</td>
<td>ضریب آلی ماده</td>
</tr>
<tr>
<td>22/1</td>
<td>21/7</td>
<td>16/6</td>
<td>%</td>
<td>کربن آلی ازت کل</td>
</tr>
<tr>
<td>1/2</td>
<td>1/8</td>
<td>2/1</td>
<td>%</td>
<td>فسفر کل پتاسیم کل</td>
</tr>
<tr>
<td>0/21</td>
<td>0/61</td>
<td>0/26</td>
<td>%</td>
<td>C/N</td>
</tr>
<tr>
<td>11/1</td>
<td>0/25</td>
<td>2/3</td>
<td>%</td>
<td>آهن روی</td>
</tr>
<tr>
<td>18/4</td>
<td>8/4</td>
<td>1/50</td>
<td>mg/kg</td>
<td>مس منگنز</td>
</tr>
<tr>
<td>19500</td>
<td>17250</td>
<td>1100</td>
<td>mg/kg</td>
<td>کادمیوم سرب</td>
</tr>
<tr>
<td>275</td>
<td>6</td>
<td>(mg/kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>(mg/kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>65</td>
<td>(mg/kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>250</td>
<td>300</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>3</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>675</td>
<td>38</td>
<td>mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

پنجم‌سیم با تأمین کنن. غلظت سرب و کادمیوم در هر سه کود آلی مورد استفاده در این مطالعه از غلظت تعیین شده برای این کشور است (17, 18, 19). غلظت این عناصر در دارای فاضلاب و کمیوسوئت به مراتب بیشتر از کورگاوی است.

هر سه کود آلی دارای درصد مشابه و نسبتاً زیادی از ماده آلی می‌باشند. اما نسبت کربن به آزن در این کودها دارای تفاوت زیادی است. کورگاوی و کمیوسوئت به ترتیب دارای کمترین و بیشترین نسبت کربن به آزن می‌باشند. مقدار ماده آلی نسبتاً زیاد این کودها می‌تواند به بست‌های خاصی از فیزیکی و شیمیایی خاک‌گردد (13 و 14).

اثبات باندهای کودهای آلی بر قابلیت جذب عناصر در خاک غلظت کل هیچ یک از عناصر در خاک پنج از یک دارای تفاوت معنی‌داری بین تیمارها نبود (جدول 2). درصد ازت کل در
جدول ۲. اثر تیمارهای کودی بر غلظت کل (میلی گرم در کیلوگرم) باعث عصاره‌گیری از خاک توسط EDTA

<table>
<thead>
<tr>
<th>تیمار</th>
<th>فسفر</th>
<th>سرب</th>
<th>کادمیوم</th>
<th>روی</th>
<th>مش</th>
<th>آهن</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۴/۸</td>
<td>۹/۳</td>
<td>ND</td>
<td>۱/۳</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>۴/۹</td>
<td>۳/۹</td>
<td>۱/۴</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>کود گازی</td>
<td>۴/۹</td>
<td>۳/۹</td>
<td>۱/۴</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>لجن فاضلاب</td>
<td>۴/۹</td>
<td>۳/۹</td>
<td>۱/۴</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>کمیسیون</td>
<td>۴/۹</td>
<td>۳/۹</td>
<td>۱/۴</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

برای هر عنصر در هر سانت، اعداد دارای خوشه مشابه ناقد اختلاف معنی دار (در سطح پنج درصد) بر اساس آزمون دانک می‌باشد.

ND: غلظت کمتر از حد تشخیص دستگاه جذب اتمی.

جدول ۳. اثر تیمارهای کودی بر عناصر در خاک (میلی گرم در کیلوگرم) باعث عصاره‌گیری از خاک توسط EDTA

<table>
<thead>
<tr>
<th>تیمار</th>
<th>اثر</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
<th>مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>کود گازی</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>لجن فاضلاب</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>کمیسیون</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

رای هر عنصر در هر سانت، اعداد دارای خوشه مشابه ناقد اختلاف معنی دار (در سطح پنج درصد) بر اساس آزمون دانک می‌باشد.

علوف‌های معیار دار بود (جدول ۴). کود گازی و لجن فاضلاب بیشترین کمک‌های تمرین‌های اثر را بر عملکرد داشته‌اند. مشاهدات در طول دوره رشد نشان داده که عناصر رشد مانند جوانه‌های زدن، رشد طولی، قطر ساقه و تعداد برگ در گیاهان رشد کرده و این تیمارهای کود گازی و لجن فاضلاب، به مراتب بهتر از تیمارهای دیگر بود. عملکرد زیاد را در دو تیمار گازی و لجن فاضلاب به دلیل وجود مقادیر بیشتر عناصر ضروری، مخصوصاً از، سرب وکادمیوم می‌باشد، و احتمالاً یک دلیل مهم معدنی شدن تدریجی این عناصر از شکل آلی واپس و قابل استرس ترو بودن حساب می‌شود که مقادیر کافی در هنگام نازگی به آنها به سمت گیاه استفاده کرد.

عملکرد اثر تیمارهای کودی در عملکرد دانه، وزن تر و خشک ذرت در
آن (جدول 1) در مراحل اولیه رشد، احتمالاً آب‌داری و غذاپذیری به ویژه از موارد مشابه به شکل است و به همین دلیل دارای عملکرد بسیار کمتری نسبت به کودهای آلی و شیمیایی است.

عملکرد کود در تیمار کود شیمیایی کمتر از کود گاوهایی و لجن فاضلاب بود (جدول 2). این تفاوت در عملکرد بین تیمارهای فوق ممکن است به خاطر اثر مطلوب مواد آلی بر خواص فیزیکی خاک، مخصوصاً پیشگیری از تشکیل سله باشد.

غفلت و جنبد عناصر در ذرت غفلت از اندازه موادی و دانه ذرت بین تیمارها درای تفاوت معنی داری بود (جدول 4). غفلت از تیمارهای کود شیمیایی، کود گاوهایی و لجن فاضلاب مشابه بود و به همگی به طور معنی داری نسبت به تیمارهای شاهد و کمپوزیت بیشتر بودند (جدول 4). به طوری که غفلت جنبد کل ذرت به وسیله ذرت در تیمار کود گاوهایی بیشترین و در تیمار شاهد و کمپوزیت کمترین بود، که به خاطر تفاوت‌های زیاد در عملکرد بین این تیمارها می‌باشد.

بازیابی ظاهری آن در دستاورد برنامه پیش‌گیری به طوری که بیشترین درصد بازیابی ظاهری در تیمار کود گاوهایی و کمترین آن متعلق به کمپوزیت می‌باشد. نتایج درصد آماده در تحقیق ثانی می‌دهد که نسبت کریستالی به اثر ذرت در بازیابی ظاهری آلی ندارد. کمپوزیت و کود گاوهایی به ترتیب با داشتن نسبت کریستالی به اثر ذرت از 18 و 8 درصد کمترین و بیشترین مقدار بازیابی ارتفاع بودند که می‌تواند عامل بسیار مهمی در اختلاف مشاهده شده در عملکرد بین این تیمارها محسوب شود. نتایج درصد ذرت در مورد کود گاوهایی و لجن فاضلاب مشابه تاثیر گذار شده به وسیله القارس و همکاران است.

<table>
<thead>
<tr>
<th>1. Concentration</th>
<th>2. Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار کل جذب در شاهد - مقدار کل جذب در میکروب = درصد بازیابی ظاهری</td>
<td>100% - مقدار کل جذب در ذرت</td>
</tr>
<tr>
<td>شماره تیمار</td>
<td>درجه تیمار</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

توجه گیری
1. افزودن کودهای آلی به خاک باعث افزایش میزان آلاینده آلی و مقدار آهن می‌شود. رسیدن قابلیت گذوش در خاک گودی
2. کودگاوا و سپس لجن فاضلاب نسبت به دیگر تیمارها دارای بیشتر تأثیر بیشتر و سرب در مقدار آهن و مس، روی و سرب در انتقال هواپیمایی و دانه دارد (جدول 5).

نتایج نهایی مشخص نشان می‌دهد که تیمارها، آهن و مس، روی و سرب در انتقال فلزات در خاک و در حد تیمار به طور معنی‌داری قابلیت نسبت به دیگر تیمارها دارای بیشتر تأثیر بیشتر ومربوط به دیگر تیمارها می‌شود.
کمترین تأثیر را بر عملکرد شناس دادند.
4. غلظت فلزات سنگین در خاک اندام هوازی و دانه ذرت در این مطالعه از حد سمی آنها بسیار کمتر بوده و لی اثر دار
مدت استفاده از پسماندهای مواد آلی و نیترات ناشی از
تجمعی بودن آنها با یا مورد تویج قرار گیرد.

منابع مورد استفاده
1. آبیاتوی، م، درسی ای، و ب. خیامی‌آرا. ۱۳۷۷. اثر لجن فاصلاب بر عملکرد و جذب فلزات سنگین به وسیله کاهو و استنای
جله علم کشاورزی و منابع طبیعی ۱۹(۱۹۸۰):۳۰-۱۹.
2. آبیاتوی، م، درسی ای، و ب. خیامی‌آرا. ۱۳۷۷. اثر لجن فاصلاب بر عملکرد و جذب فلزات سنگین به وسیله کاهو و استنای
جله علم کشاورزی و منابع طبیعی ۱۹(۱۹۸۰):۳۰-۱۹.
3. رحیمی، ق. ۱۳۷۶. مطالعه اثرات کود کمپوننت بر شوری و آلودگی خاک و مقدار جذب مناصر سنگین توسط گیاه ذرت از
خاک‌های دروازه کمپوننت. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
4. کلیاسی، م. و آنادل، ک. ۱۳۷۸. اثر شرایط زیست بر عملکرد و ترکیب شیمیایی ذرت و اثر باقی مانده آن بر بعضی ویژگی‌های خاک.
جله علم کشاورزی و منابع طبیعی (۱۹۸۰):۳۰-۱۹.
Mexico State Univ., Las Cruces, N. M.
through soils. J. Environ. Qual. 16: 357-360.
zinc accumulation in swiss chard and radish. J. Environ. Qual. 16: 217-221.
soil on some soil physical and chemical properties. J. Environ. Qual. 5: 422-427.
and liquid hog manure on soil characteristics and on growth, yield and composition of corn. J.
Environ. Qual. 6: 361-368.


